Analysis and measurement of promotion effectiveness on a given target variable (e.g. daily sales). After converting promotion schedule into dummy or smoothed predictor variables, the package estimates the effects of these variables controlled for trend/periodicity/structural change using prophet by Taylor and Letham (2017) <doi:10.7287/peerj.preprints.3190v2> and some prespecified variables (e.g. start of a month).
Version: | 0.1.4 |
Depends: | R (≥ 3.5.0), Rcpp (≥ 0.12.17), dplyr (≥ 0.7.6), ggplot2 (≥ 3.0.0), scales (≥ 1.0.0) |
Imports: | KernSmooth (≥ 2.23.15), data.table (≥ 1.11.4), ggpubr (≥ 0.1.8), reshape2 (≥ 1.4.3), stringr (≥ 1.3.1), strucchange (≥ 1.5.1), lmtest (≥ 0.9), crayon (≥ 1.3.4), prophet (≥ 0.6.1) |
Published: | 2020-06-29 |
Author: | Nahyun Kim [cre, aut], Hyemin Um [aut], Eunjo Lee [aut], NCSOFT Corporation [cph] |
Maintainer: | Nahyun Kim <nhkim1302 at ncsoft.com> |
License: | BSD_3_clause + file LICENSE |
URL: | https://github.com/ncsoft/promotionImpact |
NeedsCompilation: | no |
CRAN checks: | promotionImpact results |
Reference manual: | promotionImpact.pdf |
Package source: | promotionImpact_0.1.4.tar.gz |
Windows binaries: | r-devel: promotionImpact_0.1.4.zip, r-release: promotionImpact_0.1.4.zip, r-oldrel: promotionImpact_0.1.4.zip |
macOS binaries: | r-release: promotionImpact_0.1.4.tgz, r-oldrel: promotionImpact_0.1.4.tgz |
Old sources: | promotionImpact archive |
Please use the canonical form https://CRAN.R-project.org/package=promotionImpact to link to this page.