Methods and utilities for causal emergence. Used to explore and compute various information theory metrics for networks, such as effective information, effectiveness and causal emergence.
Version: | 0.1.0 |
Depends: | R (≥ 3.2.0) |
Imports: | assertthat, igraph, magrittr, shiny, entropy |
Suggests: | testthat, RColorBrewer, knitr, rmarkdown, bench |
Published: | 2020-04-23 |
Author: | Travis Byrum [aut, cre], Anshuman Swain [aut], Brennan Klein [aut], William Fagan [aut] |
Maintainer: | Travis Byrum <tbyrum at terpmail.umd.edu> |
BugReports: | https://github.com/travisbyrum/einet/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/travisbyrum/einet |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | einet results |
Reference manual: | einet.pdf |
Vignettes: |
Introduction |
Package source: | einet_0.1.0.tar.gz |
Windows binaries: | r-devel: einet_0.1.0.zip, r-release: einet_0.1.0.zip, r-oldrel: einet_0.1.0.zip |
macOS binaries: | r-release: einet_0.1.0.tgz, r-oldrel: einet_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=einet to link to this page.