Package ‘inlabru’

February 16, 2020
Type Package

Title Spatial Inference using Integrated Nested Laplace Approximation
Version 2.1.13

URL http://www.inlabru.org,

BugReports https://github.com/fbachl/inlabru/issues

Description Facilitates spatial modeling using integrated nested Laplace approximation via the
INLA package (<http://www.r-
inla.org>). Additionally, implements a log Gaussian Cox process likelihood for
modeling univariate and spatial point processes based on ecological survey data. See Yuan Yuan,
Fabian E. Bachl, Finn Lindgren, David L. Borchers, Janine B. Illian, Stephen T. Buck-
land, Havard Rue,
Tim Gerrodette (2017), <arXiv:1604.06013>.

License GPL (>=2)
Imports rgdal, rgeos, utils, Matrix

Suggests testthat, ggmap, rgl, sphereplot, raster, dplyr, maptools,
mgcv, shiny, spatstat, spatstat.data, RColorBrewer, graphics,
INLA, knitr, rmarkdown

Depends R (>= 3.3), sp, stats, methods, ggplot2,
Additional_repositories https://inla.r-inla-download.org/R/testing
RoxygenNote 6.1.1

NeedsCompilation no

Author Fabian E. Bachl [aut, cre] (Fabian Bachl wrote the main code),
Finn Lindgren [aut] (<https://orcid.org/0000-0002-5833-2011>, Finn
Lindgren wrote code for SPDE posterior plotting, and continued
development of the main code),
David L. Borchers [ctb] (David Borchers wrote code for Gorilla data
import and sampling, multiplot tool),
Daniel Simpson [ctb] (Daniel Simpson wrote the basic LGCP sampling
method),
Lindesay Scott-Howard [ctb] (Lindesay Scott-Howard provied MRSea data
import code)

http://www.inlabru.org
https://github.com/fbachl/inlabru/issues

2 R topics documented:

Maintainer Fabian E. Bachl <bachlfab@gmail.com>
Repository CRAN
Date/Publication 2020-02-16 22:10:09 UTC

R topics documented:

bincount L e e 3
bru e 4
bru.componentso e e e e 6
bru.options 9
CPTOd . . e e 10
deltalC 11
devel.cvmeasure L e e e 12
GEMETALE . . . v v v v e 14
generate.bru e 15
generate.dnla e 17
B8 e e 18
ggdataframe 19
ggianlamesh 21
gginlamesh.1d oL 22
CEMAMIX . o v v v v e 24
ggprediction 24
ggRasterLayer 26
gg.SpatialGridDataFrame 28
gg.Spatialllines L e 29
ggSpatialPixels 31
gg.SpatialPixelsDataFrame 32
gg.SpatialPoints 33
gg.SpatialPolygons 35
globe . .o e e e 37
glplot . . .o 38
glplotinlamesh oo 39
glplot.Spatiallines e e 40
glplot.SpatialPoints 41
S L ot e e e e e e e e 42
SMAP . v e e e e e e e e e e e e e e e e e e e 43
gorillas L 44
init.tutorial L. L 45
inlabru e 46
INE . 46
IPOINES o o o e 48
IgCp . o e e 49
like e 51
mexdolphin 53
10 2 AN 54
multiplot e e e e 55

PIXEIS . . o e 56

bincount 3
plot.bru e e e e 56
plot.prediction e e e e e e 57
plotsample 59
POINE2COUNE o it e e e e e e e 60
Poissonl 1D L e 61
Poisson2 1D L e 62
Poisson3 1D L 63
predict.bru 64
predictinla e 67
sample.gep 68
seals e 70
sline e e e 71
Spatial.to.PPP - . . . e e e e e e e e 72
SPAE.POSIETIOT o i e e e e e e e e e e e 73
SPOLY . . o e e 74
stransform L L L e 75
SUMMATY.DIU o o e e e e e e e 76
TOYZIOUPS '« . v o o vt e e e e e e e e e e e e e e e e 77
VEITICES . . o v v o e e e e e e e e e 78
vertices.inlamesho 79

Index 80

bincount 1D LGCP bin count simulation and comparison with data

Description

A common procedure of analyzing the distribution of 1D points is to chose a binning and plot the

data’

s histogram with respect to this binning. This function compares the counts that the histogram

calculates to simulations from a 1D log Gaussian Cox process conditioned on the number of data
samples. For each bin this results in a median number of counts as well as a confidence interval. If
the LGCP is a plausible model for the observed points then most of the histrogram counts (number
of points within a bin) should be within the confidence intervals. Note that a proper comparison is
a multiple testing problem which the function does not solve for you.

Usage

bincount(result, predictor, observations, breaks, nint = 20,
probs = ¢(0.025, 0.5, 0.975), ...)

Arguments
result A result object from a bru or lgcp call
predictor A formula describing the prediction of a 1D LGCP via predict.

observations A vector of observed values

breaks A vector of bin boundaries

4 bru

nint Number of integration points per bin. Increase this if the bins are wide and
probs numeric vector of probabilities with values in [0,1]

arguments passed on to predict

Value

An inla object

Examples

Not run:

Load a point pattern
data(Poisson2_1D)

Take a look at the point (and frequency) data

ggplot(pts2) +
geom_histogram(aes(x = x), binwidth = 55/20, boundary = @, fill = NA, color = "black") +
geom_point(aes(x), y = @, pch = "|", cex = 4) +
coord_fixed(ratio = 1)

#' Fit an LGCP model

x <- seq(@, 55, length = 50)

mesh1D <- inla.mesh.1d(x, boundary = "free")

mdl <- x ~ spdelD(map = x, model = inla.spde2.matern(meshiD)) + Intercept # SOLUTION
fit.spde <- lgcp(mdl, pts2, domain = list(x = c(0,55)))

Calculate bin statistics

bc <- bincount(result = fit.spde,
observations = pts2,
breaks = seq(@,max(pts2),length = 12),
predictor = x ~ exp(spdelD + Intercept))

Plot them!
attributes(bc)$ggp

End(Not run)

bru Convenient model fitting using (iterated) INLA

Description

This method is a wrapper for inla and provides multiple enhancements.

bru 5

» Easy usage of spatial covariates and automatic construction of inla projection matrices for
(spatial) SPDE models. This feature is accessible via the components parameter. Practical
examples on how to use spatial data by means of the components parameter can also be found
by looking at the Igcp function’s documentation.

* Constructing multiple likelihoods is straight forward. See like for more information on how
to provide additional likelihoods to bru using the ... parameter list.

* Support for non-linear predictors. See example below.

* Log Gaussian Cox process (LGCP) inference is available by using the cp family or (even
easier) by using the Igcp function.

Usage

bru(components = y ~ Intercept, family = NULL, data = NULL, ...,
options = list())

Arguments
components a formula describing the latent components. See bru.components for details.
family A string indicating the likelihood family. The default is gaussian with identity
link. In addition to the likelihoods provided by inla (see inla.models () $1ikelihood)
inlabru supports fitting Cox processes via family = "cp"”. The latter requires
contructing a likelihood using the like function and providing it via the ... pa-
rameter list. As an alternative to bru, the lgcp function provides a convenient
interface to fitting Cox processes. See details.
data A data.frame or SpatialPoints[DataFrame] object. See details.
Additional likelihoods, each constructed by a calling like. See details.
options A list of name and value pairs that are either interpretable by bru.options or valid
inla parameters.
Details

family and ... must either be parameters to like, or 1hood objects constructed by like. data must
either be an 1hood object, a data container, or NULL. If NULL, data must be supplied through direct
calls to like.

Value
bru returns an object of class "bru". A bru object inherits from inla (see the inla documentation for
its properties) and adds additional information stored in the sppa field.

Author(s)

Fabian E. Bachl <<bachlfab@gmail.com>>

6 bru.components

Examples

if (require("INLA", quietly = TRUE)) {

Simulate some covariates x and observations y
input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2xx + rnorm(10, mean=0, sd=0.1))

Fit a Gaussian likelihood model
fit <- bru(y ~ x + Intercept, "gaussian”, input.df)

Obtain summary
fit$summary.fixed

}

if (require("INLA", quietly = TRUE)) {
Alternatively, we can use the like() function to construct the likelihood:

lik = like(family = "gaussian”, data = input.df)
fit <- bru(y ~ x + Intercept, lik)
fit$summary.fixed

An important addition to the INLA methodology is bru's ability to use
non-linear predictors. Such a predictor can be formulated via like()'s
\code{formula} parameter. For instance

if (require(”INLA", quietly = TRUE)) {

z =2

input.df <- within(input.df, y <- 5 + exp(z)*x + rnorm(10, mean=0, sd=0.1))

lik = like(family = "gaussian”, data = input.df, formula =y ~ exp(z)*x + Intercept, E = 10000)
fit <- bru(~ z + Intercept, lik)

Check the result (z posterior should be around 2)
fit$summary.fixed

}

bru.components bru components

Description

Similar to glm(), gam() and inla() bru uses formula objects to describe response data and latent
(unknonw) components of the model to be fitted. However, in addition to the syntax compatible
with inla, bru components offer addtitional functionality which facilitates modeling.

bru.components 7

Usage

bru.components()

Details

bru will understand formulae describing fixed effect models just like the other methods. For in-
stance, the formula y ~ x will fit the linear combination of an effect named x and an intercept to the
response y with respect to the likelihood family stated when calling bru. Mathematically, the linear
predictor n would be written down as

n=p0x*xx+c,
where:

e cis the intercept
* xis a covariate
* (s a random variable associated with = and

* ¢ = (B * x is called the random effect of x

A problem that arises when using this kind of R formula is that it does not clearly relect the mathe-
matical formula. For instance, when providing the formula to inla, the resulting object will refer to
the random effect 1) = 3 * = as x. Hence, it is not clear if x refers to the covariate or the effect of
the covariate.

Naming random effects

In inla, a simple random effect model would be expressed as
e formula =y ~ f(x,model = "linear"),

where f is the inla specific function to set up random effects of all kinds. The underlying predictor
would again be n = 3 * x + c but the result of fitting the model would state x as the random effect’s
name. bru allows to rewrite this formula in order to explicitly state the name of the random effect
and the name of the associated. This is achived by replacing f with an arbitrary name that we wish
to assign to the effect, e.g.

e components =y ~ psi(x,model ="linear").
Being able to disciminate between x and 1) is relevant because of two functionalities bru offers.
The formula parameters of both, bru and the prediction method predict.bru are interpreted in the
mathematical sense. For instance, predict may be used to analyze the an analytical combination
of the covariate x and the intercept using

e predict(fit,data.frame(x=1)),~ exp(x + Intercept).

On the other hand, predict may be used to only look at a transformation of the random effect

e predict(fit,NULL,~ exp(psi).

8 bru.components

Simple covariates and the map parameter

It is not unusual for a random effect act on a transformation of a covariate. In other frameworks this
would mean that the transformed covariate would have to be calculated in advance and added to the
data frame that is usually provided via the data parameter. inlabru provides the option to do this
transformation automatically. For instance, one might be interested in the effect of a covariate 2.
In inla and other frameworks this would require to add a column xsquared to the input data frame
and use the formula

e formula =y ~ f(xsquared,model = "linear"),
In inlabru this can be achived using two ways of using the map parameter.

e components =y ~ psi(map = x*2,model = "linear")
e components =y ~ psi(map = mySquareFun(x),model = "linear"),

e components =y ~ psi(map = myOtherSquareFun,model = "linear"),

In the first example inlabru will interpret the map parameter as an expression to be evaluated within
the data provided. Since x is a knonwn covariate it will know how to calculate it. The second
example is an expression as well but it uses a function alled mySquareFun. This function is defined
by user but has wo be accessible within the work space when setting up the compoonents. The third
example provides the function myOtherSquareFun directly and not within an expression. In this
case, inlabru will call the function using the data provided via the data parameter. inlabru expects
that the output of this function is a data.frame with "psi" being the name of the single existing
column. For instance,

myOtherSquareFun = function(data) { data =data[,"x",drop = FALSE] ; colnames(data) =
"psi"” ; return(data)}

Spatial Covariates

When fitting spatial models it is common to work with covariates that depend on space, e.g. sea sur-
face temperature or elevation. Although it is straight forward to add this data to the input data frame
or write a covariate function like in the previous section there is an even more convenient way in
inlabru. Spatial covariates are often stored as SpatialPixelDataFrame, SpatialPixelDataFrame
or RasterLayer objects. These can be provided directly via the map parameter if the input data is
a SpatialPointsDataFrame. inlabru will automatically evaluate and/or interpolate the coariate at
your data locations when using code like

e components =y ~ psi(mySpatialPixels,model = "linear").

Coordinates

A common spatial modelling component when using inla are SPDE models. An important feature
of inlabru is that it will automatically calculate the so called A-matrix which maps SPDE values
at the mesh vertices to values at the data locations. For this purpose, the map parameter can be se
to coordinates, which is the sp package function that extracts point coordinates from the Spatial-
PointsDataFrame that was provided as input to bru. The code for this would look as follows:

e components =y ~ mySPDE (map = coordinates,model = inla.spde2.matern(...)).

bru.options 9

Author(s)

Fabian E. Bachl <<bachlfab@gmail.com>>

bru.options Additional bru options

Description

Additional bru options

Usage

bru.options(mesh = NULL, run = TRUE, max.iter = 10, offset = 0,
result = NULL, E = 1, Ntrials = 1,
control.compute = inlabru:::iinla.getOption("control.compute”),
control.inla = inlabru:::iinla.getOption("control.inla"),

control.fixed = inlabru:::iinla.getOption("control.fixed"), ...)
Arguments

mesh An inla.mesh object for spatial models without SPDE components. Mostly
used for successive spatial predictions.

run If TRUE, run inference. Otherwise only return configuration needed to run in-
ference.

max.iter maximum number of inla iterations

offset the usual inla offset. If a nonlinear formula is used, the resulting Taylor approx-

imation constant will be added to this automatically.

result An inla object returned from previous calls of inla, bru or 1gcp. This will be
used as a starting point for further improvement of the approximate posterior.

E inla ’poisson’ likelihood exposure parameter

Ntrials inla "binomial’ likelihood parameter

control.compute
INLA option, See control.compute

control.inla INLA option, See control.inla
control.fixed INLA option, See control.fixed

Additional options passed on to inla

Author(s)

Fabian E. Bachl <<bachlfab@gmail.com>>

10 cprod

Examples

Generate default bru options
opts = bru.options()

Print them:
opts

cprod Cross product of integration points

Description

Calculates the cross product of integration points in different dimensions and multiplies their weights
accordingly. If the object defining points in a particular dimension has no weights attached to it all
weights are assumend to be 1.

Usage
cprod(...)
Arguments
data.frame or SpatialPointsDataFrame objects, each one usually obtained
by a call to the ipoints function.
Value

A data. frame or SpatialPointsDataFrame of multidimensional integration points and their weights

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

ipoints needs INLA

if (require("INLA", quietly = TRUE)) {

Create integration points in dimension 'myDim' and 'myDiscreteDim'
ips1 = ipoints(c(@,8), name = "myDim")

ips2 = ipoints(as.integer(c(1,2,3)), name = "myDiscreteDim")

Calculate the cross product

deltalC 11

ips = cprod(ips1, ips2)

Plot the integration points
plot(ips$myDim, ips$myDiscreteDim, cex = 10xips$weight)
3

deltalC Summarise DIC and WAIC from 1gcp objects.

Description

Calculates DIC and WAIC differences and produces an ordered summary.

Usage
deltaIC(..., criterion = "DIC")
Arguments
Comma-separated objects inheriting from class inla and obtained from a run of
inla, bru or lgcp
criterion If °'DIC’, plots DIC differences; If "WAIC’, plots WAIC differences.
Value

A data frame with each row containing the model name, DIC, WAIC, deltaDIC, and deltaWAIC.

Examples

Generate some data
input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2xcos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit two models

fit <- bru(y ~ x, "gaussian”, input.df)
fit2 <- bru(y ~ x, "Poisson”, input.df)
Compare DIC

deltaIC(fit, fit2)

12 devel.cvmeasure

devel.cvmeasure Variance and correlations measures for prediction components

Description

Calculates local and integrated variance and correlation measures as introduced by Yuan et al.
(2017).

Usage
devel.cvmeasure(joint, predictionl, prediction2, samplers = NULL,
mesh = NULL)
Arguments
joint A joint prediction of two latent model components.
predictionil A prediction of first component.
prediction2 A prediction of the first component.
samplers A SpatialPolygon object describing the area for which to compute the cummu-
lative variance measure.
mesh The inla.mesh for which the prediction was performed (required for cuammu-
lative Vmeasure).
Value

Variance and correlations measures.

References

Y. Yuan, F. E. Bachl, F. Lindgren, D. L. Brochers, J. B. Illian, S. T. Buckland, H. Rue, T. Gerrodette.
2017. Point process models for spatio-temporal distance sampling data from a large-scale survey of
blue whales. https://arxiv.org/abs/1604.06013

Examples

if (require(”INLA", quietly = TRUE)) {
Load Gorilla data

data("gorillas”, package = "inlabru")
Use RColorBrewer
library(RColorBrewer)

Fit a model with two components:

https://arxiv.org/abs/1604.06013

devel.cvmeasure

1) A spatial smoothe SPDE
2) A spatial covariate effect (vegetation)

pcmatern <- inla.spde2.pcmatern(gorillas$mesh,
prior.sigma = c(0.1, 0.01),
prior.range = c(5, 0.01))

cmp <- coordinates ~ vegetation(map = gorillas$gcov$vegetation, model = "factor”) +
spde(map = coordinates, model = pcmatern, mesh = gorillas$mesh) -
Intercept

fit <- lgcp(cmp, gorillas$nests, samplers = gorillas$boundary)
Predict SPDE and vegetation at the mesh vertex locations

vrt = vertices(gorillas$mesh)

joint <- predict(fit, vrt, ~ spde + vegetation)
field <- predict(fit, vrt, ~ spde)

veg <- predict(fit, vrt, ~ vegetation)

Plot component mean

multiplot(ggplot() + gg(gorillas$mesh, color = joint$mean) +
coord_equal() + theme(legend.position= "bottom"),
ggplot() + gg(gorillas$mesh, color = field$mean) +
coord_equal() + theme(legend.position= "bottom"),
ggplot() + gg(gorillas$mesh, color = veg$mean) +
coord_equal() + theme(legend.position = "bottom”),
cols = 3)

Plot component variance

multiplot(ggplot() + gg(gorillas$mesh, color = joint$var) +

coord_equal() + theme(legend.position = "bottom”),
ggplot() + gg(gorillas$mesh, color = field$var) +

coord_equal() + theme(legend.position = "bottom”),
ggplot() + gg(gorillas$mesh, color = veg$var) +

coord_equal() + theme(legend.position = "bottom"),
cols = 3)

Calculate variance and correlation measure

vm <- devel.cvmeasure(joint, field, veg)
lprange <- range(vm$var.joint, vm$vari,vm$var2)

Variance contribution of the components

csc <- scale_fill_gradientn(colours = brewer.pal(9,”"Y10rRd"), limits = lprange)
boundary <- gorillas$boundary

plot.1 <- ggplot() + gg(gorillas$mesh, color = vm$var.joint, mask = boundary) +
csc + coord_equal() + ggtitle("joint"”) + theme(legend.position = "bottom")
plot.2 <- ggplot() + gg(gorillas$mesh, color = vm$varl, mask = boundary) +

13

14 generate

csc + coord_equal() + ggtitle("SPDE") + theme(legend.position = "bottom")
plot.3 <- ggplot() + gg(gorillas$mesh, color = vm$var2, mask = boundary) +

csc + coord_equal() + ggtitle("vegetation”) + theme(legend.position = "bottom")
multiplot(plot.1, plot.2, plot.3, cols = 3)
Covariance of SPDE field and vegetation
ggplot() + gg(gorillas$mesh, color = vm$cov)
Correlation between field and vegetation
ggplot() + gg(gorillas$mesh, color = vm$cor)
Variance and correlation integrated over space
vm.int <- devel.cvmeasure(joint, field, veg,

samplers = ipoints(gorillas$boundary, gorillas$mesh),

mesh = gorillas$mesh)
vm.int

generate Generate samples from fitted bru and inla models

Description

Generic function for sampling for fitted models. The function invokes particular methods which
depend on the class of the first argument.

Usage
generate(object, ...)
Arguments
object a fitted model.
additional arguments affecting the samples produced.
Value

The form of the value returned by gg depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method.

See Also

Other sample generators: generate.bru, generate.inla

generate.bru 15

Examples

if (require(”INLA", quietly = TRUE)) {
Generate data for a simple linear model

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2%cos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit the model

fit <- bru(y ~ xeff(map = x, model = "linear"”), "gaussian", input.df)
summary (fit)

Generate samples for some predefined x

df = data.frame(x = seq(-4, 4, by = 0.1))
smp = generate(fit, df, ~ xeff + Intercept, n.samples = 10)

Plot the resulting realizations

plot(df$x, smp[[1]1], type = "1")
for (k in 2:length(smp)) points(df$x, smp[[k]], type = "1")

We can also draw samples form the joint posterior

df = data.frame(x = 1)

smp = generate(fit, df, ~ data.frame(xeff, Intercept), n.samples = 10)
smp[[1]]

... and plot them

plot(do.call(rbind, smp))

}

generate.bru Sampling based on bru posteriors

Description

Takes a fitted bru object produced by the function bru() and produces samples given a new set of
values for the model covariates or the original values used for the model fit. The samples can be
based on any R expression that is valid given these values/covariates and the joint posterior of the
estimated random effects.

16 generate.bru

Usage

S3 method for class 'bru'
generate(object, data, formula = NULL, n.samples = 100,

>
Arguments
object A bru object obtained by calling bru.
data A data.frame or SpatialPointsDataFrame of covariates needed for sampling.
formula A formula determining which effects to sample from and how to combine them
analytically.
n.samples Integer setting the number of samples to draw in order to calculate the posterior

statistics. The default is rather low but provides a quick approximate result.

additional, unused arguments.

Value

List of generated samples

See Also

predict.bru

Other sample generators: generate.inla, generate
Examples

if (require("INLA", quietly = TRUE)) {
Generate data for a simple linear model

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2%cos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit the model

fit <- bru(y ~ xeff(map = x, model = "linear"”), "gaussian”, input.df)
summary (fit)

Generate samples for some predefined x

df = data.frame(x = seq(-4, 4, by = 0.1))
smp = generate(fit, df, ~ xeff + Intercept, n.samples = 10)

Plot the resulting realizations

plot(df$x, smp[[1]1], type = "1")
for (k in 2:length(smp)) points(df$x, smp[[k]], type = "1")

generate.inla 17

We can also draw samples form the joint posterior

df = data.frame(x = 1)

smp = generate(fit, df, ~ data.frame(xeff, Intercept), n.samples = 10)
smp[[1]]

... and plot them

plot(do.call(rbind, smp))

}

generate.inla Sampling based on bru posteriors

Description

Takes a fitted inla object produced by INLA::inla() and produces samples given a new set of
values for the model covariates or the original values used for the model fit. The samples can be
based on any R expression that is valid given these values/covariates and the joint posterior of the
estimated random effects.

Usage
S3 method for class 'inla'
generate(object, ...)
Arguments
object An inla object obtained by calling INLA: :inla().

additional arguments passed on togenerate.bru.

Value

List of generated samples

Author(s)

Finn Lindgren <<finn.lindgren@gmail.com>>

See Also

predict.inla

Other sample generators: generate.bru, generate

18 gg

Examples

Some features use the INLA package.
if (require("INLA", quietly = TRUE)) {

Generate some data

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2%cos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit a Gaussian likelihood model

formula =y ~ x
fit <- inla(formula, "gaussian”, data = input.df, control.compute=list(config = TRUE))

Generate samples from the posterior distribution of exp(x), where x is the fixed effect.
xpost = generate(fit, NULL, ~ exp(x), n.samples = 2)
xpost

plot(xpost[[1]1])

}

gg ggplot2 geomes for inlabru related objects

Description

gg is a generic function for generating geomes from various kinds of spatial objects, e.g. Spatial*
data, meshes, Raster objects and inla/inlabru predictions. The function invokes particular methods
which depend on the class of the first argument.

Usage
gg(data, ...)
Arguments
data an object for which to generate a geom.
Arguments passed on to the geom method.
Value

The form of the value returned by gg depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method.

gg.data.frame 19

See Also

Other geomes for inla and inlabru predictions: gg.data.frame, gg.matrix, gg.prediction, gm

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.Spatiallines, gg.SpatialPixelsDataFrame,
gg.SpatialPixels, gg.SpatialPoints, gg.SpatialPolygons, gm

Other geomes for meshes: gg.inla.mesh.1d, gg.inla.mesh, gm

Other geomes for Raster data: gg.RasterLayer, gm

Examples

Load Gorilla data
data(gorillas, package = "inlabru")
Invoke ggplot and add geomes for the Gorilla nests and the survey boundary

ggplot() + gg(gorillas$boundary) + gg(gorillas$nests)

gg.data.frame Geom for data.frame

Description

This geom constructor will simply call gg.prediction for the data provided.

Usage
S3 method for class 'data.frame’
gg(...)
Arguments
Arguments passed on to gg.prediction.
Value

Concatenation of a geom_line value and optionally a geom_ribbon value.

See Also

Other geomes for inla and inlabru predictions: gg.matrix, gg.prediction, gg, gm

20 gg.data.frame

Examples

Generate some data

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2%cos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit a model with fixed effect 'x' and intercept 'Intercept'
fit <- bru(y ~ x, "gaussian”, input.df)

Predict posterior statistics of 'x'

xpost = predict(fit, formula = ~ x)

The statistics include mean, standard deviation, the 2.5% quantile, the median,

the 97.5% quantile, minimum and maximum sample drawn from the posterior as well as
the coefficient of variation and the variance.

xpost

For a single variable like 'x' the default plotting method invoked by gg() will
show these statisics in a fashion similar to a box plot:
ggplot() + gg(xpost)

The predict function can also be used to simulatenneously estimate posteriors
of multiple variables:

xipost = predict(fit, formula = ~ data.frame(post = c(Intercept, x)))
xipost

If we still want a plot in the previous style we have to set the bar parameter to TRUE
rownames(xipost) = c("Intercept”,"x")

pl = ggplot() + gg(xipost, bar = TRUE)

pl

Note that gg also understands the posterior estimates generated while running INLA

p2 = ggplot() + gg(fit$summary.fixed, bar = TRUE)
multiplot(pl, p2)

By default, if the prediction has more than one row, gg will plot the column 'mean' against
the row index. This is for instance usefuul for predicting and plotting function

but not very meaningful given the above example:

ggplot() + gg(xipost)

For ease of use we can also type

plot(xipost)

gg.inla.mesh 21

This type of plot will show a ribbon around the mean, which viszualizes the upper and lower
quantiles mentioned above (2.5 and 97.5%). Plotting the ribbon can be turned of using the
\code{ribbon} parameter

ggplot() + gg(xipost, ribbon = FALSE)

Much like the other geomes produced by gg we can adjust the plot using ggplot2 style
commands, for instance

ggplot() +
gg(xipost) +
gg(xipost, mapping = aes(y = median), ribbon = FALSE, color = "red")

gg.inla.mesh Geom for inla.mesh objects

Description

This function extracts the graph of an inla.mesh object and uses geom_line to visualize the graph’s
edges. Alternatively, if the color argument is provided, interpolates the colors across for a set of
SpatialPixels covering the mesh area and calls gg.SpatialPixelDataFrame() to plot the interpolation.

Usage

S3 method for class 'inla.mesh'
gg(data, color = NULL, alpha = NULL,

edge.color = "grey"”, interior = TRUE, int.color = "blue”,
exterior = TRUE, ext.color = "black”, crs = NULL, mask = NULL,
nx = 500, ny = 500, ...)
Arguments
data An inla.mesh object.
color A vector of scalar values to fill the mesh with colors. The length of the vector
mus correspond to the number of mesh vertices.
alpha A vector of scalar values setting the alpha value of the colors provided.
edge.color Color of the mesh edges.
interior If TRUE, plot the interior boundaries of the mesh.
int.color Color used to plot the interior boundaries.
exterior If TRUE, plot the exterior boundaries of the mesh.
ext.color Color used to plot the interior boundaries.
crs A CRS object defining the coordinate system to project the mesh to before plot-

ting.

22 gg.inla.mesh.1d

mask A SpatialPolygon defining the region that is plotted.
nx Number of pixels in x direction (when plotting using the color parameter).
ny Number of pixels in y direction (when plotting using the color parameter).

ignored arguments (S3 generic compatibility).

Value

geom_line return values or, if the color argument is used, the values of gg.SpatialPixelDataFrame().

See Also

Other geomes for meshes: gg.inla.mesh.1d, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot mesh using default edge colors

ggplot() + gg(gorillas$mesh)

Don't show interior and exterior boundaries

ggplot() + gg(gorillas$mesh, interior = FALSE, exterior = FALSE)
Change the edge colors

ggplot() + gg(gorillas$mesh,

edge.color = "green”,
int.color = "black”,
ext.color = "blue”

)

Use the x-coordinate of the vertices to colorize the triangles and
mask the plotted area by the survey boundary, i.e. only plot the inside

xcoord = gorillas$mesh$loc[,1]

ggplot() +
gg(gorillas$mesh, color = (xcoord-580), mask = gorillas$boundary) +
gg(gorillas$boundary)

gg.inla.mesh.1d Geom for inla.mesh.1d objects

Description

This function generates a geom_point object showing the knots (vertices) of a 1D mesh.

gg.inla.mesh. 1d 23

Usage

S3 method for class 'inla.mesh.1d'
gg(data, mapping = aes_string("x", "y"), y = 0,

shape = 4, ...)
Arguments
data An inla.mesh.1d object.
mapping aesthetic mappings created by aes or aes_. These are passed on to geom_point.
y Single or vector numeric defining the y-coordinates of the mesh knots to plot.
shape Shape of the knot markers.

parameters passed on to geom_point.

Value

An obbject generated by geom_point.

See Also

Other geomes for meshes: gg.inla.mesh, gg, gm

Examples

Some features use the INLA package.
if (require("”INLA", quietly = TRUE)) {

Load INLA

library(INLA)

Create a 1D mesh

mesh = inla.mesh.1d(seq(@,10,by=0.5))

Plot it

ggplot() + gg(mesh)

Plot it using a different shape and size for the mesh nodes
ggplot() + gg(mesh, shape = "|", size = 5)

}

24 gg.prediction

gg.matrix Geom for matrix

Description

Creates a tile geom for plotting a matrix

Usage
S3 method for class 'matrix’
gg(data, mapping = NULL, ...)
Arguments
data A matrix object.
mapping a set of aesthetic mappings created by aes or aes_. These are passed on to
geom_tile.

Arguments passed on to geom_tile.

Value

A geom_tile with reversed y scale.

See Also

Other geomes for inla and inlabru predictions: gg.data. frame, gg.prediction, gg, gm

Examples

A = matrix(runif(100), nrow = 10)
ggplot() + gg(A)

gg.prediction Geom for predictions

Description

This geom serves to visualize prediction objects which usually results from a call to predict.bru.
Predictions objects provide summary statistics (mean, median, sd, ...) for one or more random
variables. For single variables (or if requested so by setting bar = TRUE), a boxplot-style geom is
constructed to show the statistics. For multivariate predictions the mean of each variable (y-axis) is
plotted agains the row number of the varriable in the prediction data frame (x-axis) using geom_line.
In addition, a geom_ribbon is used to show the confidence interval.

Note: gg.prediction also understands the format of INLA-style posterior summaries, e.g. fit$summary.fixed
for an inla object fit

gg.prediction 25

Usage

S3 method for class 'prediction'
gg(data, mapping = NULL, ribbon = TRUE,

alpha = 0.3, bar = FALSE, ...)
Arguments

data A prediction object, usually the result of a predict.bru call.

mapping a set of aesthetic mappings created by aes or aes_. These are passed on to
geom_line.

ribbon If TRUE, plot a ribbon around the line based on the upper and lower 2.5 percent
quantiles.

alpha The ribbons numeric alpha level in [0,1].

bar If TRUE plot boxplot-style summary for each variable.

Arguments passed on to geom_line.

Value

Concatenation of a geom_line value and optionally a geom_ribbon value.

See Also

Other geomes for inla and inlabru predictions: gg.data.frame, gg.matrix, gg, gm
Examples

Generate some data

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2xcos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit a model with fixed effect 'x' and intercept 'Intercept'
fit <- bru(y ~ x, "gaussian”, input.df)

Predict posterior statistics of 'x'

xpost = predict(fit, formula = ~ x)

The statistics include mean, standard deviation, the 2.5% quantile, the median,

the 97.5% quantile, minimum and maximum sample drawn from the posterior as well as
the coefficient of variation and the variance.

Xpost

For a single variable like 'x' the default plotting method invoked by gg() will

show these statisics in a fashion similar to a box plot:
ggplot() + gg(xpost)

26

gg.RasterLayer

The predict function can also be used to simulatenneously estimate posteriors
of multiple variables:

xipost = predict(fit, formula = ~ data.frame(post = c(Intercept, x)))
xipost

If we still want a plot in the previous style we have to set the bar parameter to TRUE
rownames(xipost) = c("Intercept”,"x")

pl = ggplot() + gg(xipost, bar = TRUE)

p1

Note that gg also understands the posterior estimates generated while running INLA

p2 = ggplot() + gg(fit$summary.fixed, bar = TRUE)
multiplot(pl, p2)

By default, if the prediction has more than one row, gg will plot the column 'mean' against
the row index. This is for instance usefuul for predicting and plotting function

but not very meaningful given the above example:

ggplot() + gg(xipost)

For ease of use we can also type

plot(xipost)

This type of plot will show a ribbon around the mean, which viszualizes the upper and lower
quantiles mentioned above (2.5 and 97.5%). Plotting the ribbon can be turned of using the
\code{ribbon} parameter

ggplot() + gg(xipost, ribbon = FALSE)

Much like the other geomes produced by gg we can adjust the plot using ggplot2 style
commands, for instance

ggplot() +
gg(xipost) +
gg(xipost, mapping = aes(y = median), ribbon = FALSE, color = "red")

gg.RasterLayer Geom for RasterLayer objects

Description

This function takes a RasterLayer object, converts it into a SpatialPixelsDataFrame and uses geom_tile
to plot the data.

gg.RasterLayer
Usage
S3 method for class 'RasterlLayer’
gg(data, mapping = aes_string(x = "x", y = "y",
fill = "layer"), ...)
Arguments
data A RasterLayer object.
mapping aesthetic mappings created by aes or aes_. These are passed on to geom_tile.

Arguments passed on to geom_tile.

Details

This function requires the ‘raster® package.

Value

An object returned by geom_tile

See Also

Other geomes for Raster data: gg, gm

Examples
Some features require the raster and spatstat.data packages.
if (require("spatstat.data”, quietly = TRUE) &&
require("raster”, quietly = TRUE)) {

Load Gorilla data
data("gorillas”, package = "spatstat.data")

Convert elevation covariate to RasterLayer

elev = as(gorillas.extra$elevation, "RasterLayer")
Plot the elevation

ggplot() + gg(elev)

}

27

28 gg.SpatialGridDataFrame

gg.SpatialGridDataFrame
Geom for SpatialGridDataFrame objects

Description

Coerces input SpatialGridDataFrame to SpatialPixelsDataFrame and calls gg.SpatialPixelDataFrame
to plot it.

Usage

S3 method for class 'SpatialGridDataFrame'
gg(data, ...)

Arguments

data A SpatialGridDataFrame object.
Arguments passed on to gg.SpatialPixelsDataFrame().

Value

A geom_tile value.

See Also

Other geomes for spatial data: gg.SpatiallLines, gg.SpatialPixelsDataFrame, gg.SpatialPixels,
gg.SpatialPoints, gg.SpatialPolygons, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot Gorilla elevation covariate provided as SpatialPixelsDataFrame.
The same syntax applies to SpatialGridDataFrame objects.

ggplot() + gg(gorillas$gcov$elevation)
Add Gorilla survey boundary and nest sightings

ggplot() +
gg(gorillas$gcovselevation) +
gg(gorillass$boundary) +
gg(gorillas$nests)

Load pantropical dolphin data

gg.SpatialLines 29

data("mexdolphin”)
Plot the pantropiical survey boundary, ship transects and dolphin sightings
ggplot() +
gg(mexdolphin$ppoly) + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers) + # ship transects as Spatiallines

gg(mexdolphin$points) # dolphin sightings as SpatialPoints

Change color

ggplot() +
gg(mexdolphin$ppoly, color = "green") + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers, color = "red"”) + # ship transects as Spatiallines

gg(mexdolphin$points, color = "blue") # dolphin sightings as SpatialPoints

Visualize data annotations: line width by segment number

names(mexdolphin$samplers) # 'seg' holds the segment number
ggplot() + gg(mexdolphin$samplers, aes(color = seg))

Visualize data annotations: point size by dolphin group size

names (mexdolphin$points) # 'size' holds the group size
ggplot() + gg(mexdolphin$points, aes(size = size))

gg.SpatiallLines Geom for SpatialLines objects

Description

Extracts start and end points of the lines and calls geom_segment to plot lines between them.

Usage
S3 method for class 'SpatiallLines'
gg(data, mapping = NULL, crs = NULL, ...)
Arguments
data A SpatialLines object.
mapping Aesthetic mappings created by aes or aes_ used to update the default mapping.

The default mapping is aes_string(x = coordnames(data)[1],y = coordnames(data)[2], xend
=pasted("end.",coordnames(data)[1]),yend = paste@("end."”, coordnames(data)[2])).

crs A CRS object defining the coordinate system to project the data to before plot-
ting.

Arguments passed on to geom_segment.

30 gg.SpatialLines

Value

A geom_segment return value.

See Also

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.SpatialPixelsDataFrame, gg.SpatialPixels,
gg.SpatialPoints, gg.SpatialPolygons, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot Gorilla elevation covariate provided as SpatialPixelsDataFrame.
The same syntax applies to SpatialGridDataFrame objects.

ggplot() + gg(gorillas$gcovelevation)

Add Gorilla survey boundary and nest sightings

ggplot() +
gg(gorillas$gcov$elevation) +
gg(gorillas$boundary) +
gg(gorillas$nests)

Load pantropical dolphin data
data("mexdolphin”)

Plot the pantropiical survey boundary, ship transects and dolphin sightings

ggplot() +
gg(mexdolphin$ppoly) + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers) + # ship transects as Spatiallines
gg(mexdolphin$points) # dolphin sightings as SpatialPoints

Change color

ggplot() +
gg(mexdolphin$ppoly, color = "green") + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers, color = "red"”) + # ship transects as SpatiallLines

gg(mexdolphin$points, color = "blue") # dolphin sightings as SpatialPoints

Visualize data annotations: line width by segment number

names(mexdolphin$samplers) # 'seg' holds the segment number
ggplot() + gg(mexdolphin$samplers, aes(color = seg))

Visualize data annotations: point size by dolphin group size

gg.SpatialPixels 31

names(mexdolphin$points) # 'size' holds the group size
ggplot() + gg(mexdolphin$points, aes(size = size))

gg.SpatialPixels Geom for SpatialPixels objects

Description

Uses geom_point to plot the pixel centers.

Usage
S3 method for class 'SpatialPixels'
gg(data, ...)
Arguments
data A SpatialPixels object.
Arguments passed on to geom_tile.
Value

A geom_tile return value.

See Also

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.Spatiallines, gg.SpatialPixelsDataFrame,
gg.SpatialPoints, gg.SpatialPolygons, gg, gm

Examples

Load Gorilla data
data(gorillas)

Turn elevation covariate into SpatialPixels
pxl = SpatialPixels(SpatialPoints(gorillas$gcov$elevation))

Plot the pixel centers
ggplot() + gg(pxl, size = 0.1)

32 gg.SpatialPixelsDataFrame

gg.SpatialPixelsDataFrame
Geom for SpatialPixelsDataFrame objects

Description

Coerces input SpatialPixelsDataFrame to data.frame and uses geom_tile to plot it.

Usage

S3 method for class 'SpatialPixelsDataFrame'
gg(data, mapping = NULL, alpha = NULL,

crs = NULL, mask = NULL, ...)
Arguments

data A SpatialPixelsDataFrame object.

mapping Aesthetic mappings created by aes or aes_ used to update the default mapping.
The default mapping is aes_string(x = coordnames(data)[1],y = coordnames(data)[2],fill
=names(data)[[11]).

alpha Character array identifying the data column used for tile transparency.

crs A CRS object defining the coordinate system to project the data to before plot-
ting.

mask A SpatialPolygon defining the region that is plotted.

Arguments passed on to geom_tile.

Value

A geom_tile return value.

See Also

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.Spatiallines, gg.SpatialPixels,
gg.SpatialPoints, gg.SpatialPolygons, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot Gorilla elevation covariate provided as SpatialPixelsDataFrame.
The same syntax applies to SpatialGridDataFrame objects.

ggplot() + gg(gorillas$gcov$elevation)

gg.SpatialPoints 33

Add Gorilla survey boundary and nest sightings

ggplot() +
gg(gorillas$gcovselevation) +
gg(gorillass$boundary) +
gg(gorillas$nests)

Load pantropical dolphin data
data("mexdolphin”)
Plot the pantropiical survey boundary, ship transects and dolphin sightings
ggplot() +
gg(mexdolphin$ppoly) + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers) + # ship transects as Spatiallines

gg(mexdolphin$points) # dolphin sightings as SpatialPoints

Change color

ggplot() +
gg(mexdolphin$ppoly, color = "green") + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers, color = "red") + # ship transects as Spatiallines

gg(mexdolphin$points, color = "blue") # dolphin sightings as SpatialPoints

Visualize data annotations: line width by segment number

names(mexdolphin$samplers) # 'seg' holds the segment number
ggplot() + gg(mexdolphin$samplers, aes(color = seg))

Visualize data annotations: point size by dolphin group size

names (mexdolphin$points) # 'size' holds the group size
ggplot() + gg(mexdolphin$points, aes(size = size))

gg.SpatialPoints Geom for SpatialPoints objects

Description

This function coerces the SpatialPoints into a data.frame and uses geom_point to plot the
points.

Usage

S3 method for class 'SpatialPoints'
gg(data, mapping = NULL, crs = NULL, ...)

gg.SpatialPoints

Arguments
data A SpatialPoints object.
mapping Aesthetic mappings created by aes or aes_ used to update the default mapping.
The default mapping is aes_string(x = coordnames(data)[1],y = coordnames(data)[2]).
crs A CRS object defining the coordinate system to project the data to before plot-
ting.
Arguments passed on to geom_point.
Value

A geom_point return value

See Also

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.Spatiallines, gg.SpatialPixelsDataFrame,
gg.SpatialPixels, gg.SpatialPolygons, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot Gorilla elevation covariate provided as SpatialPixelsDataFrame.
The same syntax applies to SpatialGridDataFrame objects.

ggplot() + gg(gorillas$gcov$elevation)
Add Gorilla survey boundary and nest sightings

ggplot() +
gg(gorillas$gcov$elevation) +
gg(gorillas$boundary) +
gg(gorillas$nests)

Load pantropical dolphin data

data("mexdolphin”)

Plot the pantropiical survey boundary, ship transects and dolphin sightings

ggplot() +
gg(mexdolphin$ppoly) + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers) + # ship transects as Spatiallines
gg(mexdolphin$points) # dolphin sightings as SpatialPoints

Change color

ggplot() +

gg.SpatialPolygons 35

gg(mexdolphin$ppoly, color = "green") + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers, color = "red") + # ship transects as Spatiallines
gg(mexdolphin$points, color = "blue") # dolphin sightings as SpatialPoints

Visualize data annotations: line width by segment number

names(mexdolphin$samplers) # 'seg' holds the segment number
ggplot() + gg(mexdolphin$samplers, aes(color = seg))

Visualize data annotations: point size by dolphin group size

names (mexdolphin$points) # 'size' holds the group size
ggplot() + gg(mexdolphin$points, aes(size = size))

gg.SpatialPolygons Geom for SpatialPolygons objects

Description
Uses the fortitfy() function to turn the SpatialPolygons objects into a data.frame. Then calls geom_polygon
to plot the polygons.

Usage

S3 method for class 'SpatialPolygons'
gg(data, mapping = NULL, crs = NULL,

color = "black"”, alpha = NULL, ...)
Arguments

data A SpatialPolygons object.

mapping Aesthetic mappings created by aes or aes_ used to update the default mapping.
The default mapping is aes_string(x = "long”,y = "lat"”,group = "group™).

crs A CRS object defining the coordinate system to project the data to before plot-
ting.

color Filling color for the polygons.

alpha Alpha level for polygon filling.

Arguments passed on to geom_polygon.

Value

A geom_polygon return value.

36 gg.SpatialPolygons

See Also

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.SpatiallLines, gg.SpatialPixelsDataFrame,
gg.SpatialPixels, gg.SpatialPoints, gg, gm

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Plot Gorilla elevation covariate provided as SpatialPixelsDataFrame.
The same syntax applies to SpatialGridDataFrame objects.

ggplot() + gg(gorillas$gcov$elevation)
Add Gorilla survey boundary and nest sightings
ggplot() +
gg(gorillas$gcov$elevation) +
gg(gorillas$boundary) +
gg(gorillas$nests)
Load pantropical dolphin data
data("mexdolphin™)
Plot the pantropiical survey boundary, ship transects and dolphin sightings
ggplot() +
gg(mexdolphin$ppoly) + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers) + # ship transects as Spatiallines

gg(mexdolphin$points) # dolphin sightings as SpatialPoints

Change color

ggplot() +
gg(mexdolphin$ppoly, color = "green") + # survey boundary as SpatialPolygon
gg(mexdolphin$samplers, color = "red") + # ship transects as Spatiallines

gg(mexdolphin$points, color = "blue") # dolphin sightings as SpatialPoints

Visualize data annotations: line width by segment number

names(mexdolphin$samplers) # 'seg' holds the segment number
ggplot() + gg(mexdolphin$samplers, aes(color = seg))

Visualize data annotations: point size by dolphin group size

names (mexdolphin$points) # 'size' holds the group size
ggplot() + gg(mexdolphin$points, aes(size = size))

globe

37

globe Plot a globe using rgl

Description

Creates a textured sphere and lon/lat coordinate annotations.

Usage
globe(R = 1, R.grid = 1.05, specular = "black"”, axes = FALSE,
box = FALSE, xlab = "", ylab = "", zlab = "")
Arguments
R Radius of the globe
R.grid Radius of the annotation sphere.
specular Light color of specular effect.
axes If TRUE, plot x, y and z axes.
box If TRUE, plot a box around the globe.
xlab, ylab, zlab
Axes labels
Details

This funciton requires the ‘rgl‘ and ‘sphereplot® packages.

Value

No value, used for plotting side effect.

See Also

Other inlabru RGL tools: glplot.SpatiallLines, glplot.SpatialPoints, glplot.inla.mesh,

glplot

Examples

if (require(”"rgl”, quietly = TRUE) &&
require("sphereplot”, quietly = TRUE)) {

Load pantropoical dolphin data
data("mexdolphin”, package = "inlabru")

Show the globe

38 glplot

globe()

Add mesh, ship transects and dolphin sightings stored
as inla.mesh, Spatiallines and SpatialPoints objects, respectively

glplot(mexdolphin$mesh)
glplot(mexdolphin$samplers)
glplot(mexdolphin$points)

}

glplot Render Spatial* and inla.mesh objects using RGL

Description

glplot is a generic function for renders various kinds of spatial objects, i.e. Spatial* data and
inla.mesh objects. The function invokes particular methods which depend on the class of the first

argument.
Usage
glplot(object, ...)
Arguments
object an object used to select a method.
further arguments passed to or from other methods.
See Also

Other inlabru RGL tools: globe, glplot.SpatiallLines, glplot.SpatialPoints, glplot.inla.mesh

Examples

if (require("rgl”, quietly = TRUE) &&
require("sphereplot”, quietly = TRUE)) {

Load pantropoical dolphin data
data("mexdolphin”, package = "inlabru")
Show the globe

globe()

Add mesh, ship transects and dolphin sightings stored

glplot.inla.mesh 39

as inla.mesh, Spatiallines and SpatialPoints objects, respectively
glplot(mexdolphin$mesh)

glplot(mexdolphin$samplers)

glplot(mexdolphin$points)

}

glplot.inla.mesh Visualize SpatialPoints using RGL

Description

This function transforms the mesh to 3D cartesian coordinates and uses inla.plot.mesh() with rg1=TRUE
to plot the result.

Usage
S3 method for class 'inla.mesh'
glplot(object, add = TRUE, col = NULL, ...)
Arguments
object an inla.mesh object.
add If TRUE, add the lines to an existing plot. If FALSE, create new plot.
col Color specification. A single named color, a vector of scalar values, or a matrix

of RGB values.

Parameters passed on to plot.inla.mesh()

See Also

Other inlabru RGL tools: globe, glplot.SpatiallLines, glplot.SpatialPoints, glplot

Examples

if (require("rgl”, quietly = TRUE) &&
require("”sphereplot”, quietly = TRUE)) {

Load pantropoical dolphin data
data("mexdolphin”, package = "inlabru")
Show the globe

globe()

40 glplot.SpatialLines

Add mesh, ship transects and dolphin sightings stored
as inla.mesh, Spatiallines and SpatialPoints objects, respectively

glplot(mexdolphin$mesh)
glplot(mexdolphin$samplers)
glplot(mexdolphin$points)

}

glplot.SpatiallLines Visualize SpatialLines using RGL

Description

This function will calculate a cartesian representation of the lines provided and use rgl.linestrip() in
order to render them.

Usage
S3 method for class 'Spatiallines'
glplot(object, add = TRUE, ...)
Arguments
object a SpatialLines or SpatialLinesDataFrame object.
add If TRUE, add the lines to an existing plot. If FALSE, create new plot.

Parameters passed on to rgl.linestrips().

See Also

Other inlabru RGL tools: globe, glplot.SpatialPoints, glplot.inla.mesh, glplot

Examples

if (require(”"rgl”, quietly = TRUE) &&
require("sphereplot”, quietly = TRUE)) {

Load pantropoical dolphin data
data("mexdolphin”, package = "inlabru")
Show the globe

globe()

Add mesh, ship transects and dolphin sightings stored
as inla.mesh, SpatiallLines and SpatialPoints objects, respectively

glplot.SpatialPoints 41

glplot(mexdolphin$mesh)
glplot(mexdolphin$samplers)
glplot(mexdolphin$points)

}

glplot.SpatialPoints Visualize SpatialPoints using RGL

Description

This function will calculate the cartesian coordinates of the points provided and use rgl.points() in
order to render them.

Usage
S3 method for class 'SpatialPoints'
glplot(object, add = TRUE, color = "red”, ...)
Arguments
object a SpatialPoints or SpatialPointsDataFrame object.
add If TRUE, add the points to an existing plot. If FALSE, create new plot.
color vector of R color characters. See rgl.material() for details.

Parameters passed on to rgl.points()

See Also

Other inlabru RGL tools: globe, glplot.SpatiallLines, glplot.inla.mesh, glplot

Examples

if (require(”"rgl”, quietly = TRUE) &&
require("sphereplot”, quietly = TRUE)) {

Load pantropoical dolphin data
data("mexdolphin”, package = "inlabru")
Show the globe

globe()

Add mesh, ship transects and dolphin sightings stored
as inla.mesh, Spatiallines and SpatialPoints objects, respectively

42 gm

glplot(mexdolphin$mesh)
glplot(mexdolphin$samplers)
glplot(mexdolphin$points)

}

gm ggplot geom for spatial data

Description

gm is a wrapper for the gg method. It will take the first argument and transform its coordinate system
to latitude and longitude. Thereafter, gg is called using the transformed data and the arguments
provided via gm is intended to replace gg whenever the data is supposed to be plotted over a
spatial map generated by gmap, which only works if the coordinate system is latitude/longitude.

Usage
gm(data, ...)
Arguments
data an object for which to generate a geom.
Arguments passed on to gg.
Value

The form of the value returned by gm depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method.

See Also

Other geomes for inla and inlabru predictions: gg.data. frame, gg.matrix, gg.prediction, gg

Other geomes for spatial data: gg.SpatialGridDataFrame, gg.SpatiallLines, gg.SpatialPixelsDataFrame,
gg.SpatialPixels, gg.SpatialPoints, gg.SpatialPolygons, gg

Other geomes for meshes: gg.inla.mesh.1d, gg.inla.mesh, gg

Other geomes for Raster data: gg.RasterLayer, gg

Examples

Load the Gorilla data
data(gorillas, package = "inlabru")

Create a base map centered around the nests and plot the boundary as well as the nests
gmap(gorillas$nests, maptype = "satellite”) +

gmap 43

gm(gorillas$boundary) +
gm(gorillas$nests, color = "white", size = 0.5)

gmap Plot a map using extend of a spatial object

Description

Uses get_map() to query map services like Google Maps for a region centered around the spatial
object provided. Then calls ggmap() to plot the map.

Usage
gmap(data, ...)
Arguments
data A Spatial* object.
Arguments passed on to get_map().
Details

This function requires the ‘ggmap*‘ package.

Value

a ggplot object

Examples

Load the Gorilla data
data(gorillas, package = "inlabru")

Create a base map centered around the nests and plot the boundary as well as the nests
gmap(gorillas$nests, maptype = "satellite"”) +

gm(gorillas$boundary) +

gm(gorillas$nests, color = "white", size = 0.5)

44 gorillas

gorillas Gorilla Nesting Sites.

Description

This the gorillas dataset from the package spatstat, reformatted as point process data for use
with inlabru.

Usage

data(gorillas)

Format

The data are a list that contains these elements:

nests: A SpatialPointsDataFrame object containing the locations of the gorilla nests.

boundary: An SpatialPolygonsDataFrame object defining the boundary of the region that was
searched for the nests.

mesh: An inla.mesh object containing a mesh that can be used with function 1gcp to fit a LGCP
to the nest data.

gcov: A list of SpatialGridDataFrame objects, one for each of these spatial covariates:
aspect Compass direction of the terrain slope. Categorical, with levels N, NE, E, SE, S, SW,
W and NW, which are coded as integers 1 to 8.
elevation Digital elevation of terrain, in metres.

heat Heat Load Index at each point on the surface (Beer’s aspect), discretised. Categorical
with values Warmest (Beer’s aspect between 0 and 0.999), Moderate (Beer’s aspect be-
tween 1 and 1.999), Coolest (Beer’s aspect equals 2). These are coded as integers 1, 2
and 3, in that order.

slopangle Terrain slope, in degrees.

slopetype Type of slope. Categorical, with values Valley, Toe (toe slope), Flat, Midslope,
Upper and Ridge. These are coded as integers 1 to 6.

vegetation Vegetation type: a categorical variable with 6 levels coded as integers 1 to 6 (in
order of increasing expected habitat suitability)

waterdist Euclidean distance from nearest water body, in metres.

plotsample Plot sample of gorilla nests, sampling 9x9 over the region, with 60% coverage. Com-
ponents:

counts A SpatialPointsDataFrame frame with elements x, y, count, exposure, being the x-
and y-coordinates of the centre of each plot, the count in each plot and the area of each
plot.

plots A SpatialPolygonsDataFrame defining the individual plot boundaries.
nests A SpatialPointsDataFrame giving the locations of each detected nest.

init.tutorial 45

Source

Library spatstat.

References

Funwi-Gabga, N. (2008) A pastoralist survey and fire impact assessment in the Kagwene Gorilla
Sanctuary, Cameroon. M.Sc. thesis, Geology and Environmental Science, University of Buea,
Cameroon.

Funwi-Gabga, N. and Mateu, J. (2012) Understanding the nesting spatial behaviour of gorillas in
the Kagwene Sanctuary, Cameroon. Stochastic Environmental Research and Risk Assessment 26
(6), 793-811.

Examples

data(gorillas, package = "inlabru"”) # get the data
extract all the objects, for convenience:

plot all the nests, mesh and boundary
ggplot() + gg(gorillas$mesh) + gg(gorillas$boundary) + gg(gorillas$nests)

Plot the elevation covariate
plot(gorillas$gcov$elevation)

Plot the plot sample
ggplot() + gg(gorillas$plotsamples$plots) + gg(gorillas$plotsamples$nests)

init.tutorial Global setting for tutorial sessions

Description

Increases verbosity and sets the inference strategy to empirical Bayes.

Usage

init.tutorial()

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

Not run:
Note: Only run this if you want to change the inlabru options for this session

Determine current bru default:
bo = bru.options()

46 int

By default, INLA's integration strategy is set to the INLA default 'auto':
bo$inla.options$control.inla

Now, let's run init.tutorial() to make empirical Bayes the default
integration method when \code{bru} calls \code{inla}

init.tutorial()
Check if it worked:

bru.options()$inla.options$control.inla

End(Not run)

inlabru inlabru

Description

Convenient model fitting using (iterated) INLA.

Details

inlabru facilitates Bayesian spatial modeling using integrated nested Laplace approximations. It
is heavily based on R-inla (http://www.r-inla.org) but adds additional modeling abilities. Tu-
torials and more information can be found at http://www.inlabru.org/.

The main function for inference using inlabru is bru. For point process inference Igcp is a good
starting point. The package comes with multiple real world data sets, namely gorillas, mexdolphin,
seals. Plotting these data sets is straight forward using inlabru’s extensions to ggplot2, e.g. the
gg function. For educational purposes some simulated data sets are available as well, e.g. Pois-
sonl_1D, Poisson2_1D, Poisson2_1D and toygroups.

Author(s)

Fabian E. Bachl <<bachlfab@gmail.com>>

int Weighted summation (integration) of data frame subsets

http://www.r-inla.org
http://www.inlabru.org/

int 47

Description

A typical task in statistical inference to integrate a (multivariate) function along one or more di-
mensions of its domain. For this purpose, the function is evaluated at some points in the domain
and the values are summed up using weights that depend on the area being integrated over. This
function performs the weighting and summation conditional for each level of the dimensions that
are not integrated over. The parameter dims states the the dimensions to integrate over. The set of
dimensions that are held fixed is the set difference of all column names in data and the dimensions
stated by dims.

Usage

int(data, values, dims = NULL)

Arguments
data A data.frame or Spatial object. Has to have a weight column with numeric
values.
values Numerical values to be summed up, usually the result of function evaluations.
dims Column names (dimension names) of the data object to integrate over.
Value

A data.frame of integrals, one for each level of the cross product of all dimensions not being
integrated over.

Examples

ipoints needs INLA
if (require(”INLA", quietly = TRUE)) {
Create integration points in two dimensions, x and y

ips = cprod(ipoints(c(@,10), 10, name = "x"),
ipoints(c(1,5), 10, name = "y"))

The sizes of the domains are 10 and 4 for x and y, respectively.
Integrating f(x,y) = 1 along x and y should result in the total
domain size 40

int(ips, rep(1, nrow(ips)), c("x","y"))
3

48 ipoints

ipoints Generate integration points

Description

This function generates points in one or two dimensions with a weight attached to each point. The
weighted sum of a function evaluated at these points is the integral of that function approximated
by linear basis functions. The parameter region describes the area(s) integrated over.

In case of a single dimension region is supposed to be a two-column matrix where each row
describes the start and end point of the interval to integrate over. In the two-dimensional case
region can be either a SpatialPolygon, an inla.mesh or a SpatiallLinesDataFrame describing
the area to integrate over. If a SpatiallLineDataFrame is provided it has to have a column called
weight’ in order to indicate the width of the line.

The domain parameter is an inla.mesh.1d or inla.mesh object that can be employed to project
the integration points to the vertices of the mesh. This reduces the final number of integration points
and reduces the computational cost of the integration. The projection can also prevent numerical
issues in spatial LGCP models where each observed point is ideally surrounded by three integration
point sitting at the coresponding mesh vertices. For convenience, the domain parameter can also be
a single integer setting the number of equally spaced integration points in the one-dimensional case.

Usage
ipoints(region = NULL, domain = NULL, name = "x", group = NULL,
project)
Arguments
region Description of the integration region boundary. In 1D either a vector of two
numerics or a two-column matrix where each row describes and interval. In 2D
either a SpatialPolygon or a SpatiallLinesDataFrame with a weight column
defining the width of the line.
domain In 1D a single numeric setting the numer of integration points or an inla.mesh.1d
defining the locations to project the integration points to. In 2D domain has to be
an inla.mesh object describing the projection and granularity of the integration.
name Character array stating the name of the domains dimension(s)
group Column names of the region object (if applicable) for which the integration
points are calculated independently and not merged by the projection.
project If TRUE, project the integration points to mesh vertices

Value

A data.frame or SpatialPointsDataFrame of 1D and 2D integration points, respectively.

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Igep 49

Examples

if (require("INLA", quietly = TRUE)) {
Create 50 integration points covering the dimension 'myDim' between @ and 10.

ips = ipoints(c(@,10), 50, name = "myDim")
plot(ips)

Create integration points for the two intervals [0,3] and [5,10]

ips = ipoints(matrix(c(@,3, 5,10), nrow = 2, byrow = TRUE), 50)
plot(ips)

Convert a 1D mesh into integration points
mesh = inla.mesh.1d(seq(@,10,by = 1))

ips = ipoints(mesh, name = "time")
plot(ips)

Obtain 2D integration points from a SpatialPolygon

data(gorillas, package = "inlabru")

ips = ipoints(gorillas$boundary)

ggplot() + gg(gorillas$boundary) + gg(ips, aes(size = weight))

#' Project integration points to mesh vertices

ips = ipoints(gorillas$boundary, domain = gorillas$mesh)

ggplot() + gg(gorillas$mesh) + gg(gorillas$boundary) + gg(ips, aes(size = weight))
Turn a 2D mesh into integration points

ips = ipoints(gorillas$mesh)

ggplot() + gg(gorillas$boundary) + gg(ips, aes(size = weight))
}

lgcp Log Gaussian Cox process (LGCP) inference using INLA

Description

This function performs inference on a LGCP observed via points residing possibly multiple dimen-
sions. These dimensions are defined via the left hand side of the formula provided via the model
parameter. The left hand side determines the intensity function that is assumed to drive the LGCP.
This may include effects that lead to a thinning (filtering) of the point process. By default, the log

50 Igep

intensity is assumed to be a linear combination of the effects defined by the formula’s RHS. More
sofisticated models, e.g. non-linear thinning, can be achieved by using the predictor argument. The
latter requires multiple runs of INLA for improving the required approximation of the predictor.
In many applications the LGCP is only observed through subsets of the dimensions the process is
living in. For example, spatial point realizations may only be known in sub-areas of the modeled
space. These observed subsets of the LGCP domain are called samplers and can be provided via
the respective parameter. If samplers is NULL it is assumed that all of the LGCP’s dimensions have
been observed completely.

Usage
lgcp(components, data, samplers = NULL, domain = NULL, ips = NULL,
formula = . ~ ., E = NULL, options = list())
Arguments
components A formula describing the latent components
data A data frame or SpatialPoints[DataFrame] object
samplers A data frame or Spatial[Points/Lines/Polygons]DataFrame objects
domain Named list of domain definitions
ips Integration points (overrides samplers)
formula If NULL, the linear combination implied by the components is used as a pre-

dictor for the point location intensity. If a (possibly non-linear) expression is
provided the respective Taylor approximation is used as a predictor. Multiple
runs if INLA are then required for a better approximation of the posterior.

E Single numeric used rescale all integration weights by a fixed factor
options See bru.options
Value

An bru object

Examples

Load the Gorilla data
data(gorillas, package = "inlabru")

Plot the Gorilla nests, the mesh and the survey boundary
ggplot() +

gg(gorillas$mesh) +

gg(gorillas$nests) +

gg(gorillass$boundary) +

coord_fixed()

if (require("INLA", quietly = TRUE)) {

like 51

Define SPDE prior

matern <- inla.spde2.pcmatern(gorillas$mesh,
prior.sigma = c(0.1, 0.01),
prior.range = c(5, 0.01))

Define domain of the LGCP as well as the model components (spatial SPDE effect and Intercept)
cmp <- coordinates ~ mySmooth(map = coordinates, model = matern) + Intercept

Fit the model
fit <- lgcp(cmp, gorillas$nests, samplers = gorillas$boundary)

Predict the spatial intensity surface
lambda <- predict(fit, pixels(gorillas$mesh), ~ exp(mySmooth + Intercept))

Plot the intensity
ggplot() +
gg(lambda) +
gg(gorillas$mesh) +
gg(gorillas$nests) +
gg(gorillass$boundary) +
coord_fixed()

like Likelihood construction for usage with bru

Description

Likelihood construction for usage with bru

Usage

like(family, formula = . ~ ., data = NULL, components = NULL,
mesh = NULL, E = NULL, Ntrials = NULL, samplers = NULL,
ips = NULL, domain = NULL, options = list())

Arguments
family A character identifying a valid inla likelihood. Alternatively ’cp’ for Cox pro-
cesses.
formula a formula where the right hand side expression defines the predictor used in the
optimization.
data Likelihood-specific data.
components Components.

mesh An inla.mesh object.

52 like

E Exposure parameter for family = poisson’ passed on to inla. Special case if fam-
ily is ’cp’: rescale all integration weights by E. Default taken from options$E.

Ntrials A vector containing the number of trials for the *binomial’ likelihood. Default
value is rep(1, n.data). Default taken from options$Ntrials.

samplers Integration domain for "cp’ family.

ips Integration points for cp’ family. Overrides samplers.

domain Named list of domain definitions.

options list of global options overriding bru.options

Value

A likelihood configuration which can be used to parameterize bru.

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

if (require("INLA", quietly = TRUE)) {

The like function's main purpose is to set up models with multiple likelihoods.

The following example generates some random covariates which are observed through
two different random effect models with different likelihoods

Generate the data

set.seed(123)

nl = 200
n2 =10

x1 = runif(n1)
x2 = runif(n2)
z2 = runif(n2)

y1 = rnorm(n1, mean = 2 * x1 + 3)
y2 = rpois(n2, lambda = exp(2 * x2 + z2 + 3))

df1 = data.frame(y = y1, x = x1)
df2 = data.frame(y = y2, x = x2, z = z2)

Single likelihood models and inference using bru are done via
cmpl =y ~ x + Intercept

fit1 = bru(cmpl, family = "gaussian”, data = df1)

summary (fit1)

cmp2 =y ~ x + z + Intercept

mexdolphin 53

fit2 = bru(cmp2, family = "poisson”, data = df2)
summary (fit2)

A joint model has two likelihoods, which are set up using the like function

lik1 like("gaussian”, formula =y ~ x + Intercept, data = df1)
1lik2 = like("poisson”, formula =y ~ x + z + Intercept, data = df2)

The union of effects of both models gives the components needed to run bru

jemp =y ~ x + z + Intercept
jfit = bru(jcemp, 1lik1, 1ik2)

Compare the estimates
pl = ggplot() + gg(fit1$summary.fixed, bar = TRUE) + ylim(@, 4) + ggtitle("Model 1")

p2 = ggplot() + gg(fit2$summary.fixed, bar = TRUE) + ylim(@, 4) + ggtitle("Model 2")
pj = ggplot() + gg(jfit$summary.fixed, bar = TRUE) + ylim(Q, 4) + ggtitle("Joint model")

multiplot(pl, p2, pj)

}

mexdolphin Pan-tropical spotted dolphins in the Gulf of Mexico.

Description

This a version of the mexdolphins dataset from the package dsm, reformatted as point process
data for use with inlabru. The data are from a combination of several NOAA shipboard surveys
conducted on pan-tropical spotted dolphins in the Gulf of Mexico. 47 observations of groups of
dolphins wre detected. The group size was recorded, as well as the Beaufort sea state at the time of
the observation.

Format

A list of objects:

points: A SpatialPointsDataFrame object containing the locations of detected dolphin groups,
with their size as an attribute.

samplers: A SpatiallinesDataFrame object containing the transect lines that were surveyed.

mesh: An inla.mesh object containing a Delaunay triangulation mesh (a type of discretization of
continuous space) covering the survey region.

ppoly: An SpatialPolygonsDataFrame object defining the boundary of the survey region.

simulated: A SpatialPointsDataFrame object containing the locations of a simulated popula-
tion of dolphin groups. The population was simulated from a ’codeinlabru model fitted to the
actual survey data. Note that the simulated data do not have any associated size information.

54 mrsea

Source

Library dsm.

References

Halpin, P.N., A.J. Read, E. Fujioka, B.D. Best, B. Donnelly, L.J. Hazen, C. Kot, K. Urian, E.

LaBrecque, A. Dimatteo, J. Cleary, C. Good, L.B. Crowder, and K.D. Hyrenbach. 2009. OBIS-

SEAMAP: The world data center for marine mammal, sea bird, and sea turtle distributions. Oceanog-
raphy 22(2):104-115

NOAA Southeast Fisheries Science Center. 1996. Report of a Cetacean Survey of Oceanic and
Selected Continental Shelf Waters of the Northern Gulf of Mexico aboard NOAA Ship Oregon II
(Cruise 220)

Examples

data(mexdolphin, package="inlabru")
plot(mexdolphin$mesh,edge.color="1lightgray"”,draw.segments=FALSE) # draw mesh
plot(mexdolphin$ppoly,add=TRUE) # add survey region boundary
plot(mexdolphin$samplers,col="blue",add=TRUE) # draw transects (in and out of survey region)
grsize = attributes(mexdolphin$points)$datal,”size"] # Get group size data
plot(mexdolphin$points,pch=19,col="red", cex=1log(grsize/30),add=TRUE)

mrsea Marine renewables strategic environmental assessment

Description

Data imported from package MRSea, see http://creem?2.st-andrews.ac.uk/software/

Format

A list of objects:

points: A SpatialPointsDataFrame object containing the locations of XXXXX.
samplers: A SpatiallLinesDataFrame object containing the transect lines that were surveyed.

mesh: An inla.mesh object containing a Delaunay triangulation mesh (a type of discretization of
continuous space) covering the survey region.

boundary: An SpatialPolygonsDataFrame object defining the boundary of the survey region.

covar: An SpatialPointsDataFrame containing sea depth estimates.

Source

Library MRSea.

multiplot 55

References

NONE YET

Examples

data(mrsea)
ggplot() + gg(mrsea$mesh) + gg(mrsea$samplers) + gg(mrsea$points) + gg(mrsea$boundary)

multiplot Multiple ggplots on a page.

Description

Renders multiple ggplots on a single page.

Usage
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
Arguments
Comma-separated ggplot objects.
plotlist A list of ggplot objects - an alternative to the comma-separated argument above.
cols Number of columns of plots on the page.
layout A matrix specifying the layout. If present, ’cols’ is ignored. If the layout is
something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in
the upper left, 2 will go in the upper right, and 3 will go all the way across the
bottom.
Author(s)

David L. Borchers <<dlb@st-andrews.ac.uk>>

Source

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Examples

df = data.frame(x=1:10,y=1:10,z=11:20)

pll = ggplot(data = df) + geom_line(mapping = aes(x,y), color = "red")
pl2 = ggplot(data = df) + geom_line(mapping = aes(x,z), color = "blue")
multiplot(pll,pl2, cols = 2)

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

56 plot.bru

pixels Generate SpatialPixels covering an inla.mesh

Description

Generate SpatialPixels covering an inla.mesh

Usage

pixels(mesh, nx = 150, ny = 150, mask = TRUE)

Arguments
mesh An inla.mesh object
nx Number of pixels in x direction
ny Number of pixels in y direction
mask If logical and TRUE, remove pixels that are outside the mesh. If mask is a
Spatial object, only return pixels covered by this object.
Value

SpatialPixels covering the mesh

Author(s)

Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

data("mrsea”)
pxl = pixels(mrsea$mesh, nx = 50, ny = 50)
ggplot() + gg(pxl) + gg(mrsea$mesh)

plot.bru Plot method for posterior marginals estimated by bru

Description

bru uses inla to fit models. The latter estimates the posterior densities of all random effects in the
model. This function serves to access and plot the posterior densities in a convenient way.

plot.prediction 57

Usage
S3 method for class 'bru'
plot(x, ...)
Arguments
X a fitted bru model.
A character naming the effect to plot, e.g. "Intercept".
Value

an object of class gg

Examples

Not run:

Generate some data and fit a simple model

input.df <- data.frame(x=cos(1:10))

input.df <- within(input.df, y <- 5 + 2xcos(1:10) + rnorm(10, mean=0, sd=0.1))
fit <- bru(y ~ x, "gaussian”, input.df)

summary (fit)

Plot the posterior of the model's x-effect
plot(fit, "x")

End(Not run)

plot.prediction Plot prediction using ggplot2

Description

Generates a base ggplot2 using ggplot and adds a geom for input x using gg.

Usage
S3 method for class 'prediction'
plot(x, y = NULL, ...)
Arguments
X a prediction object.
y Ignored argument but required for S3 compatibility.

Arguments passed on to gg.prediction.

58 plot.prediction

Value

an object of class gg

Examples

Generate some data

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2xcos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit a model with fixed effect 'x' and intercept 'Intercept'

fit <- bru(y ~ x, "gaussian”, input.df)

Predict posterior statistics of 'x
xpost = predict(fit, formula = ~ x)

The statistics include mean, standard deviation, the 2.5% quantile, the median,
the 97.5% quantile, minimum and maximum sample drawn from the posterior as well as
the coefficient of variation and the variance.

Xpost

For a single variable like 'x' the default plotting method invoked by gg() will
show these statisics in a fashion similar to a box plot:

ggplot() + gg(xpost)
The predict function can also be used to simulatenneously estimate posteriors
of multiple variables:

xipost = predict(fit, formula = ~ data.frame(post = c(Intercept, x)))
xipost

If we still want a plot in the previous style we have to set the bar parameter to TRUE
rownames (xipost) = c("Intercept”,"x")

pl = ggplot() + gg(xipost, bar = TRUE)

pl

Note that gg also understands the posterior estimates generated while running INLA

p2 = ggplot() + gg(fit$summary.fixed, bar = TRUE)
multiplot(pl, p2)

By default, if the prediction has more than one row, gg will plot the column 'mean' against

the row index. This is for instance usefuul for predicting and plotting function
but not very meaningful given the above example:

ggplot() + gg(xipost)

plotsample 59

For ease of use we can also type

plot(xipost)

This type of plot will show a ribbon around the mean, which viszualizes the upper and lower
quantiles mentioned above (2.5 and 97.5%). Plotting the ribbon can be turned of using the
\code{ribbon} parameter

ggplot() + gg(xipost, ribbon = FALSE)

Much like the other geomes produced by gg we can adjust the plot using ggplot2 style
commands, for instance

ggplot() +
gg(xipost) +
gg(xipost, mapping = aes(y = median), ribbon = FALSE, color = "red")

plotsample Create a plot sample.

Description

Creates a plot sample on a regular grid with a random start location.

Usage
plotsample(spdf, boundary, x.ppn = 0.25, y.ppn = 0.25, nx = 5,
ny = 5)
Arguments
spdf A SpatialPointsDataFrame defining the points that are to be sampled by the
plot sample.
boundary A SpatialPolygonsDataFrame defining the survey boundary within which the
points occur.
X.ppn The proportion of the x=axis that is to be included in the plots.
y.ppn The proportion of the y=axis that is to be included in the plots.
nx The number of plots in the x-dimension.

ny The number of plots in the y-dimension.

60 point2count

Value
A list with three components:

plots: A SpatialPolygonsDataFrame object containing the plots that were sampled.
dets: A SpatialPointsDataFrame object containing the locations of the points within the plots.
counts: A dataframe containing the following columns

x: The x-coordinates of the centres of the plots within the boundary.
y: The y-coordinates of the centres of the plots within the boundary.
n: The numbers of points in each plot.

area: The areas of the plots within the boundary

Examples

Some features require the raster package
if (require("raster”, quietly = TRUE)) {

data(gorillas, package = "inlabru")

plotpts = plotsample(gorillas$nests,gorillas$boundary,x.ppn=0.4,y.ppn=0.4,nx=5,ny=5)
ggplot() +gg(plotpts$plots) +gg(plotpts$dets,pch="+",6 cex=2) +gg(gorillas$boundary)

}

point2count Convert a plot sample of points into one of counts.

Description

Converts a plot sample with locations of each point within each plot, into a plot sample with only
the count within each plot.

Usage

point2count(plots, dets)

Arguments
plots A SpatialPolygonsDataFrame object containing the plots that were sampled.
dets A SpatialPointsDataFrame object containing the locations of the points within
the plots.
Value

A SpatialPolygonsDataFrame with counts in each plot contained in slot @data$n.

Poissonl 1D 61

Examples

Some features require the raster package
if (require("raster”, quietly = TRUE)) {

data(gorillas, package = "inlabru")

plotpts = plotsample(gorillas$nests,gorillas$boundary,x.ppn=0.4,y.ppn=0.4,nx=5,ny=5)

pl = ggplot() +gg(plotpts$plots) +gg(plotpts$dets) +gg(gorillas$boundary)

countdata = point2count(plotpts$plots,plotpts$dets)

x=coordinates(countdata)[,1]

y=coordinates(countdata)[, 2]

count=countdata@datas$n

p2 = ggplot() +gg(gorillas$boundary) +gg(plotpts$plots) + geom_text(aes(label=count, x=x, y=y))
multiplot(pl1,p2,cols=2)

3

Poisson1_1D 1-Dimensional Homogeneous Poisson example.

Description

Point data and count data, together with intensity function and expected counts for a homogeneous
1-dimensional Poisson process example.

Usage

data(Poisson1_1D)

Format

The data contain the following R objects:

lambdal_1D: A function defining the intensity function of a nonhomogeneous Poisson process.
Note that this function is only defined on the interval (0,55).

E_nc1 The expected counts of the gridded data.

pts1 The locations of the observed points (a data frame with one column, named x).

countdatal A data frame with three columns, containing the count data:

x The grid cell midpoint.
count The number of detections in the cell.
exposure The width of the cell.

62 Poisson2 1D

Examples

library(ggplot2)

data(Poisson1_1D)

ggplot(countdatal) +

geom_point(data = countdatal, aes(x=x,y=count),col="blue") +ylim(@,max(countdatal$count)) +
geom_point(data = ptsl1, aes(x=x), y = 0.2, shape = "|",cex=4) +
geom_point(data = countdatal, aes(x=x), y = 0@, shape = "+" col="blue",cex=4) +
xlab(expression(bold(s))) +ylab("count”)

Poisson2_1D 1-Dimensional NonHomogeneous Poisson example.

Description

Point data and count data, together with intensity function and expected counts for a unimodal
nonhomogeneous 1-dimensional Poisson process example.

Usage
data(Poisson2_1D)

Format
The data contain the following R objects:
lambda2_1D: A function defining the intensity function of a nonhomogeneous Poisson process.
Note that this function is only defined on the interval (0,55).
cov2_1D: A function that gives what we will call a "habitat suitability’ covariate in 1D space.
E_nc2 The expected counts of the gridded data.
pts2 The locations of the observed points (a data frame with one column, named x).
countdata2 A data frame with three columns, containing the count data:

x The grid cell midpoint.
count The number of detections in the cell.
exposure The width of the cell.

Examples

library(ggplot2)

data(Poisson2_1D)

pl = ggplot(countdata2) +

geom_point(data = countdata2, aes(x=x,y=count),col="blue”) +ylim(@,max(countdata2$count,E_nc2)) +
geom_point(data = countdata2, aes(x=x), y = 0, shape = "+",col="blue",cex=4) +
geom_point(data=data.frame(x=countdata2$x,y=E_nc2), aes(x=x), y = E_nc2, shape = "_",cex=5) +
xlab(expression(bold(s))) +ylab("count”)

Poisson3 1D 63

ss = seq(9,55,length=200)

lambda = lambda2_1D(ss)

p2 = ggplot() +
geom_line(data=data.frame(x=ss,y=lambda), aes(x=x,y=y),col="blue") +ylim(@,max(lambda)) +
geom_point(data = pts2, aes(x=x), y = 0.2, shape = "|",cex=4) +
xlab(expression(bold(s))) +ylab(expression(lambda(bold(s))))

multiplot(p1,p2,cols=1)

Poisson3_1D 1-Dimensional NonHomogeneous Poisson example.

Description

Point data and count data, together with intensity function and expected counts for a multimodal
nonhomogeneous 1-dimensional Poisson process example. Counts are given for two different grid-
ded data interval widths.

Usage
data(Poisson3_1D)

Format

The data contain the following R objects:

lambda3_1D: A function defining the intensity function of a nonhomogeneous Poisson process.
Note that this function is only defined on the interval (0,55).

E_nc3a The expected counts of gridded data for the wider bins (10 bins).

E_nc3b The expected counts of gridded data for the wider bins (20 bins).

pts3 The locations of the observed points (a data frame with one column, named x).

countdata3a A data frame with three columns, containing the count data for the 10-interval case:

countdata3b A data frame with three columns, containing the count data for the 20-interval case:
x The grid cell midpoint.

count The number of detections in the cell.
exposure The width of the cell.

Examples

library(ggplot2)

data(Poisson3_1D)

first the plots for the 10-bin case:

pla = ggplot(countdata3a) +

geom_point(data = countdata3a, aes(x=x,y=count),col="blue") +ylim(@,max(countdata3a$count,E_nc3a)) +
geom_point(data = countdata3a, aes(x=x), y = @, shape = "+",col="blue"”,cex=4) +
geom_point(data=data.frame(x=countdata3a$x,y=E_nc3a), aes(x=x), y = E_nc3a, shape = "_",cex=5) +

64 predict.bru

xlab(expression(bold(s))) +ylab("count")

ss = seq(0,55,length=200)

lambda = lambda3_1D(ss)

p2a = ggplot() +
geom_line(data=data.frame(x=ss,y=lambda), aes(x=x,y=y),col="blue") +ylim(@,max(lambda)) +
geom_point(data = pts3, aes(x=x), y = 0.2, shape = "|",cex=4) +
xlab(expression(bold(s))) +ylab(expression(lambda(bold(s))))

multiplot(pla,p2a,cols=1)

Then the plots for the 20-bin case:

pla = ggplot(countdata3b) +
geom_point(data = countdata3b, aes(x=x,y=count),col="blue") +
ylim(@,max(countdata3b$count,E_nc3b)) +
geom_point(data = countdata3b, aes(x=x), y = 0, shape = "+",col="blue",cex=4) +
geom_point(data=data.frame(x=countdata3b$x,y=E_nc3b), aes(x=x), y = E_nc3b, shape =
xlab(expression(bold(s))) +ylab("count")

ss = seq(0,55,length=200)

lambda = lambda3_1D(ss)

p2a = ggplot() +
geom_line(data=data.frame(x=ss,y=lambda), aes(x=x,y=y),col="blue") +ylim(@,max(lambda)) +
geom_point(data = pts3, aes(x=x), y = 0.2, shape = "|",cex=4) +
xlab(expression(bold(s))) +ylab(expression(lambda(bold(s))))

multiplot(pla,p2a,cols=1)

non

cex=5) +

-

predict.bru Prediction from fitted bru model

Description

Takes a fitted bru object produced by the function bru() and produces predictions given a new set
of values for the model covariates or the original values used for the model fit. The predictions can
be based on any R expression that is valid given these values/covariates and the joint posterior of
the estimated random effects.

Mean value predictions are accompanied by the standard errors, upper and lower 2.5 median, vari-
ance, coefficient of variation as well as the variance and minimum and maximum sample value
drawn in course of estimating the statistics.

Usage

S3 method for class 'bru'
predict(object, data = NULL, formula = NULL,

n.samples = 100, ...)
Arguments
object An object obtained by calling bru or Igcp.

data A data.frame or SpatialPointsDataFrame of covariates needed for the prediction.

predict.bru 65

formula A formula determining which effects to predict and how to combine them.

n.samples Integer setting the number of samples to draw in order to calculate the posterior
statistics. The default is rather low but provides a quick approximate result.

ignored arguments (S3 generic compatibility).

Details

Internally, this method calls generate.bru in order to draw samples from the model.

Value

a data.frame or Spatial* object with predicted mean values and other summary statistics attached.

Examples

if (require("INLA", quietly = TRUE)) {

Load the Gorilla data

data(gorillas, package ="inlabru")

Plot the Gorilla nests, the mesh and the survey boundary

ggplot() +
gg(gorillas$mesh) +
gg(gorillas$nests) +
gg(gorillas$boundary) +
coord_fixed()

Define SPDE prior
matern <- inla.spde2.pcmatern(gorillas$mesh,
prior.sigma = c(0.1, 0.01),
prior.range = c(5, 0.01))
Define domain of the LGCP as well as the model components (spatial SPDE effect and Intercept)

cmp <- coordinates ~ mySmooth(map = coordinates, model = matern) + Intercept

Fit the model
fit <- lgcp(cmp, gorillas$nests, samplers = gorillas$boundary)

Once we obtain a fitted model the predict function can serve various purposes.
The most basic one is to determine posterior statistics of a univariate
random variable in the model, e.g. the intercept

icpt <- predict(fit, NULL, ~ Intercept)
rownames(icpt) = "Intercept”

plot(icpt)

The formula argument can take any expression that is valid within the model, for

66

predict.bru

instance a non-linear transformation of a random variable

exp.icpt <- predict(fit, NULL, ~ exp(Intercept))
rownames (exp.icpt) = "exp(Intercept)”
plot(rbind(icpt, exp.icpt), bar = TRUE)

The intercept is special in the sense that it does not depend on other variables

or covariates. However, this is not true for the smooth spatial effects 'mySmooth'.
In order to predict 'mySmooth' we have to define where (in space) to predict. For
this purpose, the second argument of the predict function can take \code{data.frame}
objects as well as Spatial objects. For instance, we might want to predict
'mySmooth' at the locations of the mesh vertices. Using

N N

vrt = vertices(gorillas$mesh)

we obtain these vertices as a SpatialPointsDataFrame
ggplot() + gg(gorillas$mesh) + gg(vrt, color = "red")

Predicting 'mySmooth' at these locations works as follows
mySmooth = predict(fit, vrt, ~ mySmooth)

Note that just like the input also the output will be a SpatialPointsDataFrame
and that the predicted statistics are simply added as columns

class(mySmooth)
head(vrt)
head(mySmooth)
Plotting the mean, for instance, at the mesh node is straight forward
ggplot() +
gg(gorillas$mesh) +

gg(mySmooth, aes(color = mean), size = 3)

However, we are often interested in a spatial field and thus a linear interpolation,
which can be achieved by using the gg mechanism for meshes

ggplot() + gg(gorillas$mesh, color = mySmooth$mean)

Alternatively, we can predict the spatial field at a grid of locations, e.g. a
SpatialPixels object covering the mesh

pxl = pixels(gorillas$mesh)
mySmooth = predict(fit, pxl, ~ mySmooth)

This will give us a SpatialPixelDataFrame with the columns we are looking for

head(mySmooth)
ggplot() + gg(mySmooth)

predict.inla 67

predict.inla Prediction from fitted inla model

Description

Takes a fitted inla object produced by the function inla() and produces predictions given a new set
of values for the model covariates or the original values used for the model fit. The predictions can
be based on any R expression that is valid given these values/covariates and the posterior of the
estimated effects.

Usage
S3 method for class 'inla'
predict(object, ...)
Arguments
object A bru object obtained by calling bru or Igcp.

Arguments passed on to predict.bru.

Value

A prediction object.

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

Some features use the INLA package.
if (require("INLA", quietly = TRUE)) {

Generate some data

input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <- 5 + 2xcos(1:10) + rnorm(10, mean=0, sd=0.1))

Fit a Gaussian likelihood model

formula =y ~ x
fit <- inla(formula, "gaussian”, data = input.df, control.compute=list(config = TRUE))

Estimate posterior statistics of exp(x), where x is the fixed effect.

xpost = predict(fit, NULL, ~ exp(x))

68 sample.lgcp

xpost
plot(xpost)

}

sample.lgcp Sample from an inhomogeneous Poisson process

Description

This function provides point samples from one- and two-dimensional inhomogeneous Poisson pro-
cesses. The log intensity has to be provided via its values at the nodes of an inla.mesh.1d or
inla.mesh object. In between mesh nodes the log intensity is assumed to be linear.

Usage

sample.lgcp(mesh, loglambda, strategy = NULL, R = NULL,
samplers = NULL, ignore.CRS = FALSE)

Arguments

mesh An inla.mesh object

loglambda vector or matrix; A vector of log intensities at the mesh vertices (for higher order
basis functions, e.g. for inla.mesh. 1d meshes, loglambda should be given as
mesh$m basis function weights rather than the values at the mesh$n vertices) A
single scalar is expanded to a vector of the appropriate length. If a matrix is
supplied, one process sample for each column is produced.

strategy Only relevant for 2D meshes. One of 'triangulated’', 'rectangle’, 'sliced-spherical’,
"spherical'. The 'rectangle' method is only valid for CRS-less flat 2D
meshes. If NULL or 'auto’, the the likely fastest method is chosen; 'rectangle’
for flat 2D meshes with no CRS, 'sliced-spherical' for CRS 'longlat'
meshes, and 'triangulated' for all other meshes.

R Numerical value only applicable to spherical and geographical meshes. It is
interpreted as R is the equivalent Earth radius, in km, used to scale the lambda
intensity. For CRS enabled meshes, the default is 6371. For CRS-less spherical
meshes, the default is 1.

samplers A ‘SpatialPolygonsDataFrame* or ‘inla.mesh‘ object. Simulated points that fall
outside these polygons are discarded.

ignore.CRS logical; if TRUE, ignore any CRS information in the mesh. Default FALSE. This
affects R and the permitted values for strategy.

sample.lgcp 69

Details

For 2D processes on a sphere the R parameter can be used to adjust to sphere’s radius implied by
the mesh. If the intensity is very high the standard strategy "spherical” can cause memory issues.
Using the "sliced-spherical” strategy can help in this case.

* For crs-less meshes on R2: Lambda is interpreted in the raw coordinate system. Output has
an NA CRS.

* For crs-less meshes on S2: Lambda with raw units, after scaling the mesh to radius R, if
specified. Output is given on the same domain as the mesh, with an NA CRS.

* For crs meshes on R2: Lambda is interpreted as per km”2, after scaling the globe to the Earth
radius 6371 km, or R, if specified. Output given in the same CRS as the mesh.

* For crs meshes on S2: Lambda is interpreted as per km”2, after scaling the globe to the Earth
radius 6371 km, or R, if specified. Output given in the same CRS as the mesh.

Value

A data.frame (1D case), SpatialPoints (2D flat and 3D spherical surface cases) SpatialPoints-
DataFrame (2D/3D surface cases with multiple samples). For multiple samples, the data. frame
output has a column 'sample' giving the index for each sample. object of point locations.

Author(s)

Daniel Simpson <<dp.simpson@gmail.com>> (base rectangle and spherical algorithms), Fabian E.
Bachl <<bachlfab@gmail.com>> (inclusion in inlabru, sliced spherical sampling), Finn Lindgren
<<finn.lindgren@gmail.com>> (extended CRS support, triangulated sampling)

Examples

The INLA package is required
if (require(”INLA", quietly = TRUE)) {

vertices = seq(@, 3, by = 0.1)
mesh = inla.mesh.1d(vertices)
loglambda = 5-0.5*vertices

pts = sample.lgcp(mesh, loglambda)

pts$y = 0

plot(vertices, exp(loglambda), type = "1", ylim = c(0,150))
points(pts, pch = "|")

3

The INLA package is required
if (require(”INLA", quietly = TRUE)) {

data("gorillas”, package = "inlabru")
pts = sample.lgcp(gorillas$mesh,
loglambda = 1.5,

70 seals

samplers = gorillas$boundary)
ggplot() + gg(gorillas$mesh) + gg(pts)

}

seals Seal pups

Description

This is a single transect of an aereal photo seal pup survey in the Greenland Sea

Usage

data(seals)

Format
The data contain these objects:
points: A SpatialPointsDataFrame Center locations of the photos
mesh: An inla.mesh enclosing the plane’s transect

ice.data: An SpatialPointsDataFrame with MODIS ice concentration estimates

ice.cv: An covdata object with interpolated ice coverage data

Source

Martin Jullum <<Martin. Jullum@nr.no>>

References

Oigard, T. A. (2013) From pup production to quotas: current status of harp seals in the Greenland
Sea. ICES Journal of Marine Science, doi.10.1093/icesjms/fst155.

Oigard, T. A. (2014) Current status of hooded seals in the Greenland Sea. Victims of climate change
and predation?, Biological Conservation , 2014, 172, 29 - 36.

Examples

data(seals)
ggplot() + gg(seals$mesh) + gg(seals$points)

sline 71

sline Convert data frame to SpatialLinesDataFrame

Description

A line in 2D space is defined by a start and an and point, each associated with 2D coordinates. This
function takes a /codedata.frame as input and assumes that each row defines a line in space. In order
to do so, the data frame must have at least four columns and the start.cols and end. cols param-
eters must be used to point out the names of the columns that define the start and end coordinates
of the line. The data is then converted to a SpatiallLinesDataFrame DF. If a coordinate reference
system crs is provided it is attached to DF. If also to.crs is provided, the coordinate system of DF
is transfromed accordingly. Additional columns of the input data, e.g. covariates, are retained and
attached to DF.

Usage

sline(data, start.cols, end.cols, crs = CRS(as.character(NA)),
to.crs = NULL)

Arguments
data A data.frame
start.cols Character array poitning out the columns of data that hold the start points of the
lines
end.cols Character array poitning out the columns of data that hold the end points of the
lines
crs Coordinate reference system of the original data
to.crs Coordinate reference system for the SpatialLines ouput.
Value

SpatialLinesDataFrame
Examples
Create a data frame defining three lines

lns = data.frame(xs = ¢(1,2,3), ys = c(1,1,1), # start points
xe = c(2,3,4), ye = c(2,2,2)) # end points

Conversion to SpatiallLinesDataFrame without CRS

spl = sline(lns, start.cols = c("xs","ys"),
end.cols = c("xe","ye"))

Plot the lines

72 spatial.to.ppp

ggplot() + gg(spl)

spatial.to.ppp Convert SpatialPoints and boundary polygon to spatstat ppp object

Description

Spatstat point pattern objects consist of points and an observation windows. This function uses a
SpatialPoints object and a SpatialPolygon object to generate the points and the window. Lastly, the
ppp() function is called to create the ppp object.

Usage

spatial.to.ppp(points, samplers)

Arguments
points A SpatialPoints[DataFrame] object describing the point pattern.
samplers A SpatialPolygons[DataFrame] object describing the observation window.
Value

A spatstat spatstat ppp object

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")
Use nest locations and survey boundary to create a spatstat ppp object

gp <- spatial.to.ppp(gorillas$nests, gorillas$boundary)
class(gp)

Plot it

plot(gp)

spde.posterior 73

spde.posterior Posteriors of SPDE hyper parameters and Matern correlation or co-
variance function.

Description

Calculate posterior distribution of the range, log(range), variance, or log(variance) parameter of a
model’s SPDE component. Can also plot Matern correlation or covariance function. inla.spde.result.

Usage
spde.posterior(result, name, what = "range")
Arguments
result An object inheriting from inla.
name Character stating the name of the SPDE effect, see names (result$summary.random).
what One of "range", "log.range", "variance", "log.variance", "matern.correlation" or
"matern.covariance".
Value

A prediction object.

Author(s)

Finn Lindgren <<Finn.Lindgren@ed.ac.uk>>

Examples

if (require(”INLA", quietly = TRUE)) {

Load 1D Poisson process data

data(Poisson2_1D, package = "inlabru")

Take a look at the point (and frequency) data

ggplot(pts2) +
geom_histogram(aes(x = x), binwidth = 55/20, boundary = @, fill = NA, color = "black") +
geom_point(aes(x), y = @, pch = "|", cex = 4) +
coord_fixed(ratio = 1)

Fit an LGCP model with and SPDE component

x <- seq(@, 55, length = 20)
mesh1D <- inla.mesh.1d(x, boundary = "free")

74

mdl <- x ~ spdelD(map = x, model = inla.spde2.matern(meshiD)) + Intercept

fit <- lgcp(mdl, pts2, domain = list(x = c(@,55)))
Calculate and plot the posterior range

range = spde.posterior(fit, "spdelD"”, "range")
plot(range)

Calculate and plot the posterior log range

lrange = spde.posterior(fit, "spdelD"”, "log.range")
plot(lrange)

Calculate and plot the posterior variance

variance = spde.posterior(fit, "spdelD", "variance")
plot(variance)

Calculate and plot the posterior log variance

lvariance = spde.posterior(fit, "spdelD", "log.variance")
plot(lvariance)

Calculate and plot the posterior Matern correlation

matcor = spde.posterior(fit, "spdelD", "matern.correlation”)
plot(matcor)

Calculate and plot the posterior Matern covariance

spoly

DataFrame

matcov = spde.posterior(fit, "spdelD", "matern.covariance")
plot(matcov)
3
spoly Convert a data.frame of boundary points into a SpatialPolgons-

Description

A polygon can be described as a sequence of points defining the polygon’s boundary. When given
such a sequence (anti clockwise!) this function creates a SpatialPolygonsDataFrame holding the
polygon decribed. By default, the first two columns of data are assumed to define the x and y
coordinates of the points. This behavior can ba changed using the cols parameter, which points
out the names of the columns holding the coordinates. The coordinate reference system of the
resulting spatial polygon can be set via the crs paraemter. Posterior conversion to a different CRS

is supported using the to.crs parameter.

stransform 75

Usage

spoly(data, cols = colnames(data)[1:2], crs = CRS(as.character(NA)),
to.crs = NULL)

Arguments
data A data.frame of points describing the boundary of the polygon
cols Column names of the x and y coordinates within the data
crs Coordinate reference system of the points
to.crs Coordinate reference system for the SpatialLines ouput.
Value

SpatialPolygonsDataFrame

Examples

Create data frame of boundary points (anti clockwise!)
pts = data.frame(x = ¢(1,2,1.7,1.3),
y =¢(1,1,2,2))

Convert to SpatialPolygonsDataFrame
pol = spoly(pts, crs = CRS(as.character(NA)))

Plot it!
ggplot() + gg(pol)

stransform Coordinate transformation for spatial objects

Description

This is a wrapper for the spTransform function provided by the sp package. Given a spatial object
(or alist thereof) it will transform the coordinate system according to the parameter crs. In addition
to the usual spatial objects this function is also capables of transforming inla.mesh objects that are
equipped with a coordinate system.#’

Usage

stransform(splist, crs)

Arguments

splist list of Spatial* objects

crs Coordinate reference system to change to

76 summary.bru

Value

List of Spatial* objects

Examples

Load Gorilla data
data("gorillas”, package = "inlabru")

Take the mesh and transform it to latitude/longitude
tmesh = stransform(gorillas$mesh, crs = CRS("+proj=longlat”))

Compare original and transformed mesh

multiplot(ggplot() + gg(gorillas$mesh) + ggtitle("Original mesh"),
ggplot() + gg(tmesh) + ggtitle("Transformed mesh"))

summary.bru Summary for a bru fit

Description

Takes a fitted bru object produced by bru() or Igcp() and creates various summaries from it.

Usage
S3 method for class 'bru'
summary (object, ...)
Arguments
object An object obtained from a bru or Igcp call

ignored arguments

Examples

if (require(”INLA", quietly = TRUE)) {

Simulate some covariates x and observations y
input.df <- data.frame(x=cos(1:10))
input.df <- within(input.df, y <= 5 + 2xx + rnorm(10, mean=0, sd=0.1))

Fit a Gaussian likelihood model
fit <- bru(y ~ x + Intercept, "gaussian”, input.df)

Obtain summary
fit$summary.fixed

toygroups 77

if (require("INLA", quietly = TRUE)) {
Alternatively, we can use the like() function to construct the likelihood:

lik = like(family = "gaussian”, data = input.df)
fit <- bru(y ~ x + Intercept, 1lik)
fit$summary.fixed

}

An important addition to the INLA methodology is bru's ability to use
non-linear predictors. Such a predictor can be formulated via like()'s
\code{formula} parameter. For instance

if (require("INLA", quietly = TRUE)) {

z =2

input.df <- within(input.df, y <- 5 + exp(z)*x + rnorm(10, mean=0, sd=0.1))

lik = like(family = "gaussian”, data = input.df, formula =y ~ exp(z)*x + Intercept, E = 10000)
fit <- bru(~ z + Intercept, 1lik)

Check the result (z posterior should be around 2)
fit$summary.fixed

3

toygroups Simulated 1D animal group locations and group sizes

Description
This data set serves to teach the concept of modelling species that gather in groups and where the
grouping behaviour depends on space.

Usage
data(toygroups)

Format
The data are a list that contains these elements:

groups: A data.frame of group locations x and size size
df.size: IGNORE THIS
df.intensity: A data.frame with Poisson process intensity d.lambda at locations x

df.rate: A data.frame the locations x and associated rate which parameterized the exponential
distribution from which the group sizes were drawn.

78 vertices

Examples

Load the data
data("toygroups")

The data set is a simulation of animal groups residing in a 1D space. Their
locations in x-space are sampled from a Cox process with intensity

ggplot(toygroups$df.intensity) + geom_line(aes(x=x,y=g.lambda))
Adding the simulated group locations to this plot we obtain
ggplot(toygroups$df.intensity) +

geom_line(aes(x=x,y=g.lambda)) +

geom_point(data = toygroups$groups, aes(x, y=0), pch="[")
Each group has a size mark attached to it.
These group sizes are sampled from an exponential distribution

for which the rate parameter depends on the x-coordinate

ggplot(toygroups$groups) +
geom_point(aes(x= x, y = size))

ggplot(toygroups$df.rate) +
geom_line(aes(x,rate))

vertices Vertices

Description

This is a generic function. The outcome depends on the object provided

Usage

vertices(object)

S4 method for signature 'inla.mesh'

vertices(object)
Arguments

object An object for which to call the particular vertices method.
Value

The form of the value returned by vertices() depends on the class of its argument. See the docu-
mentation of the particular methods for details of what is produced by that method.

vertices.inla.mesh 79

vertices.inla.mesh Extract vertex locations from an inla.mesh

Description

Converts the vertices of an inla.mesh object into a SpatialPointsDataFrame.

Usage

vertices.inla.mesh(object)

Arguments

object An inla.mesh object.

Value
A SpatialPointsDataFrame of mesh vertex locations. The vrt column indicates the internal vertex
id.

Author(s)
Fabian E. Bachl <<bachlfab@gmail.com>>

Examples

data("mrsea”)
vrt = vertices(mrsea$mesh)
ggplot() + gg(mrsea$mesh) + gg(vrt, color = "red")

Index

aes, 23-25, 27,29, 32, 34, 35 gg, 18, 19, 22-25, 27, 28, 30-32, 34, 36, 42,

aes_, 23-25, 27,29, 32, 34, 35 46,57
gg.data.frame, 19, 19, 24, 25, 42

bincount, 3 gg.inla.mesh, 19,21, 23,42

bru, 3,4,6,7,9,11,15, 16,46, 50-52, 56, 57, gg.inla.mesh.1d, 19, 22,22, 42

64,67,76 gg.matrix, 19, 24, 25, 42

bru. components, 3, 6 gg.prediction, 19, 24, 24, 42, 57

bru.options, 5,9, 50, 52 gg.RasterlLayer, 19, 26, 42
gg.SpatialGridDataFrame, 19, 28, 30-32,

class, I8 34.36. 42

control.compute, 9 gg. Spatiallines, 19, 28,29, 31, 32, 34, 36,

control.fixed, 9 42

control.inla, 9 gg.SpatialPixels, 19, 28, 30, 31, 32, 34, 36,

countdatal (Poisson1_1D), 61 42

countdata2 (Poisson2_1D), 62
countdata3a (Poisson3_1D), 63

countdata3b (Poisson3_1D), 63 gg. SpatialPoints, 19, 28, 3032, 33, 36, 42

cov2_1D (Poisson2_1D), 62 gg . SpatialPolygons, 19, 28, 30-32, 34, 35,
cprod, 10 42

CRS, 21, 29, 32, 34, 35

gg.SpatialPixelsDataFrame, 19, 28, 30, 31,
32, 34, 36, 42

ggplot, 57

globe, 37, 3841
glplot, 37, 38, 3941
glplot.inla.mesh, 37, 38, 39, 40, 41
glplot.Spatiallines, 37-39, 40, 41
glplot.SpatialPoints, 3740, 41
egm, 19, 22-25, 27, 28, 30-32, 34, 36, 42
gmap, 42, 43

gorillas, 44, 46

deltalC, 11
devel.cvmeasure, 12

E_nc1 (Poisson1_1D), 61
E_nc2 (Poisson2_1D), 62
E_nc3a (Poisson3_1D), 63
E_nc3b (Poisson3_1D), 63

f,7

formula, 5, 51 init.tutorial, 45

inla, 4-6,9,11,51, 52, 56
inla.mesh, 21, 68, 75

inlabru, 46

generate, 14, 16, 17
generate.bru, 14, 15,17, 65

generate.inla, 14, 16, 17
geom_line, 19, 21, 22, 24, 25
geom_point, 22, 23, 31, 33, 34
geom_polygon, 35
geom_ribbon, 19, 24, 25
geom_segment, 29, 30
geom_tile, 24, 26-28, 31, 32

80

int, 46
ipoints, 10, 48

lambda1_1D (Poisson1_1D), 61
lambda2_1D (Poisson2_1D), 62
lambda3_1D (Poisson3_1D), 63
lgep, 3,5, 9, 11, 46,49, 64, 67, 76

INDEX

like, 5, 51

mexdolphin, 46, 53
mrsea, 54
multiplot, 55

pixels, 56
plot.bru, 56
plot.prediction, 57
plotsample, 59
point2count, 60
Poisson1_1D, 46, 61
Poisson2_1D, 46, 62
Poisson3_1D, 63
predict, 3, 4
predict.bru, 7, 16, 24, 25, 64, 67
predict.inla, 17, 67
pts1 (Poisson1_1D), 61
pts2 (Poisson2_1D), 62
pts3 (Poisson3_1D), 63

sample.lgcp, 68
seals, 46, 70
sline, 71
spatial.to.ppp, 72
SpatialPixels, 31
spde.posterior, 73
spoly, 74
spTransform, 75
stransform, 75
summary.bru, 76

toygroups, 46, 77

vertices, 78
vertices,inla.mesh-method (vertices), 78
vertices.inla.mesh, 79

	bincount
	bru
	bru.components
	bru.options
	cprod
	deltaIC
	devel.cvmeasure
	generate
	generate.bru
	generate.inla
	gg
	gg.data.frame
	gg.inla.mesh
	gg.inla.mesh.1d
	gg.matrix
	gg.prediction
	gg.RasterLayer
	gg.SpatialGridDataFrame
	gg.SpatialLines
	gg.SpatialPixels
	gg.SpatialPixelsDataFrame
	gg.SpatialPoints
	gg.SpatialPolygons
	globe
	glplot
	glplot.inla.mesh
	glplot.SpatialLines
	glplot.SpatialPoints
	gm
	gmap
	gorillas
	init.tutorial
	inlabru
	int
	ipoints
	lgcp
	like
	mexdolphin
	mrsea
	multiplot
	pixels
	plot.bru
	plot.prediction
	plotsample
	point2count
	Poisson1_1D
	Poisson2_1D
	Poisson3_1D
	predict.bru
	predict.inla
	sample.lgcp
	seals
	sline
	spatial.to.ppp
	spde.posterior
	spoly
	stransform
	summary.bru
	toygroups
	vertices
	vertices.inla.mesh
	Index

