WeightIt: Weighting for Covariate Balance in Observational Studies
Generates weights to form equivalent groups in observational studies with point or longitudinal treatments by easing and extending the functionality of the R packages 'twang' for generalized boosted modeling (McCaffrey, Ridgeway & Morral, 2004) <doi:10.1037/1082-989X.9.4.403>, 'CBPS' for covariate balancing propensity score weighting (Imai & Ratkovic, 2014) <doi:10.1111/rssb.12027>, 'ebal' for entropy balancing (Hainmueller, 2012) <doi:10.1093/pan/mpr025>, 'optweight' for optimization-based weights (Zubizarreta, 2015) <doi:10.1080/01621459.2015.1023805>, 'ATE' for empirical balancing calibration weighting (Chan, Yam, & Zhang, 2016) <doi:10.1111/rssb.12129>, and 'SuperLearner' for stacked machine learning-based propensity scores (Pirracchio, Petersen, & van der Laan, 2015) <doi:10.1093/aje/kwu253>. Also allows for assessment of weights and checking of covariate balance by interfacing directly with 'cobalt'.
Version: |
0.10.0 |
Depends: |
R (≥ 3.3.0) |
Imports: |
cobalt (≥ 4.2.2), ggplot2 (≥ 3.0.0), crayon, backports (≥
1.1.8) |
Suggests: |
twang (≥ 1.5), CBPS (≥ 0.18), ebal (≥ 0.1-6), ATE (≥
0.2.0), optweight (≥ 0.2.4), SuperLearner (≥ 2.0-25), mlogit (≥ 1.0-3.1), mnlogit (≥ 1.2.6), dfidx, MNP (≥ 3.1-0), brglm2 (≥ 0.5.2), osqp (≥ 0.6.0.3), survey, jtools (≥ 2.0.2), boot, MASS, gbm (≥ 2.1.3), misaem (≥ 1.0.0), knitr, rmarkdown |
Published: |
2020-07-07 |
Author: |
Noah Greifer
[aut, cre] |
Maintainer: |
Noah Greifer <noah.greifer at gmail.com> |
BugReports: |
https://github.com/ngreifer/WeightIt/issues |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://github.com/ngreifer/WeightIt |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
WeightIt results |
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=WeightIt
to link to this page.