Facilitates spatial modeling using integrated nested Laplace approximation via the INLA package (<http://www.r-inla.org>). Additionally, implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. See Yuan Yuan, Fabian E. Bachl, Finn Lindgren, David L. Borchers, Janine B. Illian, Stephen T. Buckland, Havard Rue, Tim Gerrodette (2017), <arXiv:1604.06013>.
Version: | 2.1.13 |
Depends: | R (≥ 3.3), sp, stats, methods, ggplot2 |
Imports: | rgdal, rgeos, utils, Matrix |
Suggests: | testthat, ggmap, rgl, sphereplot, raster, dplyr, maptools, mgcv, shiny, spatstat, spatstat.data, RColorBrewer, graphics, INLA, knitr, rmarkdown |
Published: | 2020-02-16 |
Author: | Fabian E. Bachl [aut, cre] (Fabian Bachl wrote the main code),
Finn Lindgren |
Maintainer: | Fabian E. Bachl <bachlfab at gmail.com> |
BugReports: | https://github.com/fbachl/inlabru/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://www.inlabru.org, |
NeedsCompilation: | no |
Citation: | inlabru citation info |
Materials: | README NEWS |
CRAN checks: | inlabru results |
Reference manual: | inlabru.pdf |
Package source: | inlabru_2.1.13.tar.gz |
Windows binaries: | r-devel: inlabru_2.1.13.zip, r-release: inlabru_2.1.13.zip, r-oldrel: inlabru_2.1.13.zip |
macOS binaries: | r-release: inlabru_2.1.13.tgz, r-oldrel: inlabru_2.1.13.tgz |
Old sources: | inlabru archive |
Please use the canonical form https://CRAN.R-project.org/package=inlabru to link to this page.