Maximum likelihood estimation of univariate Gaussian Mixture Autoregressive (GMAR), Student's t Mixture Autoregressive (StMAR), and Gaussian and Student's t Mixture Autoregressive (G-StMAR) models, quantile residual tests, graphical diagnostics, forecast and simulate from GMAR, StMAR and G-StMAR processes. Leena Kalliovirta, Mika Meitz, Pentti Saikkonen (2015) <doi:10.1111/jtsa.12108>, Mika Meitz, Daniel Preve, Pentti Saikkonen (2018) <arXiv:1805.04010>, Savi Virolainen (2020) <arXiv:2003.05221>.
Version: | 3.2.5 |
Depends: | R (≥ 3.4.0) |
Imports: | Brobdingnag (≥ 1.2-4), parallel, pbapply (≥ 1.3-2), stats (≥ 3.3.2) |
Suggests: | gsl (≥ 1.9-10.3), testthat, knitr, rmarkdown |
Published: | 2020-04-04 |
Author: | Savi Virolainen [aut, cre] |
Maintainer: | Savi Virolainen <savi.virolainen at helsinki.fi> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | uGMAR results |
Reference manual: | uGMAR.pdf |
Vignettes: |
Introduction to uGMAR |
Package source: | uGMAR_3.2.5.tar.gz |
Windows binaries: | r-devel: uGMAR_3.2.5.zip, r-release: uGMAR_3.2.5.zip, r-oldrel: uGMAR_3.2.5.zip |
macOS binaries: | r-release: uGMAR_3.2.5.tgz, r-oldrel: uGMAR_3.2.5.tgz |
Old sources: | uGMAR archive |
Please use the canonical form https://CRAN.R-project.org/package=uGMAR to link to this page.