SuperLearner: Super Learner Prediction

Implements the super learner prediction method and contains a library of prediction algorithms to be used in the super learner.

Version: 2.0-26
Depends: R (≥ 2.14.0), nnls
Imports: cvAUC
Suggests: arm, bartMachine, biglasso, bigmemory, caret, class, devtools, e1071, earth, extraTrees, gam (≥ 1.15), gbm, genefilter, ggplot2, glmnet, ipred, KernelKnn, kernlab, knitr, lattice, LogicReg, MASS, mlbench, nloptr, nnet, party, polspline, prettydoc, quadprog, randomForest, ranger, RhpcBLASctl, ROCR, rmarkdown, rpart, SIS, speedglm, spls, sva, testthat, xgboost (≥ 0.6)
Published: 2019-12-10
Author: Eric Polley [aut, cre], Erin LeDell [aut], Chris Kennedy [aut], Sam Lendle [ctb], Mark van der Laan [aut, ths]
Maintainer: Eric Polley <polley.eric at mayo.edu>
License: GPL-3
URL: https://github.com/ecpolley/SuperLearner
NeedsCompilation: no
Materials: NEWS ChangeLog
In views: MachineLearning
CRAN checks: SuperLearner results

Downloads:

Reference manual: SuperLearner.pdf
Vignettes: Guide to SuperLearner
Package source: SuperLearner_2.0-26.tar.gz
Windows binaries: r-devel: SuperLearner_2.0-26.zip, r-release: SuperLearner_2.0-26.zip, r-oldrel: SuperLearner_2.0-26.zip
macOS binaries: r-release: SuperLearner_2.0-26.tgz, r-oldrel: SuperLearner_2.0-26.tgz
Old sources: SuperLearner archive

Reverse dependencies:

Reverse depends: ctmle, tmle
Reverse imports: causalweight, CBDA, CIMTx, drtmle, expose, nlpred, RISCA, survtmle, vimp
Reverse suggests: adaptest, biotmle, hal9001, ltmle, medflex, methyvim, riskRegression, tmle.npvi, WeightIt

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SuperLearner to link to this page.