inlabru: Spatial Inference using Integrated Nested Laplace Approximation

Facilitates spatial modeling using integrated nested Laplace approximation via the INLA package (<http://www.r-inla.org>). Additionally, implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. See Yuan Yuan, Fabian E. Bachl, Finn Lindgren, David L. Borchers, Janine B. Illian, Stephen T. Buckland, Havard Rue, Tim Gerrodette (2017), <arXiv:1604.06013>.

Version: 2.1.13
Depends: R (≥ 3.3), sp, stats, methods, ggplot2
Imports: rgdal, rgeos, utils, Matrix
Suggests: testthat, ggmap, rgl, sphereplot, raster, dplyr, maptools, mgcv, shiny, spatstat, spatstat.data, RColorBrewer, graphics, INLA, knitr, rmarkdown
Published: 2020-02-16
Author: Fabian E. Bachl [aut, cre] (Fabian Bachl wrote the main code), Finn Lindgren ORCID iD [aut] (Finn Lindgren wrote code for SPDE posterior plotting, and continued development of the main code), David L. Borchers [ctb] (David Borchers wrote code for Gorilla data import and sampling, multiplot tool), Daniel Simpson [ctb] (Daniel Simpson wrote the basic LGCP sampling method), Lindesay Scott-Howard [ctb] (Lindesay Scott-Howard provied MRSea data import code)
Maintainer: Fabian E. Bachl <bachlfab at gmail.com>
BugReports: https://github.com/fbachl/inlabru/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: http://www.inlabru.org,
NeedsCompilation: no
Citation: inlabru citation info
Materials: README NEWS
CRAN checks: inlabru results

Downloads:

Reference manual: inlabru.pdf
Package source: inlabru_2.1.13.tar.gz
Windows binaries: r-devel: inlabru_2.1.13.zip, r-release: inlabru_2.1.13.zip, r-oldrel: inlabru_2.1.13.zip
macOS binaries: r-release: inlabru_2.1.13.tgz, r-oldrel: inlabru_2.1.13.tgz
Old sources: inlabru archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=inlabru to link to this page.