Last updated on 2020-08-07 01:49:50 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0-5 | 7.31 | 48.90 | 56.21 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.0-5 | 5.76 | 37.66 | 43.42 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.0-5 | 81.50 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.0-5 | 69.56 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.0-5 | 21.00 | 81.00 | 102.00 | ERROR | |
r-patched-linux-x86_64 | 1.0-5 | 6.74 | 64.32 | 71.06 | OK | |
r-patched-solaris-x86 | 1.0-5 | 113.10 | OK | |||
r-release-linux-x86_64 | 1.0-5 | 6.03 | 64.22 | 70.25 | OK | |
r-release-macos-x86_64 | 1.0-5 | OK | ||||
r-release-windows-ix86+x86_64 | 1.0-5 | 22.00 | 137.00 | 159.00 | OK | |
r-oldrel-macos-x86_64 | 1.0-5 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.0-5 | 23.00 | 128.00 | 151.00 | OK |
Version: 1.0-5
Check: whether package can be installed
Result: WARN
Found the following significant warnings:
libcoin.c:7655:22: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; remove & [-Wint-conversion]
libcoin.c:7655:27: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; remove & [-Wint-conversion]
libcoin.c:7656:42: warning: incompatible pointer to integer conversion passing 'int *' to parameter of type 'int'; dereference with * [-Wint-conversion]
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
Errors in running code in vignettes:
when running code in 'libcoin.Rnw'
...
> isequal <- function(a, b) {
+ attributes(a) <- NULL
+ attributes(b) <- NULL
+ if (!isTRUE(all.equal(a, b))) {
+ print(a, digits .... [TRUNCATED]
> library("libcoin")
> set.seed(290875)
> x <- gl(5, 20)
> y <- round(runif(length(x)), 1)
> ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1))
> ls1$LinearStatistic
[1] 8.8 9.5 10.3 9.8 10.5
> tapply(y, x, sum)
1 2 3 4 5
8.8 9.5 10.3 9.8 10.5
> ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
> all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
+ names(ls2))])
[1] TRUE
> X <- rbind(0, diag(nlevels(x)))
> ix <- unclass(x)
> ylev <- sort(unique(y))
> Y <- rbind(0, matrix(ylev, ncol = 1))
> iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
> ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
+ iy = factor(iy))
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
> all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
+ names(ls4))])
[1] TRUE
> ls3$Table
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 4 4 1 2 3 0 1 2 3 0
[3,] 0 2 2 1 2 2 5 0 1 1 3 1
[4,] 0 1 1 4 0 1 5 2 0 2 3 1
[5,] 0 0 2 2 4 2 2 1 3 2 1 1
[6,] 0 1 3 1 1 1 2 2 2 6 1 0
> xtabs(~ix + iy)
iy
ix 1 2 3 4 5 6 7 8 9 10 11
1 0 4 4 1 2 3 0 1 2 3 0
2 2 2 1 2 2 5 0 1 1 3 1
3 1 1 4 0 1 5 2 0 2 3 1
4 0 2 2 4 2 2 1 3 2 1 1
5 1 3 1 1 1 2 2 2 6 1 0
> ls1$Covariance
[1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
[7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[13] 1.3572364 -0.3393091 1.3572364
> vcov(ls1)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
[2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
[3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
[5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
> doTest(ls1, teststat = "maximum", pvalue = FALSE)
$TestStatistic
[1] 0.8411982
$p.value
[1] NA
> doTest(ls1, teststat = "maximum")
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.8852087
> doTest(ls1, teststat = "maximum", log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.108822
> doTest(ls1, teststat = "maximum", lower = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.1150168
> doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] -2.164164
> doTest(ls1, teststat = "quadratic")
$TestStatistic
[1] 1.077484
$p.value
[1] 0.897828
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> t1 <- ctabs(ix = ix, iy = iy)
> t2 <- xtabs(~ix + iy)
> max(abs(t1[-1, -1] - t2))
[1] 0
> N <- 20
> P <- 3
> Lx <- 10
> Ly <- 5
> Q <- 4
> B <- 2
> iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
> ix <- sample(1:Lx, size = N, replace = TRUE)
> levels(ix) <- 1:Lx
> ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
> x <- iX2d[ix + 1, ]
> Xfactor <- diag(Lx)[ix, ]
> iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
> iy <- sample(1:Ly, size = N, replace = TRUE)
> levels(iy) <- 1:Ly
> iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
> y <- iY2d[iy + 1, ]
> weights <- sample(0:5, size = N, replace = TRUE)
> block <- sample(gl(B, ceiling(N/B))[1:N])
> subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
> subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
> r1 <- rep(1:ncol(x), ncol(y))
> r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
> r2 <- rep(1:ncol(y), each = ncol(x))
> r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
> LECV <- function(X, Y, weights = integer(0), subset = integer(0),
+ block = integer(0)) {
+ if (length(weights) == 0)
+ weights <- .... [TRUNCATED]
> cmpr <- function(ret1, ret2) {
+ if (inherits(ret1, "LinStatExpCov")) {
+ if (!ret1$varonly)
+ ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
> LECVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset)
> LEVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset, varonly = TRUE)
> testit <- function(...) {
+ a <- LinStatExpCov(x, y, ...)
+ b <- LECV(x, y, ...)
+ d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> testit <- function(...) {
+ a <- LinStatExpCov(X = ix, y, ...)
+ b <- LECV(Xfactor, y, ...)
+ d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
+ weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
*** caught segfault ***
address 0x6d94000, cause 'memory not mapped'
*** caught bus error ***
address (nil), cause 'unknown'
Bus error
... incomplete output. Crash?
'libcoin.Rnw' using 'UTF-8'... failed to complete the test
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building 'libcoin.Rnw' using Sweave
*** caught segfault ***
address 0x4fd5000, cause 'memory not mapped'
Segmentation fault
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0-5
Check: whether package can be installed
Result: WARN
Found the following significant warnings:
libcoin.c:7655:22: warning: passing argument 1 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
libcoin.c:7655:27: warning: passing argument 2 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
libcoin.c:7656:53: warning: passing argument 5 of ‘S_rcont2’ makes integer from pointer without a cast [-Wint-conversion]
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
Errors in running code in vignettes:
when running code in ‘libcoin.Rnw’
...
> isequal <- function(a, b) {
+ attributes(a) <- NULL
+ attributes(b) <- NULL
+ if (!isTRUE(all.equal(a, b))) {
+ print(a, digits .... [TRUNCATED]
> library("libcoin")
> set.seed(290875)
> x <- gl(5, 20)
> y <- round(runif(length(x)), 1)
> ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1))
> ls1$LinearStatistic
[1] 8.8 9.5 10.3 9.8 10.5
> tapply(y, x, sum)
1 2 3 4 5
8.8 9.5 10.3 9.8 10.5
> ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
> all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
+ names(ls2))])
[1] TRUE
> X <- rbind(0, diag(nlevels(x)))
> ix <- unclass(x)
> ylev <- sort(unique(y))
> Y <- rbind(0, matrix(ylev, ncol = 1))
> iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
> ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
+ iy = factor(iy))
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
> all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
+ names(ls4))])
[1] TRUE
> ls3$Table
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 4 4 1 2 3 0 1 2 3 0
[3,] 0 2 2 1 2 2 5 0 1 1 3 1
[4,] 0 1 1 4 0 1 5 2 0 2 3 1
[5,] 0 0 2 2 4 2 2 1 3 2 1 1
[6,] 0 1 3 1 1 1 2 2 2 6 1 0
> xtabs(~ix + iy)
iy
ix 1 2 3 4 5 6 7 8 9 10 11
1 0 4 4 1 2 3 0 1 2 3 0
2 2 2 1 2 2 5 0 1 1 3 1
3 1 1 4 0 1 5 2 0 2 3 1
4 0 2 2 4 2 2 1 3 2 1 1
5 1 3 1 1 1 2 2 2 6 1 0
> ls1$Covariance
[1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
[7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[13] 1.3572364 -0.3393091 1.3572364
> vcov(ls1)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
[2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
[3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
[5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
> doTest(ls1, teststat = "maximum", pvalue = FALSE)
$TestStatistic
[1] 0.8411982
$p.value
[1] NA
> doTest(ls1, teststat = "maximum")
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.8852087
> doTest(ls1, teststat = "maximum", log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.108822
> doTest(ls1, teststat = "maximum", lower = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.1150168
> doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] -2.164164
> doTest(ls1, teststat = "quadratic")
$TestStatistic
[1] 1.077484
$p.value
[1] 0.897828
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> t1 <- ctabs(ix = ix, iy = iy)
> t2 <- xtabs(~ix + iy)
> max(abs(t1[-1, -1] - t2))
[1] 0
> N <- 20
> P <- 3
> Lx <- 10
> Ly <- 5
> Q <- 4
> B <- 2
> iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
> ix <- sample(1:Lx, size = N, replace = TRUE)
> levels(ix) <- 1:Lx
> ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
> x <- iX2d[ix + 1, ]
> Xfactor <- diag(Lx)[ix, ]
> iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
> iy <- sample(1:Ly, size = N, replace = TRUE)
> levels(iy) <- 1:Ly
> iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
> y <- iY2d[iy + 1, ]
> weights <- sample(0:5, size = N, replace = TRUE)
> block <- sample(gl(B, ceiling(N/B))[1:N])
> subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
> subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
> r1 <- rep(1:ncol(x), ncol(y))
> r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
> r2 <- rep(1:ncol(y), each = ncol(x))
> r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
> LECV <- function(X, Y, weights = integer(0), subset = integer(0),
+ block = integer(0)) {
+ if (length(weights) == 0)
+ weights <- .... [TRUNCATED]
> cmpr <- function(ret1, ret2) {
+ if (inherits(ret1, "LinStatExpCov")) {
+ if (!ret1$varonly)
+ ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
> LECVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset)
> LEVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset, varonly = TRUE)
> testit <- function(...) {
+ a <- LinStatExpCov(x, y, ...)
+ b <- LECV(x, y, ...)
+ d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> testit <- function(...) {
+ a <- LinStatExpCov(X = ix, y, ...)
+ b <- LECV(Xfactor, y, ...)
+ d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
+ weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
*** caught segfault ***
address 0x55d712d3b000, cause 'memory not mapped'
Segmentation fault
... incomplete output. Crash?
‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘libcoin.Rnw’ using Sweave
*** caught segfault ***
address 0x55f579315ebc, cause 'memory not mapped'
Traceback:
1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
3: eval(expr, .GlobalEnv)
4: eval(expr, .GlobalEnv)
5: withVisible(eval(expr, .GlobalEnv))
6: doTryCatch(return(expr), name, parentenv, handler)
7: tryCatchOne(expr, names, parentenv, handlers[[1L]])
8: tryCatchList(expr, classes, parentenv, handlers)
9: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
10: try(withVisible(eval(expr, .GlobalEnv)), silent = TRUE)
11: evalFunc(ce, options)
12: tryCatchList(expr, classes, parentenv, handlers)
13: tryCatch(evalFunc(ce, options), finally = { cat("\n") sink()})
14: driver$runcode(drobj, chunk, chunkopts)
15: utils::Sweave(...)
16: engine$weave(file, quiet = quiet, encoding = enc)
17: doTryCatch(return(expr), name, parentenv, handler)
18: tryCatchOne(expr, names, parentenv, handlers[[1L]])
19: tryCatchList(expr, classes, parentenv, handlers)
20: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))})
21: tools:::buildVignettes(dir = "/home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/libcoin.Rcheck/vign_test/libcoin", ser_elibs = "/home/hornik/tmp/scratch/RtmpaI828g/file38d47bdd2485.rds")
An irrecoverable exception occurred. R is aborting now ...
Segmentation fault
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
Errors in running code in vignettes:
when running code in ‘libcoin.Rnw’
> isequal <- function(a, b) {
+ attributes(a) <- NULL
+ attributes(b) <- NULL
+ if (!isTRUE(all.equal(a, b))) {
+ print(a, digits .... [TRUNCATED]
> library("libcoin")
> set.seed(290875)
> x <- gl(5, 20)
> y <- round(runif(length(x)), 1)
> ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1))
> ls1$LinearStatistic
[1] 8.8 9.5 10.3 9.8 10.5
> tapply(y, x, sum)
1 2 3 4 5
8.8 9.5 10.3 9.8 10.5
> ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
> all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
+ names(ls2))])
[1] TRUE
> X <- rbind(0, diag(nlevels(x)))
> ix <- unclass(x)
> ylev <- sort(unique(y))
> Y <- rbind(0, matrix(ylev, ncol = 1))
> iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
> ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
+ iy = factor(iy))
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
> all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
+ names(ls4))])
[1] TRUE
> ls3$Table
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 4 4 1 2 3 0 1 2 3 0
[3,] 0 2 2 1 2 2 5 0 1 1 3 1
[4,] 0 1 1 4 0 1 5 2 0 2 3 1
[5,] 0 0 2 2 4 2 2 1 3 2 1 1
[6,] 0 1 3 1 1 1 2 2 2 6 1 0
> xtabs(~ix + iy)
iy
ix 1 2 3 4 5 6 7 8 9 10 11
1 0 4 4 1 2 3 0 1 2 3 0
2 2 2 1 2 2 5 0 1 1 3 1
3 1 1 4 0 1 5 2 0 2 3 1
4 0 2 2 4 2 2 1 3 2 1 1
5 1 3 1 1 1 2 2 2 6 1 0
> ls1$Covariance
[1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
[7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[13] 1.3572364 -0.3393091 1.3572364
> vcov(ls1)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
[2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
[3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
[5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
> doTest(ls1, teststat = "maximum", pvalue = FALSE)
$TestStatistic
[1] 0.8411982
$p.value
[1] NA
> doTest(ls1, teststat = "maximum")
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.8852087
> doTest(ls1, teststat = "maximum", log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.108822
> doTest(ls1, teststat = "maximum", lower = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.1150168
> doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] -2.164164
> doTest(ls1, teststat = "quadratic")
$TestStatistic
[1] 1.077484
$p.value
[1] 0.897828
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> t1 <- ctabs(ix = ix, iy = iy)
> t2 <- xtabs(~ix + iy)
> max(abs(t1[-1, -1] - t2))
[1] 0
> N <- 20
> P <- 3
> Lx <- 10
> Ly <- 5
> Q <- 4
> B <- 2
> iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
> ix <- sample(1:Lx, size = N, replace = TRUE)
> levels(ix) <- 1:Lx
> ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
> x <- iX2d[ix + 1, ]
> Xfactor <- diag(Lx)[ix, ]
> iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
> iy <- sample(1:Ly, size = N, replace = TRUE)
> levels(iy) <- 1:Ly
> iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
> y <- iY2d[iy + 1, ]
> weights <- sample(0:5, size = N, replace = TRUE)
> block <- sample(gl(B, ceiling(N/B))[1:N])
> subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
> subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
> r1 <- rep(1:ncol(x), ncol(y))
> r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
> r2 <- rep(1:ncol(y), each = ncol(x))
> r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
> LECV <- function(X, Y, weights = integer(0), subset = integer(0),
+ block = integer(0)) {
+ if (length(weights) == 0)
+ weights <- .... [TRUNCATED]
> cmpr <- function(ret1, ret2) {
+ if (inherits(ret1, "LinStatExpCov")) {
+ if (!ret1$varonly)
+ ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
> LECVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset)
> LEVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset, varonly = TRUE)
> testit <- function(...) {
+ a <- LinStatExpCov(x, y, ...)
+ b <- LECV(x, y, ...)
+ d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> testit <- function(...) {
+ a <- LinStatExpCov(X = ix, y, ...)
+ b <- LECV(Xfactor, y, ...)
+ d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
+ weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
*** caught segfault ***
address 0xfffffffe9864ad0c, cause 'memory not mapped'
Traceback:
1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
3: eval(ei, envir)
4: eval(ei, envir)
5: withVisible(eval(ei, envir))
6: source(output, echo = TRUE)
7: doTryCatch(return(expr), name, parentenv, handler)
8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
9: tryCatchList(expr, classes, parentenv, handlers)
10: tryCatch({ source(output, echo = TRUE)}, error = function(e) { cat("\n When sourcing ", sQuote(output), ":\n", sep = "") stop(conditionMessage(e), call. = FALSE, domain = NA)})
11: tools:::.run_one_vignette("libcoin.Rnw", "/data/gannet/ripley/R/packages/tests-clang/libcoin/vignettes", encoding = "UTF-8", pkgdir = "/data/gannet/ripley/R/packages/tests-clang/libcoin")
An irrecoverable exception occurred. R is aborting now ...
... incomplete output. Crash?
‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building ‘libcoin.Rnw’ using Sweave
*** caught segfault ***
address 0x6032000, cause 'memory not mapped'
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
Errors in running code in vignettes:
when running code in ‘libcoin.Rnw’
> isequal <- function(a, b) {
+ attributes(a) <- NULL
+ attributes(b) <- NULL
+ if (!isTRUE(all.equal(a, b))) {
+ print(a, digits .... [TRUNCATED]
> library("libcoin")
> set.seed(290875)
> x <- gl(5, 20)
> y <- round(runif(length(x)), 1)
> ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1))
> ls1$LinearStatistic
[1] 8.8 9.5 10.3 9.8 10.5
> tapply(y, x, sum)
1 2 3 4 5
8.8 9.5 10.3 9.8 10.5
> ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
> all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
+ names(ls2))])
[1] TRUE
> X <- rbind(0, diag(nlevels(x)))
> ix <- unclass(x)
> ylev <- sort(unique(y))
> Y <- rbind(0, matrix(ylev, ncol = 1))
> iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
> ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
+ iy = factor(iy))
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
> all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
+ names(ls4))])
[1] TRUE
> ls3$Table
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 4 4 1 2 3 0 1 2 3 0
[3,] 0 2 2 1 2 2 5 0 1 1 3 1
[4,] 0 1 1 4 0 1 5 2 0 2 3 1
[5,] 0 0 2 2 4 2 2 1 3 2 1 1
[6,] 0 1 3 1 1 1 2 2 2 6 1 0
> xtabs(~ix + iy)
iy
ix 1 2 3 4 5 6 7 8 9 10 11
1 0 4 4 1 2 3 0 1 2 3 0
2 2 2 1 2 2 5 0 1 1 3 1
3 1 1 4 0 1 5 2 0 2 3 1
4 0 2 2 4 2 2 1 3 2 1 1
5 1 3 1 1 1 2 2 2 6 1 0
> ls1$Covariance
[1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
[7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[13] 1.3572364 -0.3393091 1.3572364
> vcov(ls1)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
[2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
[3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
[5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
> doTest(ls1, teststat = "maximum", pvalue = FALSE)
$TestStatistic
[1] 0.8411982
$p.value
[1] NA
> doTest(ls1, teststat = "maximum")
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.8852087
> doTest(ls1, teststat = "maximum", log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.108822
> doTest(ls1, teststat = "maximum", lower = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.1150168
> doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] -2.164164
> doTest(ls1, teststat = "quadratic")
$TestStatistic
[1] 1.077484
$p.value
[1] 0.897828
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> t1 <- ctabs(ix = ix, iy = iy)
> t2 <- xtabs(~ix + iy)
> max(abs(t1[-1, -1] - t2))
[1] 0
> N <- 20
> P <- 3
> Lx <- 10
> Ly <- 5
> Q <- 4
> B <- 2
> iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
> ix <- sample(1:Lx, size = N, replace = TRUE)
> levels(ix) <- 1:Lx
> ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
> x <- iX2d[ix + 1, ]
> Xfactor <- diag(Lx)[ix, ]
> iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
> iy <- sample(1:Ly, size = N, replace = TRUE)
> levels(iy) <- 1:Ly
> iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
> y <- iY2d[iy + 1, ]
> weights <- sample(0:5, size = N, replace = TRUE)
> block <- sample(gl(B, ceiling(N/B))[1:N])
> subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
> subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
> r1 <- rep(1:ncol(x), ncol(y))
> r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
> r2 <- rep(1:ncol(y), each = ncol(x))
> r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
> LECV <- function(X, Y, weights = integer(0), subset = integer(0),
+ block = integer(0)) {
+ if (length(weights) == 0)
+ weights <- .... [TRUNCATED]
> cmpr <- function(ret1, ret2) {
+ if (inherits(ret1, "LinStatExpCov")) {
+ if (!ret1$varonly)
+ ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
> LECVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset)
> LEVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset, varonly = TRUE)
> testit <- function(...) {
+ a <- LinStatExpCov(x, y, ...)
+ b <- LECV(x, y, ...)
+ d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> testit <- function(...) {
+ a <- LinStatExpCov(X = ix, y, ...)
+ b <- LECV(Xfactor, y, ...)
+ d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
+ weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
*** caught segfault ***
address 0x2ec1702c, cause 'memory not mapped'
Traceback:
1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
3: eval(ei, envir)
4: eval(ei, envir)
5: withVisible(eval(ei, envir))
6: source(output, echo = TRUE)
7: doTryCatch(return(expr), name, parentenv, handler)
8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
9: tryCatchList(expr, classes, parentenv, handlers)
10: tryCatch({ source(output, echo = TRUE)}, error = function(e) { cat("\n When sourcing ", sQuote(output), ":\n", sep = "") stop(conditionMessage(e), call. = FALSE, domain = NA)})
11: tools:::.run_one_vignette("libcoin.Rnw", "/data/gannet/ripley/R/packages/tests-devel/libcoin/vignettes", encoding = "UTF-8", pkgdir = "/data/gannet/ripley/R/packages/tests-devel/libcoin")
An irrecoverable exception occurred. R is aborting now ...
... incomplete output. Crash?
‘libcoin.Rnw’ using ‘UTF-8’... failed to complete the test
Flavor: r-devel-linux-x86_64-fedora-gcc
Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building ‘libcoin.Rnw’ using Sweave
*** caught segfault ***
address 0x1f8edfa9c, cause 'memory not mapped'
Traceback:
1: .LinStatExpCov2d(X = X, Y = Y, ix = ix, iy = iy, weights = weights, subset = subset, block = block, varonly = varonly, checkNAs = checkNAs, nresample = nresample, standardise = standardise, tol = tol)
2: LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy, weights = weights, subset = subset, nresample = 10)
3: eval(expr, .GlobalEnv)
4: eval(expr, .GlobalEnv)
5: withVisible(eval(expr, .GlobalEnv))
6: doTryCatch(return(expr), name, parentenv, handler)
7: tryCatchOne(expr, names, parentenv, handlers[[1L]])
8: tryCatchList(expr, classes, parentenv, handlers)
9: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
10: try(withVisible(eval(expr, .GlobalEnv)), silent = TRUE)
11: evalFunc(ce, options)
12: tryCatchList(expr, classes, parentenv, handlers)
13: tryCatch(evalFunc(ce, options), finally = { cat("\n") sink()})
14: driver$runcode(drobj, chunk, chunkopts)
15: utils::Sweave(...)
16: engine$weave(file, quiet = quiet, encoding = enc)
17: doTryCatch(return(expr), name, parentenv, handler)
18: tryCatchOne(expr, names, parentenv, handlers[[1L]])
19: tryCatchList(expr, classes, parentenv, handlers)
20: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))})
21: tools:::buildVignettes(dir = "/data/gannet/ripley/R/packages/tests-devel/libcoin.Rcheck/vign_test/libcoin", ser_elibs = "/tmp/RtmpR9WHAM/file36a9181fe71f08.rds")
An irrecoverable exception occurred. R is aborting now ...
Flavor: r-devel-linux-x86_64-fedora-gcc
Version: 1.0-5
Check: running R code from vignettes
Result: ERROR
Errors in running code in vignettes:
when running code in 'libcoin.Rnw'
> isequal <- function(a, b) {
+ attributes(a) <- NULL
+ attributes(b) <- NULL
+ if (!isTRUE(all.equal(a, b))) {
+ print(a, digits .... [TRUNCATED]
> library("libcoin")
> set.seed(290875)
> x <- gl(5, 20)
> y <- round(runif(length(x)), 1)
> ls1 <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1))
> ls1$LinearStatistic
[1] 8.8 9.5 10.3 9.8 10.5
> tapply(y, x, sum)
1 2 3 4 5
8.8 9.5 10.3 9.8 10.5
> ls2 <- LinStatExpCov(X = x, Y = matrix(y, ncol = 1))
> all.equal(ls1[-grep("Xfactor", names(ls1))], ls2[-grep("Xfactor",
+ names(ls2))])
[1] TRUE
> X <- rbind(0, diag(nlevels(x)))
> ix <- unclass(x)
> ylev <- sort(unique(y))
> Y <- rbind(0, matrix(ylev, ncol = 1))
> iy <- .bincode(y, breaks = c(-Inf, ylev, Inf))
> ls3 <- LinStatExpCov(X = X, ix = ix, Y = Y, iy = iy)
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls3 <- LinStatExpCov(X = X, ix = factor(ix), Y = Y,
+ iy = factor(iy))
> all.equal(ls1[-grep("Table", names(ls1))], ls3[-grep("Table",
+ names(ls3))])
[1] TRUE
> ls4 <- LinStatExpCov(ix = ix, Y = Y, iy = iy)
> all.equal(ls3[-grep("Xfactor", names(ls3))], ls4[-grep("Xfactor",
+ names(ls4))])
[1] TRUE
> ls3$Table
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 4 4 1 2 3 0 1 2 3 0
[3,] 0 2 2 1 2 2 5 0 1 1 3 1
[4,] 0 1 1 4 0 1 5 2 0 2 3 1
[5,] 0 0 2 2 4 2 2 1 3 2 1 1
[6,] 0 1 3 1 1 1 2 2 2 6 1 0
> xtabs(~ix + iy)
iy
ix 1 2 3 4 5 6 7 8 9 10 11
1 0 4 4 1 2 3 0 1 2 3 0
2 2 2 1 2 2 5 0 1 1 3 1
3 1 1 4 0 1 5 2 0 2 3 1
4 0 2 2 4 2 2 1 3 2 1 1
5 1 3 1 1 1 2 2 2 6 1 0
> ls1$Covariance
[1] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
[7] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[13] 1.3572364 -0.3393091 1.3572364
> vcov(ls1)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.3572364 -0.3393091 -0.3393091 -0.3393091 -0.3393091
[2,] -0.3393091 1.3572364 -0.3393091 -0.3393091 -0.3393091
[3,] -0.3393091 -0.3393091 1.3572364 -0.3393091 -0.3393091
[4,] -0.3393091 -0.3393091 -0.3393091 1.3572364 -0.3393091
[5,] -0.3393091 -0.3393091 -0.3393091 -0.3393091 1.3572364
> doTest(ls1, teststat = "maximum", pvalue = FALSE)
$TestStatistic
[1] 0.8411982
$p.value
[1] NA
> doTest(ls1, teststat = "maximum")
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.8852087
> doTest(ls1, teststat = "maximum", log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.108822
> doTest(ls1, teststat = "maximum", lower = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] 0.1150168
> doTest(ls1, teststat = "maximum", lower = TRUE, log = TRUE)
$TestStatistic
[1] 0.8411982
$p.value
[1] -2.164164
> doTest(ls1, teststat = "quadratic")
$TestStatistic
[1] 1.077484
$p.value
[1] 0.897828
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(y,
+ ncol = 1), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> set.seed(29)
> ls1d <- LinStatExpCov(X = model.matrix(~x - 1), Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> set.seed(29)
> ls1s <- LinStatExpCov(X = as.double(1:5)[x], Y = matrix(c(y,
+ y), ncol = 2), nresample = 10, standardise = TRUE)
> ls1c <- lmult(c(1:5), ls1d)
> stopifnot(isequal(ls1c, ls1s))
> t1 <- ctabs(ix = ix, iy = iy)
> t2 <- xtabs(~ix + iy)
> max(abs(t1[-1, -1] - t2))
[1] 0
> N <- 20
> P <- 3
> Lx <- 10
> Ly <- 5
> Q <- 4
> B <- 2
> iX2d <- rbind(0, matrix(runif(Lx * P), nrow = Lx))
> ix <- sample(1:Lx, size = N, replace = TRUE)
> levels(ix) <- 1:Lx
> ixf <- factor(ix, levels = 1:Lx, labels = 1:Lx)
> x <- iX2d[ix + 1, ]
> Xfactor <- diag(Lx)[ix, ]
> iY2d <- rbind(0, matrix(runif(Ly * Q), nrow = Ly))
> iy <- sample(1:Ly, size = N, replace = TRUE)
> levels(iy) <- 1:Ly
> iyf <- factor(iy, levels = 1:Ly, labels = 1:Ly)
> y <- iY2d[iy + 1, ]
> weights <- sample(0:5, size = N, replace = TRUE)
> block <- sample(gl(B, ceiling(N/B))[1:N])
> subset <- sort(sample(1:N, floor(N * 1.5), replace = TRUE))
> subsety <- sample(1:N, floor(N * 1.5), replace = TRUE)
> r1 <- rep(1:ncol(x), ncol(y))
> r1Xfactor <- rep(1:ncol(Xfactor), ncol(y))
> r2 <- rep(1:ncol(y), each = ncol(x))
> r2Xfactor <- rep(1:ncol(y), each = ncol(Xfactor))
> LECV <- function(X, Y, weights = integer(0), subset = integer(0),
+ block = integer(0)) {
+ if (length(weights) == 0)
+ weights <- .... [TRUNCATED]
> cmpr <- function(ret1, ret2) {
+ if (inherits(ret1, "LinStatExpCov")) {
+ if (!ret1$varonly)
+ ret1$Covariance <- vcov(ret1 .... [TRUNCATED]
> LECVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset)
> LEVxyws <- LinStatExpCov(x, y, weights = weights,
+ subset = subset, varonly = TRUE)
> testit <- function(...) {
+ a <- LinStatExpCov(x, y, ...)
+ b <- LECV(x, y, ...)
+ d <- LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> testit <- function(...) {
+ a <- LinStatExpCov(X = ix, y, ...)
+ b <- LECV(Xfactor, y, ...)
+ d <- LinStatExpCov(X = integer(0), ix = ix .... [TRUNCATED]
> stopifnot(testit() && testit(weights = weights) &&
+ testit(subset = subset) && testit(weights = weights, subset = subset) &&
+ testit(blo .... [TRUNCATED]
> LinStatExpCov(X = iX2d, ix = ix, Y = iY2d, iy = iy,
+ weights = weights, subset = subset, nresample = 10)$PermutedLinearStatistic
... incomplete output. Crash?
'libcoin.Rnw' using 'UTF-8'... failed to complete the test
Flavor: r-devel-windows-ix86+x86_64
Version: 1.0-5
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building 'libcoin.Rnw' using Sweave
Flavor: r-devel-windows-ix86+x86_64