CRAN Package Check Results for Maintainer ‘Torsten Hothorn <Torsten.Hothorn at R-project.org>’

Last updated on 2020-08-07 01:50:35 CEST.

Package ERROR NOTE OK
ATR 12
basefun 12
coin 12
cotram 12
exactRankTests 12
HSAUR 12
HSAUR2 12
HSAUR3 2 10
inum 12
ipred 1 11
libcoin 5 7
maxstat 12
mlt 12
mlt.docreg 12
modeltools 12
multcomp 12
MVA 12
mvtnorm 12
party 1 11
partykit 2 10
tbm 12
TH.data 7 5
tram 12
trtf 12
variables 12

Package ATR

Current CRAN status: OK: 12

Package basefun

Current CRAN status: OK: 12

Package coin

Current CRAN status: OK: 12

Package cotram

Current CRAN status: OK: 12

Package exactRankTests

Current CRAN status: OK: 12

Package HSAUR

Current CRAN status: OK: 12

Package HSAUR2

Current CRAN status: OK: 12

Package HSAUR3

Current CRAN status: NOTE: 2, OK: 10

Version: 1.0-9
Check: installed package size
Result: NOTE
     installed size is 5.0Mb
     sub-directories of 1Mb or more:
     doc 3.7Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-patched-solaris-x86

Package inum

Current CRAN status: OK: 12

Package ipred

Current CRAN status: NOTE: 1, OK: 11

Version: 0.9-9
Check: Rd cross-references
Result: NOTE
    Undeclared packages ‘randomForest’, ‘party’ in Rd xrefs
Flavor: r-devel-linux-x86_64-fedora-clang

Package libcoin

Current CRAN status: ERROR: 5, OK: 7

Additional issues

clang-ASAN gcc-ASAN

Version: 1.0-5
Check: whether package can be installed
Result: WARN
    Found the following significant warnings:
     libcoin.c:7655:22: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; remove & [-Wint-conversion]
     libcoin.c:7655:27: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; remove & [-Wint-conversion]
     libcoin.c:7656:42: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; dereference with * [-Wint-conversion]
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
    Errors in running code in vignettes:
    when running code in 'libcoin.Rnw'
     ...
    
    > isequal <- function(a, b) {
    + attributes(a) <- NULL
    + attributes(b) <- NULL
    + if (!isTRUE(all.equal(a, b))) {
    + print(a, digits .... [TRUNCATED]
    
    > library("libcoin")
    
    > set.seed(290875)
    
    > x <- gl(5, 20)
    
    > y <- round(runif(length(x)), 1)
    
    > ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1))
    
    > ls1$LinearStatistic
    [1] 8.8 9.5 10.3 9.8 10.5
    
    > tapply(y, x, sum)
     1 2 3 4 5
     8.8 9.5 10.3 9.8 10.5
    
    > ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
    
    > all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
    + names(ls2))])
    [1] TRUE
    
    > X <- rbind(0, diag(nlevels(x)))
    
    > ix <- unclass(x)
    
    > ylev <- sort(unique(y))
    
    > Y <- rbind(0, matrix(ylev, ncol = 1))
    
    > iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
    
    > ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
    + iy = factor(iy))
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
    + names(ls4))])
    [1] TRUE
    
    > ls3$Table
    , , 1
    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
    [1,] 0 0 0 0 0 0 0 0 0 0 0 0
    [2,] 0 0 4 4 1 2 3 0 1 2 3 0
    [3,] 0 2 2 1 2 2 5 0 1 1 3 1
    [4,] 0 1 1 4 0 1 5 2 0 2 3 1
    [5,] 0 0 2 2 4 2 2 1 3 2 1 1
    [6,] 0 1 3 1 1 1 2 2 2 6 1 0
    
    
    > xtabs(~ix + iy)
     iy
    ix 1 2 3 4 5 6 7 8 9 10 11
     1 0 4 4 1 2 3 0 1 2 3 0
     2 2 2 1 2 2 5 0 1 1 3 1
     3 1 1 4 0 1 5 2 0 2 3 1
     4 0 2 2 4 2 2 1 3 2 1 1
     5 1 3 1 1 1 2 2 2 6 1 0
    
    > ls1$Covariance
     [1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
     [7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [13] 1.3572364 -0.3393091 1.3572364
    
    > vcov(ls1)
     [,1] [,2] [,3] [,4] [,5]
    [1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
    [2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
    [3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
    [5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
    
    > doTest(ls1, teststat = "maximum", pvalue = FALSE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] NA
    
    
    > doTest(ls1, teststat = "maximum")
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.8852087
    
    
    > doTest(ls1, teststat = "maximum", log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.108822
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.1150168
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] -2.164164
    
    
    > doTest(ls1, teststat = "quadratic")
    $TestStatistic
    [1] 1.077484
    
    $p.value
    [1] 0.897828
    
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > t1 <- ctabs(ix = ix, iy = iy)
    
    > t2 <- xtabs(~ix + iy)
    
    > max(abs(t1[-1, -1] - t2))
    [1] 0
    
    > N <- 20
    
    > P <- 3
    
    > Lx <- 10
    
    > Ly <- 5
    
    > Q <- 4
    
    > B <- 2
    
    > iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
    
    > ix <- sample(1:Lx, size = N, replace = TRUE)
    
    > levels(ix) <- 1:Lx
    
    > ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
    
    > x <- iX2d[ix + 1, ]
    
    > Xfactor <- diag(Lx)[ix, ]
    
    > iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
    
    > iy <- sample(1:Ly, size = N, replace = TRUE)
    
    > levels(iy) <- 1:Ly
    
    > iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
    
    > y <- iY2d[iy + 1, ]
    
    > weights <- sample(0:5, size = N, replace = TRUE)
    
    > block <- sample(gl(B, ceiling(N/B))[1:N])
    
    > subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
    
    > subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
    
    > r1 <- rep(1:ncol(x), ncol(y))
    
    > r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
    
    > r2 <- rep(1:ncol(y), each = ncol(x))
    
    > r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
    
    > LECV <- function(X, Y, weights = integer(0), subset = integer(0),
    + block = integer(0)) {
    + if (length(weights) == 0)
    + weights <- .... [TRUNCATED]
    
    > cmpr <- function(ret1, ret2) {
    + if (inherits(ret1, "LinStatExpCov")) {
    + if (!ret1$varonly)
    + ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
    
    > LECVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset)
    
    > LEVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset, varonly = TRUE)
    
    > testit <- function(...) {
    + a <- LinStatExpCov(x, y, ...)
    + b <- LECV(x, y, ...)
    + d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > testit <- function(...) {
    + a <- LinStatExpCov(X = ix, y, ...)
    + b <- LECV(Xfactor, y, ...)
    + d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
    + weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
    
     *** caught segfault ***
    address 0x6d94000, cause 'memory not mapped'
    
     *** caught bus error ***
    address (nil), cause 'unknown'
    Bus error
    
    ... incomplete output. Crash?
    
     'libcoin.Rnw' using 'UTF-8'... failed to complete the test
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building 'libcoin.Rnw' using Sweave
    
     *** caught segfault ***
    address 0x4fd5000, cause 'memory not mapped'
    Segmentation fault
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0-5
Check: whether package can be installed
Result: WARN
    Found the following significant warnings:
     libcoin.c:7655:22: warning: passing argument 1 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
     libcoin.c:7655:27: warning: passing argument 2 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
     libcoin.c:7656:53: warning: passing argument 5 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
    Errors in running code in vignettes:
    when running code in ‘libcoin.Rnw’
     ...
    
    > isequal <- function(a, b) {
    + attributes(a) <- NULL
    + attributes(b) <- NULL
    + if (!isTRUE(all.equal(a, b))) {
    + print(a, digits .... [TRUNCATED]
    
    > library("libcoin")
    
    > set.seed(290875)
    
    > x <- gl(5, 20)
    
    > y <- round(runif(length(x)), 1)
    
    > ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1))
    
    > ls1$LinearStatistic
    [1] 8.8 9.5 10.3 9.8 10.5
    
    > tapply(y, x, sum)
     1 2 3 4 5
     8.8 9.5 10.3 9.8 10.5
    
    > ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
    
    > all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
    + names(ls2))])
    [1] TRUE
    
    > X <- rbind(0, diag(nlevels(x)))
    
    > ix <- unclass(x)
    
    > ylev <- sort(unique(y))
    
    > Y <- rbind(0, matrix(ylev, ncol = 1))
    
    > iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
    
    > ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
    + iy = factor(iy))
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
    + names(ls4))])
    [1] TRUE
    
    > ls3$Table
    , , 1
    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
    [1,] 0 0 0 0 0 0 0 0 0 0 0 0
    [2,] 0 0 4 4 1 2 3 0 1 2 3 0
    [3,] 0 2 2 1 2 2 5 0 1 1 3 1
    [4,] 0 1 1 4 0 1 5 2 0 2 3 1
    [5,] 0 0 2 2 4 2 2 1 3 2 1 1
    [6,] 0 1 3 1 1 1 2 2 2 6 1 0
    
    
    > xtabs(~ix + iy)
     iy
    ix 1 2 3 4 5 6 7 8 9 10 11
     1 0 4 4 1 2 3 0 1 2 3 0
     2 2 2 1 2 2 5 0 1 1 3 1
     3 1 1 4 0 1 5 2 0 2 3 1
     4 0 2 2 4 2 2 1 3 2 1 1
     5 1 3 1 1 1 2 2 2 6 1 0
    
    > ls1$Covariance
     [1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
     [7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [13] 1.3572364 -0.3393091 1.3572364
    
    > vcov(ls1)
     [,1] [,2] [,3] [,4] [,5]
    [1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
    [2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
    [3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
    [5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
    
    > doTest(ls1, teststat = "maximum", pvalue = FALSE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] NA
    
    
    > doTest(ls1, teststat = "maximum")
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.8852087
    
    
    > doTest(ls1, teststat = "maximum", log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.108822
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.1150168
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] -2.164164
    
    
    > doTest(ls1, teststat = "quadratic")
    $TestStatistic
    [1] 1.077484
    
    $p.value
    [1] 0.897828
    
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > t1 <- ctabs(ix = ix, iy = iy)
    
    > t2 <- xtabs(~ix + iy)
    
    > max(abs(t1[-1, -1] - t2))
    [1] 0
    
    > N <- 20
    
    > P <- 3
    
    > Lx <- 10
    
    > Ly <- 5
    
    > Q <- 4
    
    > B <- 2
    
    > iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
    
    > ix <- sample(1:Lx, size = N, replace = TRUE)
    
    > levels(ix) <- 1:Lx
    
    > ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
    
    > x <- iX2d[ix + 1, ]
    
    > Xfactor <- diag(Lx)[ix, ]
    
    > iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
    
    > iy <- sample(1:Ly, size = N, replace = TRUE)
    
    > levels(iy) <- 1:Ly
    
    > iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
    
    > y <- iY2d[iy + 1, ]
    
    > weights <- sample(0:5, size = N, replace = TRUE)
    
    > block <- sample(gl(B, ceiling(N/B))[1:N])
    
    > subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
    
    > subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
    
    > r1 <- rep(1:ncol(x), ncol(y))
    
    > r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
    
    > r2 <- rep(1:ncol(y), each = ncol(x))
    
    > r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
    
    > LECV <- function(X, Y, weights = integer(0), subset = integer(0),
    + block = integer(0)) {
    + if (length(weights) == 0)
    + weights <- .... [TRUNCATED]
    
    > cmpr <- function(ret1, ret2) {
    + if (inherits(ret1, "LinStatExpCov")) {
    + if (!ret1$varonly)
    + ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
    
    > LECVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset)
    
    > LEVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset, varonly = TRUE)
    
    > testit <- function(...) {
    + a <- LinStatExpCov(x, y, ...)
    + b <- LECV(x, y, ...)
    + d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > testit <- function(...) {
    + a <- LinStatExpCov(X = ix, y, ...)
    + b <- LECV(Xfactor, y, ...)
    + d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
    + weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
    
     *** caught segfault ***
    address 0x55d712d3b000, cause 'memory not mapped'
    Segmentation fault
    
    ... incomplete output. Crash?
    
     ‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building ‘libcoin.Rnw’ using Sweave
    
     *** caught segfault ***
    address 0x55f579315ebc, cause 'memory not mapped'
    
    Traceback:
     1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
     2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
     3: eval(expr, .GlobalEnv)
     4: eval(expr, .GlobalEnv)
     5: withVisible(eval(expr, .GlobalEnv))
     6: doTryCatch(return(expr), name, parentenv, handler)
     7: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     8: tryCatchList(expr, classes, parentenv, handlers)
     9: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
    10: try(withVisible(eval(expr, .GlobalEnv)), silent = TRUE)
    11: evalFunc(ce, options)
    12: tryCatchList(expr, classes, parentenv, handlers)
    13: tryCatch(evalFunc(ce, options), finally = { cat("\n") sink()})
    14: driver$runcode(drobj, chunk, chunkopts)
    15: utils::Sweave(...)
    16: engine$weave(file, quiet = quiet, encoding = enc)
    17: doTryCatch(return(expr), name, parentenv, handler)
    18: tryCatchOne(expr, names, parentenv, handlers[[1L]])
    19: tryCatchList(expr, classes, parentenv, handlers)
    20: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))})
    21: tools:::buildVignettes(dir = "/home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/libcoin.Rcheck/vign_test/libcoin", ser_elibs = "/home/hornik/tmp/scratch/RtmpaI828g/file38d47bdd2485.rds")
    An irrecoverable exception occurred. R is aborting now ...
    Segmentation fault
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
    Errors in running code in vignettes:
    when running code in ‘libcoin.Rnw’
    
    > isequal <- function(a, b) {
    + attributes(a) <- NULL
    + attributes(b) <- NULL
    + if (!isTRUE(all.equal(a, b))) {
    + print(a, digits .... [TRUNCATED]
    
    > library("libcoin")
    
    > set.seed(290875)
    
    > x <- gl(5, 20)
    
    > y <- round(runif(length(x)), 1)
    
    > ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1))
    
    > ls1$LinearStatistic
    [1] 8.8 9.5 10.3 9.8 10.5
    
    > tapply(y, x, sum)
     1 2 3 4 5
     8.8 9.5 10.3 9.8 10.5
    
    > ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
    
    > all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
    + names(ls2))])
    [1] TRUE
    
    > X <- rbind(0, diag(nlevels(x)))
    
    > ix <- unclass(x)
    
    > ylev <- sort(unique(y))
    
    > Y <- rbind(0, matrix(ylev, ncol = 1))
    
    > iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
    
    > ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
    + iy = factor(iy))
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
    + names(ls4))])
    [1] TRUE
    
    > ls3$Table
    , , 1
    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
    [1,] 0 0 0 0 0 0 0 0 0 0 0 0
    [2,] 0 0 4 4 1 2 3 0 1 2 3 0
    [3,] 0 2 2 1 2 2 5 0 1 1 3 1
    [4,] 0 1 1 4 0 1 5 2 0 2 3 1
    [5,] 0 0 2 2 4 2 2 1 3 2 1 1
    [6,] 0 1 3 1 1 1 2 2 2 6 1 0
    
    
    > xtabs(~ix + iy)
     iy
    ix 1 2 3 4 5 6 7 8 9 10 11
     1 0 4 4 1 2 3 0 1 2 3 0
     2 2 2 1 2 2 5 0 1 1 3 1
     3 1 1 4 0 1 5 2 0 2 3 1
     4 0 2 2 4 2 2 1 3 2 1 1
     5 1 3 1 1 1 2 2 2 6 1 0
    
    > ls1$Covariance
     [1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
     [7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [13] 1.3572364 -0.3393091 1.3572364
    
    > vcov(ls1)
     [,1] [,2] [,3] [,4] [,5]
    [1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
    [2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
    [3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
    [5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
    
    > doTest(ls1, teststat = "maximum", pvalue = FALSE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] NA
    
    
    > doTest(ls1, teststat = "maximum")
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.8852087
    
    
    > doTest(ls1, teststat = "maximum", log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.108822
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.1150168
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] -2.164164
    
    
    > doTest(ls1, teststat = "quadratic")
    $TestStatistic
    [1] 1.077484
    
    $p.value
    [1] 0.897828
    
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > t1 <- ctabs(ix = ix, iy = iy)
    
    > t2 <- xtabs(~ix + iy)
    
    > max(abs(t1[-1, -1] - t2))
    [1] 0
    
    > N <- 20
    
    > P <- 3
    
    > Lx <- 10
    
    > Ly <- 5
    
    > Q <- 4
    
    > B <- 2
    
    > iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
    
    > ix <- sample(1:Lx, size = N, replace = TRUE)
    
    > levels(ix) <- 1:Lx
    
    > ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
    
    > x <- iX2d[ix + 1, ]
    
    > Xfactor <- diag(Lx)[ix, ]
    
    > iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
    
    > iy <- sample(1:Ly, size = N, replace = TRUE)
    
    > levels(iy) <- 1:Ly
    
    > iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
    
    > y <- iY2d[iy + 1, ]
    
    > weights <- sample(0:5, size = N, replace = TRUE)
    
    > block <- sample(gl(B, ceiling(N/B))[1:N])
    
    > subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
    
    > subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
    
    > r1 <- rep(1:ncol(x), ncol(y))
    
    > r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
    
    > r2 <- rep(1:ncol(y), each = ncol(x))
    
    > r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
    
    > LECV <- function(X, Y, weights = integer(0), subset = integer(0),
    + block = integer(0)) {
    + if (length(weights) == 0)
    + weights <- .... [TRUNCATED]
    
    > cmpr <- function(ret1, ret2) {
    + if (inherits(ret1, "LinStatExpCov")) {
    + if (!ret1$varonly)
    + ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
    
    > LECVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset)
    
    > LEVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset, varonly = TRUE)
    
    > testit <- function(...) {
    + a <- LinStatExpCov(x, y, ...)
    + b <- LECV(x, y, ...)
    + d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > testit <- function(...) {
    + a <- LinStatExpCov(X = ix, y, ...)
    + b <- LECV(Xfactor, y, ...)
    + d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
    + weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
    
     *** caught segfault ***
    address 0xfffffffe9864ad0c, cause 'memory not mapped'
    
    Traceback:
     1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
     2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
     3: eval(ei, envir)
     4: eval(ei, envir)
     5: withVisible(eval(ei, envir))
     6: source(output, echo = TRUE)
     7: doTryCatch(return(expr), name, parentenv, handler)
     8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     9: tryCatchList(expr, classes, parentenv, handlers)
    10: tryCatch({ source(output, echo = TRUE)}, error = function(e) { cat("\n When sourcing ", sQuote(output), ":\n", sep = "") stop(conditionMessage(e), call. = FALSE, domain = NA)})
    11: tools:::.run_one_vignette("libcoin.Rnw", "/data/gannet/ripley/R/packages/tests-clang/libcoin/vignettes", encoding = "UTF-8", pkgdir = "/data/gannet/ripley/R/packages/tests-clang/libcoin")
    An irrecoverable exception occurred. R is aborting now ...
    
    ... incomplete output. Crash?
    
     ‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘libcoin.Rnw’ using Sweave
    
     *** caught segfault ***
    address 0x6032000, cause 'memory not mapped'
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
    Errors in running code in vignettes:
    when running code in ‘libcoin.Rnw’
    
    > isequal <- function(a, b) {
    + attributes(a) <- NULL
    + attributes(b) <- NULL
    + if (!isTRUE(all.equal(a, b))) {
    + print(a, digits .... [TRUNCATED]
    
    > library("libcoin")
    
    > set.seed(290875)
    
    > x <- gl(5, 20)
    
    > y <- round(runif(length(x)), 1)
    
    > ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1))
    
    > ls1$LinearStatistic
    [1] 8.8 9.5 10.3 9.8 10.5
    
    > tapply(y, x, sum)
     1 2 3 4 5
     8.8 9.5 10.3 9.8 10.5
    
    > ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
    
    > all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
    + names(ls2))])
    [1] TRUE
    
    > X <- rbind(0, diag(nlevels(x)))
    
    > ix <- unclass(x)
    
    > ylev <- sort(unique(y))
    
    > Y <- rbind(0, matrix(ylev, ncol = 1))
    
    > iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
    
    > ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
    + iy = factor(iy))
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
    + names(ls4))])
    [1] TRUE
    
    > ls3$Table
    , , 1
    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
    [1,] 0 0 0 0 0 0 0 0 0 0 0 0
    [2,] 0 0 4 4 1 2 3 0 1 2 3 0
    [3,] 0 2 2 1 2 2 5 0 1 1 3 1
    [4,] 0 1 1 4 0 1 5 2 0 2 3 1
    [5,] 0 0 2 2 4 2 2 1 3 2 1 1
    [6,] 0 1 3 1 1 1 2 2 2 6 1 0
    
    
    > xtabs(~ix + iy)
     iy
    ix 1 2 3 4 5 6 7 8 9 10 11
     1 0 4 4 1 2 3 0 1 2 3 0
     2 2 2 1 2 2 5 0 1 1 3 1
     3 1 1 4 0 1 5 2 0 2 3 1
     4 0 2 2 4 2 2 1 3 2 1 1
     5 1 3 1 1 1 2 2 2 6 1 0
    
    > ls1$Covariance
     [1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
     [7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [13] 1.3572364 -0.3393091 1.3572364
    
    > vcov(ls1)
     [,1] [,2] [,3] [,4] [,5]
    [1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
    [2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
    [3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
    [5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
    
    > doTest(ls1, teststat = "maximum", pvalue = FALSE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] NA
    
    
    > doTest(ls1, teststat = "maximum")
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.8852087
    
    
    > doTest(ls1, teststat = "maximum", log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.108822
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.1150168
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] -2.164164
    
    
    > doTest(ls1, teststat = "quadratic")
    $TestStatistic
    [1] 1.077484
    
    $p.value
    [1] 0.897828
    
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > t1 <- ctabs(ix = ix, iy = iy)
    
    > t2 <- xtabs(~ix + iy)
    
    > max(abs(t1[-1, -1] - t2))
    [1] 0
    
    > N <- 20
    
    > P <- 3
    
    > Lx <- 10
    
    > Ly <- 5
    
    > Q <- 4
    
    > B <- 2
    
    > iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
    
    > ix <- sample(1:Lx, size = N, replace = TRUE)
    
    > levels(ix) <- 1:Lx
    
    > ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
    
    > x <- iX2d[ix + 1, ]
    
    > Xfactor <- diag(Lx)[ix, ]
    
    > iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
    
    > iy <- sample(1:Ly, size = N, replace = TRUE)
    
    > levels(iy) <- 1:Ly
    
    > iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
    
    > y <- iY2d[iy + 1, ]
    
    > weights <- sample(0:5, size = N, replace = TRUE)
    
    > block <- sample(gl(B, ceiling(N/B))[1:N])
    
    > subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
    
    > subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
    
    > r1 <- rep(1:ncol(x), ncol(y))
    
    > r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
    
    > r2 <- rep(1:ncol(y), each = ncol(x))
    
    > r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
    
    > LECV <- function(X, Y, weights = integer(0), subset = integer(0),
    + block = integer(0)) {
    + if (length(weights) == 0)
    + weights <- .... [TRUNCATED]
    
    > cmpr <- function(ret1, ret2) {
    + if (inherits(ret1, "LinStatExpCov")) {
    + if (!ret1$varonly)
    + ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
    
    > LECVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset)
    
    > LEVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset, varonly = TRUE)
    
    > testit <- function(...) {
    + a <- LinStatExpCov(x, y, ...)
    + b <- LECV(x, y, ...)
    + d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > testit <- function(...) {
    + a <- LinStatExpCov(X = ix, y, ...)
    + b <- LECV(Xfactor, y, ...)
    + d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
    + weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
    
     *** caught segfault ***
    address 0x2ec1702c, cause 'memory not mapped'
    
    Traceback:
     1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
     2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
     3: eval(ei, envir)
     4: eval(ei, envir)
     5: withVisible(eval(ei, envir))
     6: source(output, echo = TRUE)
     7: doTryCatch(return(expr), name, parentenv, handler)
     8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     9: tryCatchList(expr, classes, parentenv, handlers)
    10: tryCatch({ source(output, echo = TRUE)}, error = function(e) { cat("\n When sourcing ", sQuote(output), ":\n", sep = "") stop(conditionMessage(e), call. = FALSE, domain = NA)})
    11: tools:::.run_one_vignette("libcoin.Rnw", "/data/gannet/ripley/R/packages/tests-devel/libcoin/vignettes", encoding = "UTF-8", pkgdir = "/data/gannet/ripley/R/packages/tests-devel/libcoin")
    An irrecoverable exception occurred. R is aborting now ...
    
    ... incomplete output. Crash?
    
     ‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘libcoin.Rnw’ using Sweave
    
     *** caught segfault ***
    address 0x1f8edfa9c, cause 'memory not mapped'
    
    Traceback:
     1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
     2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
     3: eval(expr, .GlobalEnv)
     4: eval(expr, .GlobalEnv)
     5: withVisible(eval(expr, .GlobalEnv))
     6: doTryCatch(return(expr), name, parentenv, handler)
     7: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     8: tryCatchList(expr, classes, parentenv, handlers)
     9: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
    10: try(withVisible(eval(expr, .GlobalEnv)), silent = TRUE)
    11: evalFunc(ce, options)
    12: tryCatchList(expr, classes, parentenv, handlers)
    13: tryCatch(evalFunc(ce, options), finally = { cat("\n") sink()})
    14: driver$runcode(drobj, chunk, chunkopts)
    15: utils::Sweave(...)
    16: engine$weave(file, quiet = quiet, encoding = enc)
    17: doTryCatch(return(expr), name, parentenv, handler)
    18: tryCatchOne(expr, names, parentenv, handlers[[1L]])
    19: tryCatchList(expr, classes, parentenv, handlers)
    20: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))})
    21: tools:::buildVignettes(dir = "/data/gannet/ripley/R/packages/tests-devel/libcoin.Rcheck/vign_test/libcoin", ser_elibs = "/tmp/RtmpR9WHAM/file36a9181fe71f08.rds")
    An irrecoverable exception occurred. R is aborting now ...
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
    Errors in running code in vignettes:
    when running code in 'libcoin.Rnw'
    
    > isequal <- function(a, b) {
    + attributes(a) <- NULL
    + attributes(b) <- NULL
    + if (!isTRUE(all.equal(a, b))) {
    + print(a, digits .... [TRUNCATED]
    
    > library("libcoin")
    
    > set.seed(290875)
    
    > x <- gl(5, 20)
    
    > y <- round(runif(length(x)), 1)
    
    > ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1))
    
    > ls1$LinearStatistic
    [1] 8.8 9.5 10.3 9.8 10.5
    
    > tapply(y, x, sum)
     1 2 3 4 5
     8.8 9.5 10.3 9.8 10.5
    
    > ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
    
    > all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
    + names(ls2))])
    [1] TRUE
    
    > X <- rbind(0, diag(nlevels(x)))
    
    > ix <- unclass(x)
    
    > ylev <- sort(unique(y))
    
    > Y <- rbind(0, matrix(ylev, ncol = 1))
    
    > iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
    
    > ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
    + iy = factor(iy))
    
    > all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
    + names(ls3))])
    [1] TRUE
    
    > ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
    
    > all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
    + names(ls4))])
    [1] TRUE
    
    > ls3$Table
    , , 1
    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
    [1,] 0 0 0 0 0 0 0 0 0 0 0 0
    [2,] 0 0 4 4 1 2 3 0 1 2 3 0
    [3,] 0 2 2 1 2 2 5 0 1 1 3 1
    [4,] 0 1 1 4 0 1 5 2 0 2 3 1
    [5,] 0 0 2 2 4 2 2 1 3 2 1 1
    [6,] 0 1 3 1 1 1 2 2 2 6 1 0
    
    
    > xtabs(~ix + iy)
     iy
    ix 1 2 3 4 5 6 7 8 9 10 11
     1 0 4 4 1 2 3 0 1 2 3 0
     2 2 2 1 2 2 5 0 1 1 3 1
     3 1 1 4 0 1 5 2 0 2 3 1
     4 0 2 2 4 2 2 1 3 2 1 1
     5 1 3 1 1 1 2 2 2 6 1 0
    
    > ls1$Covariance
     [1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
     [7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [13] 1.3572364 -0.3393091 1.3572364
    
    > vcov(ls1)
     [,1] [,2] [,3] [,4] [,5]
    [1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
    [2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
    [3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
    [4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
    [5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
    
    > doTest(ls1, teststat = "maximum", pvalue = FALSE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] NA
    
    
    > doTest(ls1, teststat = "maximum")
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.8852087
    
    
    > doTest(ls1, teststat = "maximum", log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.108822
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] 0.1150168
    
    
    > doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
    $TestStatistic
    [1] 0.8411982
    
    $p.value
    [1] -2.164164
    
    
    > doTest(ls1, teststat = "quadratic")
    $TestStatistic
    [1] 1.077484
    
    $p.value
    [1] 0.897828
    
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
    + ncol = 1), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > set.seed(29)
    
    > ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > set.seed(29)
    
    > ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
    + y), ncol = 2), nresample = 10, standardise = TRUE)
    
    > ls1c <- lmult(c(1:5), ls1d)
    
    > stopifnot(isequal(ls1c, ls1s))
    
    > t1 <- ctabs(ix = ix, iy = iy)
    
    > t2 <- xtabs(~ix + iy)
    
    > max(abs(t1[-1, -1] - t2))
    [1] 0
    
    > N <- 20
    
    > P <- 3
    
    > Lx <- 10
    
    > Ly <- 5
    
    > Q <- 4
    
    > B <- 2
    
    > iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
    
    > ix <- sample(1:Lx, size = N, replace = TRUE)
    
    > levels(ix) <- 1:Lx
    
    > ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
    
    > x <- iX2d[ix + 1, ]
    
    > Xfactor <- diag(Lx)[ix, ]
    
    > iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
    
    > iy <- sample(1:Ly, size = N, replace = TRUE)
    
    > levels(iy) <- 1:Ly
    
    > iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
    
    > y <- iY2d[iy + 1, ]
    
    > weights <- sample(0:5, size = N, replace = TRUE)
    
    > block <- sample(gl(B, ceiling(N/B))[1:N])
    
    > subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
    
    > subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
    
    > r1 <- rep(1:ncol(x), ncol(y))
    
    > r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
    
    > r2 <- rep(1:ncol(y), each = ncol(x))
    
    > r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
    
    > LECV <- function(X, Y, weights = integer(0), subset = integer(0),
    + block = integer(0)) {
    + if (length(weights) == 0)
    + weights <- .... [TRUNCATED]
    
    > cmpr <- function(ret1, ret2) {
    + if (inherits(ret1, "LinStatExpCov")) {
    + if (!ret1$varonly)
    + ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
    
    > LECVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset)
    
    > LEVxyws <- LinStatExpCov(x, y, weights = weights,
    + subset = subset, varonly = TRUE)
    
    > testit <- function(...) {
    + a <- LinStatExpCov(x, y, ...)
    + b <- LECV(x, y, ...)
    + d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > testit <- function(...) {
    + a <- LinStatExpCov(X = ix, y, ...)
    + b <- LECV(Xfactor, y, ...)
    + d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
    
    > stopifnot(testit() && testit(weights = weights) &&
    + testit(subset = subset) && testit(weights = weights, subset = subset) &&
    + testit(blo .... [TRUNCATED]
    
    > LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
    + weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
    
    ... incomplete output. Crash?
    
     'libcoin.Rnw' using 'UTF-8'... failed to complete the test
Flavor: r-devel-windows-ix86+x86_64

Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building 'libcoin.Rnw' using Sweave
Flavor: r-devel-windows-ix86+x86_64

Package maxstat

Current CRAN status: OK: 12

Package mlt

Current CRAN status: OK: 12

Package mlt.docreg

Current CRAN status: OK: 12

Package modeltools

Current CRAN status: OK: 12

Package multcomp

Current CRAN status: OK: 12

Package MVA

Current CRAN status: OK: 12

Package mvtnorm

Current CRAN status: OK: 12

Package party

Current CRAN status: NOTE: 1, OK: 11

Version: 1.3-5
Check: Rd cross-references
Result: NOTE
    Undeclared package ‘randomForest’ in Rd xrefs
Flavor: r-devel-linux-x86_64-fedora-clang

Package partykit

Current CRAN status: NOTE: 2, OK: 10

Version: 1.2-9
Check: Rd cross-references
Result: NOTE
    Undeclared package ‘randomForest’ in Rd xrefs
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.2-9
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: ‘RWeka’
Flavor: r-patched-solaris-x86

Version: 1.2-9
Check: running R code from vignettes
Result: NOTE
     ‘constparty.Rnw’... [12s/14s] NOTE
    differences from ‘constparty.Rout.save’
    84,85d83
    < Warning in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
    < there is no package called 'RWeka'
    88c86,87
    < n= 2201
    ---
    > J48 pruned tree
    > ------------------
    90,91c89,102
    < node), split, n, loss, yval, (yprob)
    < * denotes terminal node
    ---
    > Gender = Male
    > | Class = 1st
    > | | Age = Child: Yes (5.0)
    > | | Age = Adult: No (175.0/57.0)
    > | Class = 2nd
    > | | Age = Child: Yes (11.0)
    > | | Age = Adult: No (168.0/14.0)
    > | Class = 3rd: No (510.0/88.0)
    > | Class = Crew: No (862.0/192.0)
    > Gender = Female
    > | Class = 1st: Yes (145.0/4.0)
    > | Class = 2nd: Yes (106.0/13.0)
    > | Class = 3rd: No (196.0/90.0)
    > | Class = Crew: Yes (23.0/3.0)
    93,101c104
    < 1) root 2201 711 No (0.6769650 0.3230350)
    < 2) Gender=Male 1731 367 No (0.7879838 0.2120162)
    < 4) Age=Adult 1667 338 No (0.7972406 0.2027594) *
    < 5) Age=Child 64 29 No (0.5468750 0.4531250)
    < 10) Class=3rd 48 13 No (0.7291667 0.2708333) *
    < 11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) *
    < 3) Gender=Female 470 126 Yes (0.2680851 0.7319149)
    < 6) Class=3rd 196 90 No (0.5408163 0.4591837) *
    < 7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) *
    ---
    > Number of Leaves : 10
    102a106,108
    > Size of the tree : 15
    >
    >
    111,117c117,129
    < | | [3] Age in Adult: No (n = 1667, err = 20.3%)
    < | | [4] Age in Child
    < | | | [5] Class in 3rd: No (n = 48, err = 27.1%)
    < | | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%)
    < | [7] Gender in Female
    < | | [8] Class in 3rd: No (n = 196, err = 45.9%)
    < | | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%)
    ---
    > | | [3] Class in 1st
    > | | | [4] Age in Child: Yes (n = 5, err = 0.0%)
    > | | | [5] Age in Adult: No (n = 175, err = 32.6%)
    > | | [6] Class in 2nd
    > | | | [7] Age in Child: Yes (n = 11, err = 0.0%)
    > | | | [8] Age in Adult: No (n = 168, err = 8.3%)
    > | | [9] Class in 3rd: No (n = 510, err = 17.3%)
    > | | [10] Class in Crew: No (n = 862, err = 22.3%)
    > | [11] Gender in Female
    > | | [12] Class in 1st: Yes (n = 145, err = 2.8%)
    > | | [13] Class in 2nd: Yes (n = 106, err = 12.3%)
    > | | [14] Class in 3rd: No (n = 196, err = 45.9%)
    > | | [15] Class in Crew: Yes (n = 23, err = 13.0%)
    119,120c131,132
    < Number of inner nodes: 4
    < Number of terminal nodes: 5
    ---
    > Number of inner nodes: 5
    > Number of terminal nodes: 10
    274,278c286,290
    < [1] -409.3583 -379.6102 -424.6888 -400.2546 -387.4208 -390.8659
    < [7] -405.2264 -382.5447 -391.3828 -376.3678 -394.3874 -403.8596
    < [13] -385.1590 -393.2547 -386.2088 -409.0627 -412.4585 -401.3972
    < [19] -403.0548 -406.7881 -389.8507 -408.0418 -392.1441 -389.4687
    < [25] -399.4419
    ---
    > [1] -390.2268 -410.8696 -377.7492 -416.7790 -396.5327 -383.9575
    > [7] -389.4972 -405.8401 -379.9248 -384.7071 -381.1303 -394.8712
    > [13] -409.8711 -385.3753 -396.2723 -385.6372 -408.9187 -412.4585
    > [19] -401.3972 -403.0548 -406.7881 -389.8507 -408.0418 -392.1441
    > [25] -389.4687
    308c320
    < Yes Yes No No Yes Yes No Yes No No No No Yes Yes No Yes
    ---
    > Yes Yes No Yes Yes Yes No Yes No No No No Yes Yes No Yes
    336c348
    < 4 2 1
    ---
    > 4 1 2
     ‘ctree.Rnw’ using ‘UTF-8’... [22s/27s] OK
     ‘partykit.Rnw’... OK
Flavor: r-patched-solaris-x86

Package tbm

Current CRAN status: OK: 12

Package TH.data

Current CRAN status: NOTE: 7, OK: 5

Version: 1.0-10
Check: installed package size
Result: NOTE
     installed size is 8.5Mb
     sub-directories of 1Mb or more:
     data 1.2Mb
     rda 7.1Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-windows-ix86+x86_64, r-patched-solaris-x86, r-release-macos-x86_64, r-release-windows-ix86+x86_64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64

Package tram

Current CRAN status: OK: 12

Package trtf

Current CRAN status: OK: 12

Package variables

Current CRAN status: OK: 12