Package 'uGMAR'

April 4, 2020
Title Estimate Univariate Gaussian or Student's t Mixture Autoregressive Model
Version 3.2.5
Description Maximum likelihood estimation of univariate Gaussian Mixture Autoregressive (GMAR), Student's t Mixture Autoregressive (StMAR), and Gaussian and Student's t Mixture Autoregressive (G-StMAR) models,
quantile residual tests, graphical diagnostics, forecast and simulate from GMAR, StMAR and GStMAR processes.
Leena Kalliovirta, Mika Meitz, Pentti Saikkonen (2015) doi:10.1111/jtsa.12108, Mika Meitz, Daniel Preve, Pentti Saikkonen (2018) arXiv:1805.04010, Savi Virolainen (2020) arXiv:2003.05221.
Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports Brobdingnag ($>=1.2-4$), parallel, pbapply ($>=1.3-2$), stats (>= 3.3.2)

Suggests gsl (>=1.9-10.3), testthat, knitr, rmarkdown
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Savi Virolainen [aut, cre]
Maintainer Savi Virolainen savi.virolainen@helsinki.fi
Repository CRAN
Date/Publication 2020-04-04 12:50:02 UTC

R topics documented:

add_data 3
add_dfs 5
all_pos_ints 5
alt_gsmar 6
calc_gradient 7
changeRegime 9
change_parametrization 11
checkAndCorrectData 13
checkConstraintMat 14
checkPM 15
check_data 15
check_gsmar 16
check_model 16
check_params_length 17
condmomentPlot 18
condMoments 20
diagnosticPlot 22
extractRegime 25
fitGSMAR 27
format_valuef 31
GAfit 32
getOmega 36
get_ar_roots 38
get_IC 39
get_minval 39
get_regime_autocovs 40
get_regime_means 41
get_regime_vars 42
get_varying_h 43
GSMAR 44
isStationary 48
isStationary_int 51
iterate_more 53
loglikelihood 54
loglikelihood_int 57
mixingWeights 60
mixingWeights_int 63
nParams 65
parameterChecks 66
pick_alphas 67
pick_dfs 69
pick_pars 70
pick_phi0 71
plot.gsmarpred 73
plot.qrtest 74
predict.gsmar 76
print.gsmarpred 78
print.gsmarsum 79
profile_logliks 80
quantileResidualPlot 81
quantileResiduals 82
quantileResiduals_int 85
randomIndividual 87
randomIndividual_int 91
random_arcoefs 94
random_regime 94
reformConstrainedPars 96
reformParameters 97
reformRestrictedPars 99
regime_distance 100
removeAllConstraints 101
simudata 102
simulateGSMAR 103
sortComponents 105
standardErrors 106
stmarpars_to_gstmar 108
stmar_to_gstmar 110
swap_parametrization 112
T10Y1Y 113
uGMAR 114
uncondMoments 114
uncondMoments_int 115
warn_dfs 117
Index 120
add_data Add data to object of class 'gsmar' defining a GMAR, StMAR, or G-
StMAR model

Description

add_data adds or updates data to object of class 'gsmar' that defines a GMAR, StMAR, or GStMAR model. Also calculates empirical mixing weights, conditional moments, and quantile residuals accordingly.

```
Usage
    add_data(
        data,
        gsmar,
        calc_qresiduals = TRUE,
        calc_cond_moments = TRUE,
        calc_std_errors = FALSE,
        custom_h = NULL
    )
```


Arguments

```
    data a numeric vector or class 'ts' object containing the data. NA values are not
                            supported.
    gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
    calc_qresiduals
        should quantile residuals be calculated? Default is TRUE iff the model contains
        data.
    calc_cond_moments
                            should conditional means and variances be calculated? Default is TRUE iff the
                    model contains data.
    calc_std_errors
                    should approximate standard errors be calculated?
    custom_h A numeric vector with same the length as the parameter vector: i:th element of
        custom_h is the difference used in central difference approximation for partial
        differentials of the log-likelihood function for the i:th parameter. If NULL (de-
        fault), then the difference used for differentiating overly large degrees of free-
        dom parameters is adjusted to avoid numerical problems, and the difference is
        6e-6 for the other parameters.
```


Value

Returns an object of class 'gsmar' defining the GMAR, StMAR, or G-StMAR model with the data added to the model. If the object already contained data, the data will be updated. Does not modify the 'gsmar' object given as argument!

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, iterate_more, get_gradient, get_regime_means, swap_parametrization, stmar_to_gstmar

Examples

```
# Restricted G-StMAR-model without data
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
gstmar42r <- GSMAR(p=4, M=c(1, 1), params=params42gsr,
    model="G-StMAR", restricted=TRUE)
gstmar42r
# Add data to the model
```

```
    gstmar42r <- add_data(data=T10Y1Y, gstmar42r)
```

 gstmar42r
    ```
    add_dfs Add random dfs to a vector
```


Description

add_dfs adds random degrees of freedom parameters to a vector.

Usage

add_dfs(x, how_many)

Arguments

x
a vector to add the dfs to
how_many
how many dfs?

Details

Read the source code for details.

Value

Returns $\mathrm{c}(\mathrm{x}, \mathrm{dfs})$ with how_many dfs-elements.

```
all_pos_ints
Check whether all arguments are stricly positive natural numbers
```


Description

all_pos_ints tells whether all the elements in a vector are strictly positive natural numbers.

Usage

all_pos_ints(x)

Arguments

x

a vector containing the elements to be tested.

Value

Returns TRUE or FALSE accordingly.

alt_gsmar \quad| Construct a GSMAR model based on results from an arbitrary estima- |
| :--- |
| tion round of fitGSMAR |

Description

alt_gsmar constructs a GSMAR model based on results from an arbitrary estimation round of fitGSMAR.

Usage

```
alt_gsmar(
    gsmar,
    which_round = 1,
    which_largest,
    calc_qresiduals = TRUE,
    calc_cond_moments = TRUE,
    calc_std_errors = TRUE,
    custom_h = NULL
)
```


Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
which_round based on which estimation round should the model be constructed? An integer value in $1, \ldots$, ncalls.
which_largest based on estination round with which largest log-likelihood should the model be constructed? An integer value in $1, \ldots$, ncalls. For example, which_largest=2 would take the second largest log-likelihood and construct the model based on the corresponding estimates. If used, then which_round is ignored.

```
calc_qresiduals
```

should quantile residuals be calculated? Default is TRUE iff the model contains data.
calc_cond_moments
should conditional means and variances be calculated? Default is TRUE iff the model contains data.
calc_std_errors
should approximate standard errors be calculated?
custom_h A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 e-6$ for the other parameters.

Details

It's sometimes useful to examine other estimates than the one with the highest log-likelihood value. This function is just a simple wrapper to GSMAR that picks the correct estimates from an object returned by fitGSMAR.

Value

Returns an object of class 'gsmar' defining the specified GMAR, StMAR, or G-StMAR model. If data is supplied, the returned object contains (by default) empirical mixing weights, some conditional and unconditional moments, and quantile residuals. Note that the first p observations are taken as the initial values so the mixing weights, conditional moments, and quantile residuals start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, iterate_more, get_gradient, get_regime_means, swap_parametrization, stmar_to_gstmar

Examples

```
# These are long running examples and use parallel computing
fit43t <- fitGSMAR(T10Y1Y, 4, 3, model="StMAR", ncalls=2, seeds=1:2)
fit43t
fit43t2 <- alt_gsmar(fit43t, which_largest=2)
fit43t2
```

calc_gradient Calculate gradient or Hessian matrix

Description

calc_gradient or calc_hessian calculates the gradient or Hessian matrix of the given function at the given point using central difference numerical approximation. get_gradient (and get_foc) or get_hessian calculates the gradient or Hessian matrix of the log-likelihood function at the parameter values of a class 'gsmar' object. get_soc returns eigenvalues of the Hessian matrix.

Usage

```
    calc_gradient(x, fn, h = 6e-06, varying_h = NULL, ...)
    calc_hessian(x, fn, h = 6e-06, varying_h = NULL, ...)
    get_gradient(gsmar, custom_h = NULL)
    get_foc(gsmar, custom_h = NULL)
    get_hessian(gsmar, custom_h = NULL)
    get_soc(gsmar, custom_h = NULL)
```


Arguments

x
fn a function that takes in the argument x as the first argument.
$h \quad$ the difference used to approximate the derivatives.
varying_h a numeric vector with the same length as x specifying the difference h for each dimension separately. If NULL (default), then the difference given as parameter h will be used for all dimensions.
... other arguments passed to fn.
gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
custom_h same as varying_h but if NULL (default), then the difference h used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 \mathrm{e}-6$ for the other parameters.

Details

In particular, the functions get_foc and get_soc can be used to check whether the found estimates denote a (local) maximum point, a saddle point, or something else.

Value

The gradient functions return numerical approximation of the gradient, and the Hessian functions return numerical approximation of the Hessian. get_soc returns eigenvalues of the Hessian matrix, get_foc is the same as get_gradient but named conveniently.

Warning

No argument checks!

See Also

profile_logliks

Examples

```
# Simple function
    foo <- function(x) x^2 + x
    calc_gradient(x=1, fn=foo)
    calc_gradient(x=-0.5, fn=foo)
    calc_hessian(x=2, fn=foo)
# More complicated function
foo <- function(x, a, b) a*x[1]^2 - b*x[2]^2
calc_gradient(x=c(1, 2), fn=foo, a=0.3, b=0.1)
calc_hessian(x=c(1, 2), fn=foo, a=0.3, b=0.1)
# StMAR model:
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
    -0.3, -0.03, 0.03, 1.54, 0.06, 1.19, -0.3, 0.42, -0.4, 0.01,
    0.57, 0.22, 8.05, 2.02, 1000)
stmar43 <- GSMAR(T10Y1Y, 4, 3, params43, model="StMAR")
get_gradient(stmar43)
get_foc(stmar43)
get_hessian(stmar43)
get_soc(stmar43)
```

changeRegime

Change the specified regime of parameter vector to the given regimeparameter vector

Description

changeRegime changes the specified regime of the parameter vector to correspond the given regimeparameter vector and returns the modified parameter vector. Does not affect mixing weight parameters.

Usage

```
changeRegime(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    regimeParams,
    regime
)
```


Arguments

p

a positive integer specifying the autoregressive order of the model.

M
params
model
restricted
constraints
regimeParams

For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
a numeric vector specifying the parameter values that should be inserted to the specified regime.

For non-restricted models: For GMAR model: $\operatorname{Size}(p+2 x 1)$ vector $\left(\phi_{m, 0}, \phi_{m, 1}, \ldots, \phi_{m, p}, \sigma_{m}^{2}\right)$.
For StMAR model: Size $(p+3 x 1)$ vector $\left(\phi_{m, 0}, \phi_{m, 1}, \ldots, \phi_{m, p}, \sigma_{m}^{2}, \nu_{m}\right)$.
For G-StMAR model: Same as GMAR for GMAR-components and same as StMAR for StMAR-components.
With linear constraints: Parameter vector as described above, but vector ϕ_{m} replaced with vector ψ_{m} that satisfies $\phi_{m}=R_{m} \psi_{m}$.
For restricted models: For GMAR model: Size $(2 x 1)$ vector $\left(\phi_{m, 0}, \sigma_{m}^{2}\right)$.
For StMAR model: Size $(3 x 1)$ vector $\left(\phi_{m, 0}, \sigma_{m}^{2}, \nu_{m}\right)$.
For G-StMAR model: Same as GMAR for GMAR-components and same as StMAR for StMAR-components.
With linear constraints: Parameter vector as described above.
regime a positive integer in the interval $[1, M]$ defining which regime should be changed.

Value

Returns modified parameter vector of the form described in params.

```
change_parametrization
```

Change parametrization of a parameter vector

Description

change_parametrization changes the parametrization of the given parameter vector to change_to.

Usage

change_parametrization(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
change_to = c("intercept", "mean")
)

Arguments

p
a positive integer specifying the autoregressive order of the model.
M
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.

Value

Returns parameter vector described in params but with parametrization changed from intercept to mean (when change_to==mean) or from mean to intercept (when change_to==intercept).

Warning

No argument checks!

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Description

checkAndCorrectData checks that the data is set correctly and throws an error if there is something wrong with the data.

Usage

checkAndCorrectData(data, p)

Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
a positive integer specifying the autoregressive order of the model.

Value

Returns the data as a class 'ts' object.

Description

checkConstraintMat checks for some parts that the constraint matrices are correctly set.

Usage

checkConstraintMat(p, M, restricted = FALSE, constraints = NULL)

Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.

Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Doesn't return anything but throws an informative error if finds out that something is wrong.

```
checkPM Check that p and M are correctly set
```


Description

checkPM checks that the arguments p and M are correctly set.

Usage

checkPM(p, M, model = c("GMAR", "StMAR", "G-StMAR"))

Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

Value

Doesn't return anything but throws an informative error if something is wrong.

```
check_data Check that given object contains data
```


Description

check_data checks that a given object contains data.

Usage

check_data(object)

Arguments

object an object to be tested

Value

Doesn't return anything but throws and error if something is wrong.
check_gsmar Check that given object has class attribute 'gsmar'

Description

check_gsmar checks that the given object has class attribute 'gsmar'.

Usage

check_gsmar (object)

Arguments

object an object to be tested

Value

Doesn't return anything but throws and error if something is wrong.

```
check_model
```

Check that the argument 'model' is correctly specified.

Description

check_model checks that the argument 'model' is correctly specified.

Usage

check_model(model)

Arguments

model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

Value

Doesn't return anything but throws and error if something is wrong.
check_params_length Check that the parameter vector has the correct dimension

Description

check_model checks that the parameter vector has the correct dimension.

Usage

```
check_params_length(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL
)
```


Arguments

p
M
params
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: $\operatorname{Size}(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.

Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Doesn't return anything but throws and error if something is wrong.

$$
\begin{array}{ll}
\text { condmomentPlot } & \begin{array}{l}
\text { Condinional mean or variance plot for GMAR, StMAR, and G-StMAR } \\
\text { models }
\end{array}
\end{array}
$$

Description

condmomentPlot plots the in-sample conditional means/variances of the model along with the time series contained in the model (e.g. the time series the model was fitted to). Also plots the regimiwise conditional means/variances multiplied with mixing weights - summing to the total conditional mean/veriance.

Usage

condmomentPlot(gsmar, which_moment = c("mean", "variance"))

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
which_moment should conditional means or variances be plotted?

Details

The conditional mean plot works best if the data contains positive values only.

Value

condmomentPlot only plots to a graphical device and does not return anything. Numerical values of the conditional means/variances can be extracted from the model with the dollar sign.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

profile_logliks, diagnosticPlot, fitGSMAR, GSMAR, quantileResidualTests, quantileResidualPlot

Examples

```
# GMAR model
fit12 <- fitGSMAR(simudata, p=1, M=2, model="GMAR")
condmomentPlot(fit12, which_moment="mean")
condmomentPlot(fit12, which_moment="variance")
# Restricted StMAR model: plot also the individual statistics with
# their approximate critical bounds using the given data
fit42r <- fitGSMAR(T10Y1Y, p=4, M=2, model="StMAR", restricted=TRUE)
condmomentPlot(fit42r, which_moment="mean")
condmomentPlot(fit42r, which_moment="variance")
# G-StMAR model with one GMAR type and one StMAR type regime
fit42g <- fitGSMAR(T10Y1Y, p=4, M=c(1, 1), model="G-StMAR")
condmomentPlot(fit42g, which_moment="mean")
condmomentPlot(fit42g, which_moment="variance")
```


Description

condMoments calculates the regime specific conditional means and variances and total conditional means and variances of the specified GMAR, StMAR or G-StMAR model.

Usage

condMoments(data,
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted $=$ FALSE,
constraints = NULL,
parametrization = c("intercept", "mean"),
to_return = c("regime_cmeans", "regime_cvars", "total_cmeans", "total_cvars")
)

Arguments

data
p
M
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.

For StMAR model: $\operatorname{Size}(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

parametrization

is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
to_return calculate regimewise conditional means (regime_cmeans), regimewise conditional variances (regime_cvars), total conditional means (total_cmeans), or total conditional variances (total_cvars)?

Value

Note that the first p observations are taken as the initial values so the conditional moments start form the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).
if to_return=="regime_cmeans": a size ((n_obs-p)xM) matrix containing the regime specific conditional means.
if to_return=="regime_cvars": a size ((n_obs-p)xM) matrix containing the regime specific conditional variances.
if to_return=="total_cmeans": a size ((n_obs-p)x1) vector containing the total conditional means.
if to_return=="total_cvars": a size ((n_obs-p)x1) vector containing the total conditional variances.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

Other moment functions: get_regime_autocovs(), get_regime_means(), get_regime_vars(), uncondMoments()

Examples

```
# GMAR model
params12 <- c(0.01, 0.99, 0.02, 0.03, 0.91, 0.32, 0.86)
rcm12 <- condMoments(T10Y1Y, 1, 2, params12, to_return="regime_cmeans")
rcv12 <- condMoments(T10Y1Y, 1, 2, params12, to_return="regime_cvars")
tcm12 <- condMoments(T10Y1Y, 1, 2, params12, to_return="total_cmeans")
tcv12 <- condMoments(T10Y1Y, 1, 2, params12, to_return="total_cvars")
# StMAR model
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
    -0.3, -0.03, 0.03, 1.54, 0.06, 1.19, -0.3, 0.42, -0.4, 0.01,
    0.57, 0.22, 8.05, 2.02, 10000)
rcm43t <- condMoments(T10Y1Y, 4, 3, params43, model="StMAR",
    to_return="regime_cmeans")
rcv43t <- condMoments(T10Y1Y, 4, 3, params43, model="StMAR",
    to_return="regime_cvars")
# G-StMAR model
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
rcv42gsr <- condMoments(T10Y1Y, 4, c(1, 1), params42gsr, model="G-StMAR",
    restricted=TRUE, to_return="regime_cvars")
tcv42gs <- condMoments(T10Y1Y, 4, c(1, 1), params42gsr, model="G-StMAR",
    restricted=TRUE, to_return="total_cvars")
```

diagnosticPlot Quantile residual based diagnostic plots for GMAR, StMAR, and G- StMAR models

Description

diagnosticPlot plots quantile residual time series, normal QQ-plot, autocorrelation function, and squared quantile residual autocorrelation function. There is an option to also plot the individual statistics associated with the quantile residual tests (for autocorrelation and conditional heteroskedasticity) divided by their approximate standard errors with their approximate 95% critical bounds (see Kalliovirta 2012, Section 3).

Usage

diagnosticPlot(gsmar, nlags $=20$, nsimu $=1$, plot_indstats $=$ FALSE)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
nlags a positive integer specifying how many lags should be calculated for the autocorrelation and conditional heteroscedasticity statistics.
nsimu a positive integer specifying to how many simulated values from the process the covariance matrix "Omega" (used to compute the tests) should be based on. Larger number of simulations may result more reliable tests but takes longer to compute. If smaller than data size, then "Omega" will be based on the given data. Ignored if plot_indstats==FALSE.
plot_indstats set TRUE if the individual statistics discussed in Kalliovirta (2012) should be plotted with their approximate 95% critical bounds (this may take some time).

Details

Sometimes the individual statistics are not plotted because it was not (numerically) possible to calculate all the required statistics. This may suggest that the model is misspecified.
The dashed lines plotted with autocorrelation functions (for quantile residuals and their squares) are plus-minus $1.96 * T^{-1 / 2}$ where T is the sample size (minus the p initial values for conditional models).

Value

diagnosticPlot only plots to a graphical device and does not return anything. Use the function quantileResidualTests in order to obtain the individual statistics.

Suggested packages

Install the suggested package "gsl" for faster evaluations in the cases of StMAR and G-StMAR models. For large StMAR and G-StMAR models with large data the calculations to obtain the individual statistics may take a significantly long time without the package "gsl".

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

```
profile_logliks,get_foc, fitGSMAR, condmomentPlot, quantileResidualTests, quantileResidualPlot,
simulateGSMAR
```


Examples

```
# StMAR model
fit42 <- fitGSMAR(data=T10Y1Y, p=4, M=2, model="StMAR")
diagnosticPlot(fit42)
# Restricted StMAR model: plot also the individual statistics with
# their approximate critical bounds using the given data
fit42r <- fitGSMAR(T10Y1Y, 4, 2, model="StMAR", restricted=TRUE)
diagnosticPlot(fit42r, nlags=10, nsimu=1, plot_indstats=TRUE)
# Non-mixture version of StMAR model
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
diagnosticPlot(fit101t)
# G-StMAR model
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
diagnosticPlot(fit42g)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
fit22c <- fitGSMAR(T10Y1Y, 2, 2, constraints=constraints)
diagnosticPlot(fit22c)
# Such StMAR(3,2) that the AR coefficients are restricted to be
# the same for both regimes and that the second AR coefficients are
# constrained to zero.
fit32rc <- fitGSMAR(T10Y1Y, 3, 2, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
diagnosticPlot(fit32rc)
```


Description

extractRegime extracts the specified regime from the GMAR, StMAR, or G-StMAR model parameter vector. Doesn't extract mixing weight parameter α.

Usage

extractRegime(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
regime,
with_dfs = TRUE
)

Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components $M 2$ in the second element. The total number of mixture components is $M=M 1+M 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: $\operatorname{Size}(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,

With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
regime a positive integer in the interval [1, M] defining which regime should be extracted.
with_dfs Should the degrees of freedom parameter (if any) be included?

Value

Returns a numeric vector corresponding to the regime with...
For non-restricted models: For GMAR model: Size $(p+2 x 1)$ vector $\left(\phi_{m, 0}, \phi_{m, 1}, \ldots, \phi_{m, p}, \sigma_{m}^{2}\right)$.
For StMAR model: Size $(p+3 x 1)$ vector $\left(\phi_{m, 0}, \phi_{m, 1}, \ldots, \phi_{m, p}, \sigma_{m}^{2}, \nu_{m}\right)$.
For G-StMAR model: Same as GMAR for GMAR-components and same as StMAR for StMAR-components.
With linear constraints: Parameter vector as described above, but vector ϕ_{m} replaced with vector ψ_{m} that satisfies $\phi_{m}=R_{m} \psi_{m}$.
For restricted models: For GMAR model: Size ($2 x 1$) vector $\left(\phi_{m, 0}, \sigma_{m}^{2}\right)$.
For StMAR model: Size $(3 x 1)$ vector $\left(\phi_{m, 0}, \sigma_{m}^{2}, \nu_{m}\right)$.
For G-StMAR model: Same as GMAR for GMAR-components and same as StMAR for StMAR-components.
With linear constraints: Parameter vector as described above.

Description

fitGSMAR estimates GMAR, StMAR, or G-StMAR model in two phases. In the first phase, a genetic algorithm is employed to find starting values for a gradient based method. In the second phase, the gradient based variable metric algorithm is utilized to accurately converge to a local maximum or a saddle point near each starting value. Parallel computing is used to conduct multiple rounds of estimations in parallel.

Usage

```
    fitGSMAR(
        data,
        p,
        M,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL,
        conditional = TRUE,
        parametrization = c("intercept", "mean"),
        ncalls = round(10 + 9 * log(sum(M))),
        ncores = min(2, ncalls, parallel::detectCores()),
        maxit = 300,
        seeds = NULL,
        printRes = TRUE,
        runTests = FALSE,
        ..
    )
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components $M 2$ in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
model
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

| restricted | a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes. |
| :---: | :---: |
| constraints | specifies linear constraints applied to the autoregressive parameters. |
| | For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$. |
| | For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$. |
| | Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired. |
| conditional | a logical argument specifying whether the conditional or exact log-likelihood function should be used. |
| parametrization | |
| | is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$? |
| ncalls | a positive integer specifying how many rounds of estimation should be conducted. The estimation results may vary from round to round because of multimodality of the log-likelihood function and the randomness associated with the genetic algorithm. |
| ncores | the number of CPU cores to be used in the estimation process. |
| maxit | the maximum number of iterations for the variable metric algorithm. |
| seeds | a length ncalls vector containing the random number generator seed for each call to the genetic algorithm, or NULL for not initializing the seed. Exists for the purpose of creating reproducible results. |
| printRes | should the estimation results be printed? |
| runTests | should quantile residuals tests be performed after the estimation? |
| | additional settings passed to the function GAfit employing the genetic algorithm. |

Details

Because of complexity and multimodality of the log-likelihood function, it's not guaranteed that the estimation algorithm will end up in the global maximum point. It's often expected that most of the estimation rounds will end up in some local maximum point instead, and therefore a number of estimation rounds is required for reliable results. Because of the nature of the models, the estimation may fail particularly in the cases where the number of mixture components is chosen too large. Note that the genetic algorithm is designed to avoid solutions with mixing weights of some regimes too close to zero at almost all times ('redudant regimes') but the settings can, however, be adjusted (see ?GAfit).
If the iteration limit for the variable metric algorithm (maxit) is reached, one can continue the estimation by iterating more with the function iterate_more.

The core of the genetic algorithm is mostly based on the description by Dorsey and Mayer (1995). It utilizes a slightly modified version the individually adaptive crossover and mutation rates described
by Patnaik and Srinivas (1994) and employs (50\%) fitness inheritance discussed by Smith, Dike and Stegmann (1995). Large (in absolute value) but stationary AR parameter values are generated with the algorithm proposed by Monahan (1984).
The variable metric algorithm (or quasi-Newton method, Nash (1990, algorithm 21)) used in the second phase is implemented with function the optim from the package stats.
Some mixture components of the StMAR model may sometimes get very large estimates for the degrees of freedom parameters. Such parameters are weakly identified and induce various numerical problems. However, mixture components with large degree of freedom parameters are similar to the mixture components of the GMAR model. It's hence advisable to further estimate a G-StMAR model by allowing the mixture components with large degrees of freedom parameter estimates to be GMAR type.

Value

Returns an object of class 'gsmar' defining the estimated GMAR, StMAR or G-StMAR model. The returned object contains estimated mixing weights, some conditional and unconditional moments, quantile residuals, and quantile residual test results if the tests were performed. Note that the first p observations are taken as the initial values so the mixing weights, conditional moments, and quantile residuals start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).In addition, the returned object contains the estimates and log-likelihood values from all of the estimation rounds. The estimated parameter vector can be obtained as gsmar\$params (and the corresponding approximate standard errors as gsmar\$std_errors) and it's...

For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=C \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.

Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean" just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$ the parameter α is dropped, and in the case of StMAR or G-StMAR model the degrees of freedom parameters ν_{m} have to be larger than 2.

S3 methods

The following S3 methods are supported for class 'gsmar ' objects: print, summary, plot, logLik, residuals.

Suggested packages

For faster evaluation of the quantile residuals for StMAR and G-StMAR models, install the suggested package "gsl". Note that for large StMAR and G-StMAR models with large data, performing the quantile residual tests may take significantly long time without the package "gsl".

References

- Dorsey R. E. and Mayer W. J. 1995. Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business \& Economic Statistics, 13, 53-66.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.
- Nash J. 1990. Compact Numerical Methods for Computers. Linear algebra and Function Minimization. Adam Hilger.
- Patnaik L.M. and Srinivas M. 1994. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. Transactions on Systems, Man and Cybernetics 24, 656-667.
- Smith R.E., Dike B.A., Stegmann S.A. 1995. Fitness inheritance in genetic algorithms. Proceedings of the 1995 ACM Symposium on Applied Computing, 345-350.
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

GSMAR, iterate_more, , stmar_to_gstmar, add_data, profile_logliks, swap_parametrization, get_gradient, simulateGSMAR, predict.gsmar, diagnosticPlot, quantileResidualTests, condMoments, uncondMoments

Examples

```
# These are long running examples that use parallel computing
# GMAR model
fit12 <- fitGSMAR(simudata, p=1, M=2, model="GMAR")
summary(fit12)
plot(fit12)
# StMAR model
fit42 <- fitGSMAR(data=T10Y1Y, p=4, M=2, model="StMAR")
fit42
summary(fit42)
plot(fit42)
# Restricted StMAR model: plot also the individual statistics with
```

```
# their approximate critical bounds using the given data
fit42r <- fitGSMAR(T10Y1Y, 4, 2, model="StMAR", restricted=TRUE)
fit42r
plot(fit42)
# Non-mixture version of StMAR model
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
diagnosticPlot(fit101t)
# G-StMAR model with one GMAR type and one StMAR type regime
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
diagnosticPlot(fit42g)
# GMAR model; seeds for rerpoducibility
fit43gm <- fitGSMAR(T10Y1Y, 4, M=3, model="GMAR", ncalls=16,
    seeds=1:16)
fit43gm
# Restricted GMAR model
fit43gmr <- fitGSMAR(T10Y1Y, 4, M=3, model="GMAR", ncalls=12,
    restricted=TRUE, seeds=1:12)
fit43gmr
# The following three examples demonstrate how to apply linear constraints
# to the AR parameters.
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
fit22c <- fitGSMAR(T10Y1Y, 2, 2, constraints=constraints)
fit22c
# Such constrained StMAR(3, 1) model that the second order AR coefficient
# is constrained to zero.
constraints <- list(matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
fit31tc <- fitGSMAR(T10Y1Y, 3, 1, model="StMAR", constraints=constraints)
fit31tc
# Such StMAR(3,2) that the AR coefficients are restricted to be
# the same for both regimes and that the second AR coefficients are
# constrained to zero.
fit32rc <- fitGSMAR(T10Y1Y, 3, 2, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
fit32rc
```


Description

format_valuef generates functions that format values so that they print out with the desired number of digits.

Usage

format_valuef(digits)

Arguments

digits number of digits to use

Value

Returns a function that takes an atomic vector as its argument and returns it formatted to character with digits decimals.

GAfit | Genetic algorithm for preliminary estimation of GMAR, StMAR, or |
| :--- |
| G-StMAR model |

Description

GAfit estimates specified GMAR, StMAR, or G-StMAR model using a genetic algorithm. The employed genetic algorithm is designed to find starting values for gradient based methods.

Usage

GAfit(
data,
p ,
M,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
parametrization = c("intercept", "mean"),
conditional = TRUE,
ngen $=200$,
popsize,
smartMu $=\min (100$, ceiling(0.5 * ngen)),
meanscale,
sigmascale,
initpop = NULL,
regime_force_scale = 1,
red_criteria = c(0.05, 0.01),
to_return = c("alt_ind", "best_ind"),
minval,
seed $=$ NULL
)

Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
M
model
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

parametrization

is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
conditional a logical argument specifying whether the conditional or exact log-likelihood function should be used.
ngen a positive integer specifying the number of generations to be ran through in the genetic algorithm.
popsize a positive even integer specifying the population size in the genetic algorithm. Default is $10 * d$ where d is the number of parameters.
smartMu a positive integer specifying the generation after which the random mutations in the genetic algorithm are "smart". This means that mutating individuals will mostly mutate fairly close (or partially close) to the best fitting individual so far.
meanscale a real valued vector of length two specifying the mean (the first element) and standard deviation (the second element) of the normal distribution from which the μ_{m} mean-parameters are generated in random mutations in the genetic algorithm. Default is c(mean(data), sd(data)). Note that the genetic algorithm optimizes with mean-parametrization even when parametrization=="intercept", but input (in initpop) and output (return value) parameter vectors may be intercept-parametrized.
sigmascale a positive real number specifying the standard deviation of the (zero mean, positive only by taking absolute value) normal distribution from which the component variance parameters are generated in the random mutations in the genetic algorithm. Default is var(stats: : ar(data,order.max=10)\$resid, na.rm=TRUE).
initpop a list of parameter vectors from which the initial population of the genetic algorithm will be generated from. The parameter vectors should be of form...

For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: $\operatorname{Size}(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=C \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and v a degrees of freedom parameter. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2. If not specified (or FALSE as is default), the initial population will be drawn randomly.
regime_force_scale
a non-negative real number specifying how much should natural selection favour individuals with less regimes that have almost all mixing weights (practically) at zero (see red_criteria), i.e., with less "redundant regimes". Set to zero for no favouring or large number for heavy favouring. Without any favouring the genetic algorithm gets more often stuck in an area of the parameter space where some regimes are wasted, but with too much favouring the best genes might never mix into the population and the algorithm might converge poorly. Default is 1 and it gives $2 x$ larger surviving probability weights for individuals with no wasted regimes compared to individuals with one wasted regime. Number 2 would give $3 x$ larger probabilities etc.
red_criteria a length 2 numeric vector specifying the criteria that is used to determine whether a regime is redundant or not. Any regime m which satisfies sum(mixingWeights [, m] > red_criteria[1]) < red_criteria[2]*n_obs will be considered "redundant". One should be careful when adjusting this argument (set $c(0,0)$ to fully disable the 'redundant regime' features from the algorithm).
to_return should the genetic algorithm return the best fitting individual which has the least "redundant" regimes ("alt_ind") or the individual which has the highest loglikelihood in general ("best_ind") but might have more wasted regimes?
minval a real number defining the minimum value of the log-likelihood function that will be considered. Values smaller than this will be treated as they were minval and the corresponding individuals will never survive. The default is - (10^) (ceiling (log10 (length(dat $+1)-1$), and one should be very careful if adjusting this.
seed a single value, interpreted as an integer, or NULL, that sets seed for the random number generator in the beginning of the function call. If calling GAfit from fitGSMAR, use the argument seeds instead of passing the argument seed.

Details

The core of the genetic algorithm is mostly based on the description by Dorsey and Mayer (1995). It utilizes a slightly modified version of the individually adaptive crossover and mutation rates described by Patnaik and Srinivas (1994) and employs (50\%) fitness inheritance discussed by Smith, Dike and Stegmann (1995). Large (in absolute value) but stationary AR parameter values are generated with the algorithm proposed by Monahan (1984).
By "redundant" or "wasted" regimes we mean regimes that have the time varying mixing weights basically at zero for all t. The model with redundant regimes would have approximately the same loglikelihood value without the redundant regimes and there is no purpose to have redundant regimes in the model.

Value

Returns estimated parameter vector with the form described in initpop.

References

- Dorsey R. E. and Mayer W. J. 1995. Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business \& Economic Statistics, 13, 53-66.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.
- Patnaik L.M. and Srinivas M. 1994. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. Transactions on Systems, Man and Cybernetics 24, 656-667.
- Smith R.E., Dike B.A., Stegmann S.A. 1995. Fitness inheritance in genetic algorithms. Proceedings of the 1995 ACM Symposium on Applied Computing, 345-350.
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Description

getOmega generates the covariance matrix Omega used in the quantile residual tests.

Usage

getOmega(
data,
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
parametrization = c("intercept", "mean"),
g,
dim_g
)

Arguments

data
p
M
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.

For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

parametrization

is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
$\mathrm{g} \quad$ a function specifying the transformation.
dim_g output dimension of the transformation g.

Details

This function is used for quantile residuals tests in quantileResidualTests.

Value

Returns size (dim_gxdim_g) covariance matrix Omega.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

```
See Also
    quantileResidualTests
```

get_ar_roots | Calculate absolute values of the roots of the AR characteristic polyno- |
| :--- |
| mials |

Description

get_ar_roots calculates the absolute values of the roots of the AR characteristic polynomials for each mixture component.

Usage
 get_ar_roots(gsmar)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Returns a list with M elements each containing the absolute values of the roots of the AR characteristic polynomial corresponding to each mixture component.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Examples

```
params12 <- c(1.7, 0.85, 0.3, 4.12, 0.73, 1.98, 0.63)
gmar12 <- GSMAR(data=simudata, p=1, M=2, params=params12, model="GMAR")
get_ar_roots(gmar12)
```

```
    get_IC
```


Description

get_IC calculates AIC, HQIC and BIC

Usage

get_IC(loglik, npars, obs)

Arguments

| loglik | log-likelihood value |
| :--- | :--- |
| npars | the number of (freely estimated) parameters in the model. |
| obs | the number of observations with initial values excluded for conditional models. |

Value

Returns a data frame containing the information criteria values.

```
get_minval
Returns the default smallest allowed log-likelihood for given data.
```


Description

get_minval returns the default smallest allowed log-likelihood for given data.

Usage

get_minval(data)

Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.

Details

This function exists simply to avoid dublication inside the package.

Value

Returns - (10^(ceiling(log10(length(data))) + 1) -1)

See Also

fitGSMAR, GAfit
get_regime_autocovs Calculate regime specific autocovariances $\gamma _m, p$

Description

get_regime_autocovs calculates the first p regime specific autocovariances $\gamma_{m, p}$ for the given GMAR, StMAR, or G-StMAR model.

Usage

get_regime_autocovs(gsmar)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Returns a size $(p x M)$ matrix containing the first p autocovariances of the components processes: i:th autocovariance in the i:th row and m:th component process in the m:th column.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.
- Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Springer.

See Also

Other moment functions: condMoments(), get_regime_means(), get_regime_vars(), uncondMoments()

Examples

```
# GMAR model
params13 <- c(1.4, 0.88, 0.26, 2.46, 0.82, 0.74, 5.0, 0.68, 5.2, 0.72, 0.2)
gmar13 <- GSMAR(p=1, M=3, params=params13, model="GMAR")
get_regime_autocovs(gmar13)
# StMAR model
params12t <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 100, 3.6)
stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")
get_regime_autocovs(stmar12t)
    # G-StMAR model (similar to the StMAR model above)
```

```
params12gs <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 3.6)
gstmar12 <- GSMAR(p=1, M=c(1, 1), params=params12gs, model="G-StMAR")
get_regime_autocovs(gstmar12)
```

get_regime_means \quad Calculate regime specific means $\mu _m$

Description

get_regime_means calculates the regime means $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$ for the given GMAR, StMAR, or G-StMAR model

Usage

get_regime_means(gsmar)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Returns a length M vector containing the regime mean μ_{m} in the m:th element.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

condMoments, uncondMoments, get_regime_vars, get_regime_autocovs
Other moment functions: condMoments(), get_regime_autocovs(), get_regime_vars(), uncondMoments()

Examples

```
# GMAR model
params13 <- c(1.4, 0.88, 0.26, 2.46, 0.82, 0.74, 5.0, 0.68, 5.2, 0.72, 0.2)
gmar13 <- GSMAR(p=1, M=3, params=params13, model="GMAR")
get_regime_means(gmar13)
# StMAR model
params12t <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 100, 3.6)
stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")
```

```
get_regime_means(stmar12t)
# G-StMAR model (similar to the StMAR model above)
params12gs <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 3.6)
gstmar12 <- GSMAR(p=1, M=c(1, 1), params=params12gs, model="G-StMAR")
get_regime_means(gstmar12)
```

get_regime_vars Calculate regime specific variances $\gamma _m, 0$

Description

get_regime_vars calculates the unconditional regime specific variances $\gamma_{m, 0}$ for the given GMAR, StMAR, or G-StMAR model.

```
Usage
    get_regime_vars(gsmar)
```


Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Returns a length M vector containing the unconditional variances of the components processes: $m: t h$ element for the m:th regime.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.
- Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Springer.

See Also

Other moment functions: condMoments(), get_regime_autocovs(), get_regime_means(), uncondMoments()

Examples

```
# GMAR model
params13 <- c(1.4, 0.88, 0.26, 2.46, 0.82, 0.74, 5.0, 0.68, 5.2, 0.72, 0.2)
gmar13 <- GSMAR(p=1, M=3, params=params13, model="GMAR")
get_regime_vars(gmar13)
# StMAR model
params12t <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 100, 3.6)
stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")
get_regime_vars(stmar12t)
# G-StMAR model (similar to the StMAR model above)
params12gs <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 3.6)
gstmar12 <- GSMAR(p=1, M=c(1, 1), params=params12gs, model="G-StMAR")
get_regime_vars(gstmar12)
```

get_varying_h Get differences ' h ' which are adjusted for overly large degrees of free-
dom parameters

Description

get_varying_h adjusts differences for overly large degrees of freedom parameters for finite difference approximation of the derivatives of the log-likelihood function. StMAR and G-StMAR models are supported.

Usage

get_varying_h(p, M, params, model)

Arguments

p
M
params
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec$\operatorname{tor} \theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.

With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: $\operatorname{Size}(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

Details

This function is used for approximating gradient and Hessian of a StMAR or G-StMAR model. Large degrees of freedom parameters cause significant numerical error if too small differences are used.

Value

Returns a vector with the same length as params. For other parameters than degrees of freedom parameters larger than 100 , the differences will be $6 \mathrm{e}-6$. For the large degrees of freedom parameters, the difference will be signif(df/1000, digits=2).

GSMAR
 Create object of class 'gsmar' defining a GMAR, StMAR, or G-StMAR model

Description

GSMAR creates an S3 object of class 'gsmar' that defines a GMAR, StMAR, or G-StMAR model.

Usage

GSMAR(
data,
p ,
M,

```
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    conditional = TRUE,
    parametrization = c("intercept", "mean"),
    calc_qresiduals,
    calc_cond_moments,
    calc_std_errors = FALSE,
    custom_h = NULL
)
## S3 method for class 'gsmar'
logLik(object, ...)
## S3 method for class 'gsmar'
residuals(object, ...)
## S3 method for class 'gsmar'
summary(object, ..., digits = 2)
## S3 method for class 'gsmar'
plot(x, ..., include_dens = TRUE)
## S3 method for class 'gsmar'
print(x, ..., digits = 2, summary_print = FALSE)
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
params
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec-
tor $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.

For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: $\operatorname{Size}(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
conditional a logical argument specifying whether the conditional or exact log-likelihood function should be used.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
calc_qresiduals
should quantile residuals be calculated? Default is TRUE iff the model contains data.
calc_cond_moments
should conditional means and variances be calculated? Default is TRUE iff the model contains data.
calc_std_errors
should approximate standard errors be calculated?
custom_h A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 e-6$ for the other parameters.
object object of class 'gsmar' created with fitGSMAR or GSMAR.
... in the plot method: arguments passed to the function density which calculates the kernel density estimate of the data.
digits number of digits to be printed (max 20)
x
object of class 'gsmar' created with fitGSMAR or GSMAR.
include_dens Plot also kernel density estimate of the data and model implied stationary density with regimewise densities? See the details.
summary_print if set to TRUE then the print will include approximate standard errors for the estimates, log-likelihood, information criteria values, modulus of the roots of the characteristic AR polynomias for each regime, and several unconditional moments. Supported for models that include data only.

Details

Models can be built without data, e.q., in order to simulate from the process, but some things such as quantile residuals and conditional moments can't be calculated without data.

If include_dens == TRUE, the kernel density estimate of the data is calculated with the function density from the package stats. By default, the default settings of that function are used, including the usage of Gaussian kernel. Use the dot parameters to adjust the settings if desired.

By the model implied stationary density we mean the stationary one-dimensional mixture density of M regimes (see KMS 2015, Theorem 1 and the discussion following it for the Gaussian case and Theorem 2 in PMS 2018 for the Studen's t case). The regimewise densities (i.e. each density $1, \ldots, M$ in the stationary mixture density) are multiplied with the mixing weight parameters accordingly.

In the density plot black represents the kernel density estimate of the data, grey dashed line the model implied density, and the colored dotter lines the regime wise densities.

Value

Returns an object of class 'gsmar' defining the specified GMAR, StMAR, or G-StMAR model. If data is supplied, the returned object contains (by default) empirical mixing weights, some conditional and unconditional moments, and quantile residuals. Note that the first p observations are taken as the initial values so the mixing weights, conditional moments, and quantile residuals start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).

Methods (by generic)

- logLik: Log-likelihood method
- residuals: residuals method to extract quantile residuals
- summary: summary method, standard errors in brackets
- plot: Plot method for class 'gsmar'
- print: print method

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

```
fitGSMAR, iterate_more, add_data, stmar_to_gstmar, swap_parametrization, get_gradient, simulateGSMAR, predict.gsmar, condMoments, uncondMoments
```


Examples

```
# GMAR model without data
params12 <- c(0.18, 0.93, 0.01, 0.86, 0.68, 0.02, 0.88)
gmar12 <- GSMAR(p=1, M=2, params=params12, model="GMAR")
gmar12
# StMAR model, without data
params12t <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 300, 3.6)
stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")
stmar12t
# Restricted G-StMAR-model
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
gstmar42r <- GSMAR(data=T10Y1Y, p=4, M=c(1, 1), params=params42gsr,
    model="G-StMAR", restricted=TRUE)
gstmar42r
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.03, 1.27, -0.29, 0.03, -0.01, 0.91, 0.34, 0.88)
gmar22c <- GSMAR(T10Y1Y, p=2, M=2, params=params22c,
    model="GMAR", constraints=constraints)
gmar22c
```

isStationary \quad Check the stationary condition of specified GMAR, StMAR, or GStMAR model.

Description

isStationary checks the stationarity condition of the specified GMAR, StMAR, or G-StMAR model.

Usage

```
isStationary(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL
)
```


Arguments

p
M
params
model
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$, .
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Details

This function falsely returns FALSE for stationary models when the parameter is extremely close to the boundary of the stationarity region.

Value

Returns TRUE or FALSE accordingly.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Examples

```
# GMAR model
params22 <- c(0.4, 0.39, 0.6, 0.3, 0.4, 0.1, 0.6, 0.3, 0.8)
isStationary(2, 2, params22)
# StMAR model
params12t <- c(-0.3, 1, 0.9, 0.1, 0.8, 0.6, 0.7, 10, 12)
isStationary(1, 2, params12t, model="StMAR")
# G-StMAR model
params12gs <- c(1, 0.1, 1, 2, 0.2, 2, 0.8, 20)
isStationary(1, c(1, 1), params12gs, model="G-StMAR")
# Restricted GMAR model
params13r <- c(0.1, 0.2, 0.3, -0.99, 0.1, 0.2, 0.3, 0.5, 0.3)
isStationary(1, 3, params13r, restricted=TRUE)
# Restricted StMAR model
```

```
params22tr <- c(-0.1, -0.2, 0.01, 0.99, 0.3, 0.4, 0.9, 3, 13)
isStationary(2, 2, params22tr, model="StMAR", restricted=TRUE)
# Restricted G-StMAR model
params13gsr <- c(1, 2, 3, -0.99, 1, 2, 3, 0.5, 0.4, 20, 30)
isStationary(1, c(1, 2), params13gsr, model="G-StMAR", restricted=TRUE)
# GMAR model as a mixture of AR(2) and AR(1) models
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(1.2, 0.8, 0.2, 0.3, 3.3, 0.7, 3, 0.8)
isStationary(2, 2, params22c, constraints=constraints)
# Such StMAR(3,2) that the AR coefficients are restricted to be the
# same for both regimes and that the second AR coefficients are
# constrained to zero.
params32trc <- c(1, 2, 0.8, -0.3, 1, 2, 0.7, 11, 12)
isStationary(3, 2, params32trc, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
```

isStationary_int Check the stationarity and identification conditions of specified
GMAR, StMAR, or G-StMAR model.

Description

isStationary_int checks the stationarity condition and isIdentifiable checks the identification condition of the specified GMAR, StMAR, or G-StMAR model.

Usage

isStationary_int(p, M, params, restricted = FALSE)
isIdentifiable(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL
)

Arguments

p
a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.

For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M 2 components are StMAR type.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Details

isStationary_int does not support models imposing linear constraints. In order to use it for a model imposing linear constraints, one needs to expand the constraints first to obtain a nonconstrained parameters vector.
Note that isStationary_int returns FALSE for stationary parameter vectors if they are extremely close to the boundary of the stationarity region.
isIdentifiable checks that the regimes are sorted according to the mixing weight parameters and that there are no dublicate regimes.

Value

Returns TRUE or FALSE accordingly.

Warning

These functions don't have any argument checks!

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

```
iterate_more Maximum likelihood estimation of GMAR, StMAR, or G-StMAR model
    with preliminary estimates
```


Description

iterate_more uses a variable metric algorithm to finalize maximum likelihood estimation of a GMAR, StMAR or G-StMAR model (object of class 'gsmar') which already has preliminary estimates.

Usage

iterate_more(gsmar, maxit = 100, custom_h = NULL, calc_std_errors = TRUE)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
maxit the maximum number of iterations for the variable metric algorithm.
custom_h A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 e-6$ for the other parameters.
calc_std_errors
should approximate standard errors be calculated?

Details

The main purpose of iterate_more is to provide a simple and convenient tool to finalize the estimation when the maximum number of iterations is reached when estimating a model with the main estimation function fitGSMAR. iterate_more is essentially a wrapper for the functions optim from the package stats and GSMAR from the package uGMAR.

Value

Returns an object of class 'gsmar' defining the estimated model.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also
fitGSMAR, GSMAR, stmar_to_gstmar, profile_logliks, optim

Examples

```
# Estimate GMAR model with only 50 generations of genetic algorithm and
# only 1 iteration in variable metric algorithm
fit13 <- fitGSMAR(T10Y1Y, 1, 3, maxit=1, ngen=50, ncalls=1, seeds=1)
fit13
# Iterate more since iteration limit was reached
fit13 <- iterate_more(fit13)
fit13
```

loglikelihood Compute the log-likelihood of GMAR, StMAR, or G-StMAR model

Description

loglikelihood computes the log-likelihood of the specified GMAR, StMAR, or G-StMAR model. Exists for convenience if one wants to for example plot profile log-likelihoods or employ other estimation algorithms. Use minval to control what happens when the parameter vector is outside the parameter space.

Usage

```
loglikelihood(
    data,
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    conditional = TRUE,
    parametrization = c("intercept", "mean"),
    returnTerms = FALSE,
    minval = NA
)
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: $\operatorname{Size}(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$.

In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.

Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
conditional a logical argument specifying whether the conditional or exact log-likelihood function should be used.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
returnTerms should the terms $l_{t}: t=1, . ., T$ in the log-likelihood function (see $K M S$ 2015, eq.(13) or MPS 2018, eq.(15)) be returned instead of the log-likelihood value?
minval this will be returned when the parameter vector is outside the parameter space and boundaries==TRUE.

Value

Returns the log-likelihood value or the terms described in returnTerms.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, quantileResiduals, mixingWeights, calc_gradient

Examples

```
# StMAR model
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
    -0.3, -0.03, 0.03, 1.54, 0.06, 1.19, -0.3, 0.42, -0.4, 0.01,
    0.57, 0.22, 8.05, 2.02, 10000)
loglikelihood(T10Y1Y, p=4, M=3, params=params43, model="StMAR")
# Restricted G-StMAR-model
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
loglikelihood(T10Y1Y, p=4, M=c(1, 1), params=params42gsr, model="G-StMAR",
    restricted=TRUE)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.03, 1.27, -0.29, 0.03, -0.01, 0.91, 0.34, 0.88)
loglikelihood(T10Y1Y, p=2, M=2, params=params22c, model="GMAR",
    constraints=constraints)
```

loglikelihood_int Compute the log-likelihood of GMAR, StMAR, or G-StMAR model

Description

loglikelihood_int computes the log-likelihood of the specified GMAR, StMAR, or G-StMAR model.

Usage

loglikelihood_int(data,
p, M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
conditional = TRUE,
parametrization = c("intercept", "mean"), boundaries = TRUE, checks = TRUE,
to_return = c("loglik", "mw", "mw_tplus1", "loglik_and_mw", "terms", "regime_cmeans",
"regime_cvars", "total_cmeans", "total_cvars", "qresiduals"), minval
)

Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
a positive integer specifying the autoregressive order of the model.
M
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.

Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
conditional a logical argument specifying whether the conditional or exact log-likelihood function should be used.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
boundaries a logical argument. If TRUE, then loglikelihood returns minval if...

- some component variance is not larger than zero,
- some parametrized mixing weight $\alpha_{1}, \ldots, \alpha_{M-1}$ is not larger than zero,
- sum of the parametrized mixing weights is not smaller than one,
- if the model is not stationary,
- or if model=="StMAR" or model=="G-StMAR" and some degrees of freedom parameter ν_{m} is not larger than two.

Argument minval will be used only if boundaries==TRUE.
checks TRUE or FALSE specifying whether argument checks, such as stationarity checks, should be done.
to_return should the returned object be the log-likelihood value, mixing weights, mixing weights including value for $a l p h a_{m, T+1}$, a list containing log-likelihood value and mixing weights, the terms $l_{t}: t=1, . ., T$ in the log-likelihood function (see KMS 2015, eq.(13)), regimewise conditional means, regimewise conditional variances, total conditional means, total conditional variances, or quantile residuals? Default is the log-likelihood value ("loglik").
minval this will be returned when the parameter vector is outside the parameter space and boundaries==TRUE.

Value

Note that the first p observations are taken as the initial values so the mixing weights and conditional moments start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).

By default: log-likelihood value of the specified model,
If to_return=="mw": a size ((n_obs-p)xM) matrix containing the mixing weights: for m:th component in the m:th column.
If to_return=="mw_tplus1": a size ((n_obs-p+1)xM) matrix containing the mixing weights: for $\mathrm{m}:$ th component in the $\mathrm{m}:$ th column. The last row is for $\alpha_{m, T+1}$.
If to_return=="loglik_and_mw": a list of two elements. The first element contains the loglikelihood value and the second element contains the mixing weights.
If to_return=="terms": a size ((n_obs-p)x1) numeric vector containing the terms l_{t}.
If to_return=="regime_cmeans": a size ((n_obs-p)xM) matrix containing the regime specific conditional means.
If to_return=="regime_cvars": a size ((n_obs-p)xM) matrix containing the regime specific conditional variances.

If to_return=="total_cmeans": a size ((n_obs-p)x1) vector containing the total conditional means.
If to_return=="total_cvars": a size ((n_obs-p)x1) vector containing the total conditional variances.
If to_return=="qresiduals": a size ((n_obs-p)x1) vector containing the quantile residuals.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

```
mixingWeights
Calculate mixing weights of GMAR, StMAR or G-StMAR model
```


Description

mixingWeights calculates the mixing weights of the specified GMAR, StMAR or G-StMAR model and returns them as a matrix.

```
Usage
    mixingWeights(
        data,
        p,
        M,
        params,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL,
        parametrization = c("intercept", "mean")
    )
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
a positive integer specifying the autoregressive order of the model.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are re-

M
params
model
constraints

For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: $\operatorname{Size}(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. stricted to be the same for all regimes.
specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?

Details

The first p observations are taken to be the initial values.

Value

If to_return=="mw": a size ((n_obs-p)xM) matrix containing the mixing weights: for m:th component in m:th column.

If to_return=="mw_tplus1": a size ((n_obs-p+1)xM) matrix containing the mixing weights: for m :th component in m:th column. The last row is for $\alpha_{m, T+1}$.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Examples

```
\# StMAR model
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
    \(-0.3,-0.03,0.03,1.54,0.06,1.19,-0.3,0.42,-0.4,0.01\),
        \(0.57,0.22,8.05,2.02,10000)\)
mixingWeights(T10Y1Y, \(p=4, M=3\), params=params 43 , model="StMAR")
\# Restricted G-StMAR-model
params42gsr <- c \((0.11,0.03,1.27,-0.39,0.24,-0.17,0.03,1.01,0.3,2.03)\)
mixingWeights(T10Y1Y, \(p=4, M=c(1,1), p a r a m s=p a r a m s 42 g s r, ~ m o d e l=" G-S t M A R "\),
        restricted=TRUE)
\# Two-regime GMAR p=2 model with the second AR coeffiecient of
\# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.03, 1.27, -0.29, 0.03, -0.01, 0.91, 0.34, 0.88)
mixingWeights(T10Y1Y, p=2, M=2, params=params22c, model="GMAR",
    constraints=constraints)
```


Description

mixingWeights_int calculates the mixing weights of the specified GMAR, StMAR, or G-StMAR model and returns them as a matrix.

Usage

mixingWeights_int(data,
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
parametrization = c("intercept", "mean"),
checks = TRUE,
to_return = c("mw", "mw_tplus1")
)

Arguments

data

p
M
params
a numeric vector or class 'ts' object containing the data. NA values are not supported.
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.

For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

parametrization

is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?
checks TRUE or FALSE specifying whether argument checks, such as stationarity checks, should be done.
to_return should the returned object contain mixing weights for $\mathrm{t}=1, . ., \mathrm{T}$ ("mw") or for $\mathrm{t}=1, . ., \mathrm{T}+1$ ("mw_tplus1")?

Details

The first p observations are taken to be the initial values.

Value

If to_return=="mw": a size ((n_obs-p)xM) matrix containing the mixing weights: for m:th component in m:th column.
If to_return=="mw_tplus1": a size ((n_obs-p+1)xM) matrix containing the mixing weights: for m :th component in m:th column. The last row is for $\alpha_{m, T+1}$.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Description

nParams calculates the number of parameters that should be in the parameter vector.

```
Usage
    nParams(
        p,
        M,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL
    )
```


Arguments

model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are re-
p
M
constraints
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$. model, the first M1 components are GMAR type and the rest M2 components are StMAR type. stricted to be the same for all regimes.
specifies linear constraints applied to the autoregressive parameters.

For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns the number of parameters.

```
parameterChecks Check the parameter vector is specified correctly
```


Description

parameterChecks checks dimension, restrictions, and stationarity of the given parameter of a GMAR, StMAR, or G-StMAR model. Throws an error if any check fails. Does NOT consider the identifiability condition!

Usage

```
parameterChecks(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL
)
```


Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.

For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Throws an informative error if any check fails. Does not return anything.

```
pick_alphas Pick mixing weights parameters from parameter vector
```


Description

pick_alphas picks and returns the mixing weights parameters (including the non-parametrized one for the last component) from the given parameter vector.

Usage

```
pick_alphas(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL
)
```


Arguments

a positive integer specifying the autoregressive order of the model.
M
For GMAR and StMAR models: a positive integer specifying the number of mixture components.

```
pick_alphas
```

For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value
Returns a vector of length M containing the mixing weight parameters α_{m}.
pick_dfs Pick degrees of freedom parameters from a parameter vector

Description

pick_dfs picks and returns the degrees of freedom parameters from the given parameter vector.

Usage

pick_dfs(p, M, params, model = c("GMAR", "StMAR", "G-StMAR"))

Arguments

p a positive integer specifying the autoregressive order of the model.
M
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec$\operatorname{tor} \theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$, .
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

Value
Returns a vector of length M or M 2 containing the degrees of freedom parameters.

```
pick_pars Pick \phi_0 (or \mu),AR-coefficients, and variance parameters from a pa-
rameter vector
```


Description

pick_pars picks ϕ_{0} / μ, AR-coefficients, and variance parameters from the given parameter vector.

Usage

pick_pars(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL
)

Arguments

p a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec-
tor $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$, .

With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value
Returns a $(M x(p+2))$ matrix containing the parameters, column for each component. The first row for ϕ_{0} or μ depending on the parametrization, the second row for ϕ_{1}, \ldots, the second to last row for ϕ_{p}, and the last row for σ^{2}.

```
pick_phi0 Pick phi0 or mean parameters from parameter vector
```


Description

pick_phi0 picks and returns the phi0 or mean parameters from parameter vector.

Usage

```
pick_phi0(
        p,
        M,
        params,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL
    )
```


Arguments

p
M
params
model
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints
a positive integer specifying the autoregressive order of the model.
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. specifies linear constraints applied to the autoregressive parameters.

For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns a vector of length M containing the phi0 or mean parameters depending parametrization.

```
plot.gsmarpred Plot method for class 'gsmarpred' objects
```


Description

plot.gsmarpred is plot method for class 'gsmarpred' objects

Usage

\#\# S3 method for class 'gsmarpred'
plot(x, ..., nt, mix_weights = TRUE, add_grid = TRUE)

Arguments

x
... arguments passed to function grid.
nt a positive integer specifying the number of observations to be plotted along with the prediction. Default is round(length(data) $* 0.15$).
mix_weights TRUE if forecasts for mixing weights should be plotted, FALSE in not.
add_grid should grid a be added to the plots?

Details

This method is intended for plotting forecasts of GSMAR processes.

Examples

```
# GMAR model
params12 <- c(1.7, 0.85, 0.3, 4.12, 0.73, 1.98, 0.63)
gmar12 <- GSMAR(simudata, 1, 2, params12)
pred <- predict(gmar12, n_ahead=10, plotRes=FALSE, pi=c(0.8, 0.9, 0.99), pi_type="two-sided")
plot(pred, nt=50)
```


Description

quantileResidualTests performs quantile residual tests for GMAR, StMAR, and G-StMAR models, testing normality, autocorrelation, and conditional heteroscedasticity of the quantile residuals.

```
Usage
    ## S3 method for class 'qrtest'
    plot(x, ...)
    ## S3 method for class 'qrtest'
    print(x, ..., digits = 3)
    quantileResidualTests(
        gsmar,
        lagsAC = c(1, 2, 5, 10),
        lagsCH = lagsAC,
        nsimu = 1,
        printRes = TRUE
    )
```


Arguments

x
... graphical parameters passed to segments in plot.qrtest. Currectly not used in print.qrtest
digits the number of digits to be print
gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
lagsAC a numeric vector of positive integers specifying the lags for which autocorrelation is tested.
lagsCH a numeric vector of positive integers specifying the lags for which conditional heteroscedasticity is tested.
nsimu a positive integer specifying to how many simulated observations the covariance matrix Omega (see Kalliovirta (2012)) should be based on. If smaller than data size, then omega will be based on the given data and not on simulated data. Having the covariance matrix omega based on a large simulated sample might improve the tests size properties.
printRes a logical argument defining whether the results should be printed or not.

Details

For a correctly specified GSMAR model employing the maximum likelihood estimator, the quantile residuals are asymptotically independent with standard normal distribution. They can hence be used in a similar manner to conventional Pearson's residuals. For more details about quantile residual based diagnostics, and in particular, about the quantile residual tests, see the cited article by Kalliovirta (2012).

Value

Returns an object of class 'qrtest' containing the test results in data frames. In the cases of autocorrelation and conditional heteroscedasticity tests, the returned object also contains the associated individual statistics and their standard errors, discussed in Kalliovirta (2012) at the pages 369-370.

Methods (by generic)

- plot: Plot p-values of the autocorrelation and conditional heteroskedasticity tests.
- print: Print method for class 'qrtest' objects

Suggested packages

Install the suggested package "gsl" for faster evaluations in the cases of StMAR and G-StMAR models. For large StMAR and G-StMAR models with large data, the evaluations may take significantly long time without the package "gsl".

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

profile_logliks, fitGSMAR, GSMAR, diagnosticPlot, predict.gsmar, getOmega,

Examples

\# GMAR model
fit12 <- fitGSMAR(simudata, p=1, M=2, model="GMAR")
qrt <- quantileResidualTests(fit12, lagsAC=c(1, 5, 10, 15))

```
# G-StMAR model
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
qrtest42g <- quantileResidualTests(fit42g)
plot(qrtest42g)
# Restricted GMAR model
fit43gmr <- fitGSMAR(T10Y1Y, 4, 3, model="GMAR", restricted=TRUE)
qrtest43gmr <- quantileResidualTests(fit43gmr, lagsAC=1:10)
plot(qrtest43gmr)
# Non-mixture version of StMAR model
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
quantileResidualTests(fit101t, lagsAC=c(1, 2, 5), printRes=FALSE)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
fit22c <- fitGSMAR(T10Y1Y, 2, 2, constraints=constraints)
quantileResidualTests(fit22c, lagsAC=c(1, 3), printRes=FALSE)
```

predict.gsmar Forecast GMAR, StMAR, or G-StMAR process

Description

predict.gsmar forecasts the specified GMAR, StMAR, or G-StMAR process by using the given data to simulate its possible future values. For one-step forecasts using the exact formula for conditional mean is supported.

```
Usage
    ## S3 method for class 'gsmar'
    predict(
        object,
    ...,
    n_ahead,
    nsimu = 10000,
    pi = c(0.95, 0.8),
    pred_type = c("median", "mean", "cond_mean"),
    pi_type = c("two-sided", "upper", "lower", "none"),
    plotRes = TRUE,
    mix_weights = TRUE,
    nt
)
```


Arguments

object object of class 'gsmar' created with function fitGSMAR or GSMAR.
... additional arguments passed to grid (ignored if plot_res==FALSE).
n _ahead a positive integer specifying how many steps in the future should be forecasted.
nsimu a positive integer specifying to how many simulations the forecast should be based on.
pi a numeric vector specifying confidence levels for the prediction intervals.
pred_type should the prediction be based on sample "median" or "mean"? Or should it be one-step-ahead forecast based on the exact conditional mean ("cond_mean")? prediction intervals won't be calculated if the exact conditional mean is used.
pi_type should the prediction intervals be "two-sided", "upper", or "lower"?
plotRes a logical argument defining whether the forecast should be plotted or not.
mix_weights TRUE if forecasts for mixing weights should be plotted, FALSE in not.
nt a positive integer specifying the number of observations to be plotted along with the prediction. Default is round(length(data) $* 0.15$).

Details

predict.gsmar uses the last p values of the data to simulate nsimu possible future values for each step-ahead. The point prediction is then obtained by calculating the sample median or mean for each step and the prediction intervals are obtained from the empirical fractiles.

The function simulateGSMAR can also be used directly for quantile based forecasting.

Value

Returns a class 'gsmarpred' object containing, among the specifications,...
\$pred Point forecasts
\$pred_ints Prediction intervals
\$mix_pred Point forecasts for mixing weights
mix_pred_ints Individual prediction intervals for mixing weights, as [, , m], m=1,..,M.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

simulateGSMAR, condMoments, fitGSMAR, GSMAR, quantileResidualTests, diagnosticPlot

Examples

```
# StMAR model
fit42 <- fitGSMAR(data=T10Y1Y, p=4, M=2, model="StMAR")
pred42 <- predict(fit42, n_ahead=10, pi=c(0.95, 0.8))
pred42
# Non-mixture StMAR model, upper prediction intervals
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
predict(fit101t, n_ahead=10, pi_type="upper", pi=0.9)
# G-StMAR model, no prediction intervals
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
pred42gs <- predict(fit42g, n_ahead=2, pred_type="median",
    pi_type="none", plotRes=FALSE)
pred42gs
plot(pred42gs)
# Restricted GMAR model, one-step conditional mean prediction
fit43gmr <- fitGSMAR(T10Y1Y, 4, 3, model="GMAR", restricted=TRUE)
pred43gmr <- predict(fit43gmr, pred_type="cond_mean", plotRes=FALSE)
pred43gmr
# Such StMAR(3,2) that the AR coefficients are restricted to be
# the same for both regimes and that the second AR coefficients are
# constrained to zero.
fit32rc <- fitGSMAR(T10Y1Y, 3, 2, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
predict(fit32rc, n_ahead=3, pi_type="lower")
```

print.gsmarpred Print method for class 'gsmarpred' objects

Description

print.gsmarpred is a print method for call 'gsmarpred' objects created with predict.gsmar.

Usage

\#\# S3 method for class 'gsmarpred'
print(x, ..., digits = 2)

Arguments

| x | object of class 'gsmarpred' generated by predict.gsmar. |
| :--- | :--- |
| \ldots | currently not in use. |
| digits | the number of digits to be printed |

Examples

```
# GMAR-model
params12 <- c(0.18, 0.93, 0.01, 0.86, 0.68, 0.02, 0.88)
gmar12 <- GSMAR(simudata, 1, 2, params12)
pred <- predict(gmar12, n_ahead=10, plotRes=FALSE)
pred
print(pred, digits=3)
```

print.gsmarsum Print method from objects of class 'gsmarsum'

Description

print.gsmarsum is a print method for objects of class 'gsmarsum' created with the summary method summary.gsmar. Approximate standard errors are printed in brackets.

Usage

\#\# S3 method for class 'gsmarsum' print(x, ..., digits)

Arguments

x object of class 'gsmarsum' generated by summary.gsmar.
... currently not in use.
digits the number of digits to be printed

Examples

```
# GMAR model
fit12 <- fitGSMAR(simudata, 1, 2, ncalls=4)
gsmarsum12 <- summary(fit12)
gsmarsum12
print(gsmarsum12, digits=4)
```


Description

profile_logliks plots profile log-likelihoods around the estimates.

Usage

profile_logliks(gsmar, scale = 0.02, nrows, ncols, precission = 200)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
scale a numeric scalar specifying the interval plotted for each estimate: the estimate plus-minus abs(scale*estimate).
nrows how many rows should be in the plot-matrix? The default is max(ceiling(log2(nparams) -1), 1).
ncols how many columns should be in the plot-matrix? The default is ceiling(nparams/nrows). Note that nrows*ncols should not be smaller than the number of parameters.
precission at how many points should each profile log-likelihood be evaluated at?

Details

The red vertical line points the estimate.
Be aware that the profile log-likelihood function is subject to a numerical error due to limited float-point precission when considering extremely large parameter values, say, overly large degrees freedom estimates.

Value

Only plots to a graphical device and doesn't return anything.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

quantileResidualPlot, diagnosticPlot, condmomentPlot, GSMAR, quantileResidualTests, simulateGSMAR

Examples

```
# StMAR model
fit42 <- fitGSMAR(data=T10Y1Y, p=4, M=2, model="StMAR")
profile_logliks(fit42)
# Non-mixture version of StMAR model
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
profile_logliks(fit101t)
# G-StMAR model
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
profile_logliks(fit42g)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
fit22c <- fitGSMAR(T10Y1Y, 2, 2, constraints=constraints)
profile_logliks(fit22c)
```

quantileResidualPlot Plot quantile residual time series and histogram

Description

quantileResidualsPlot plots quantile residual time series and histogram.

Usage

quantileResidualPlot(gsmar)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Only plots to a graphical device and doesn't return anything.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

```
profile_logliks, diagnosticPlot,fitGSMAR,GSMAR, quantileResidualTests, simulateGSMAR
```


Examples

```
# StMAR model
fit42 <- fitGSMAR(data=T10Y1Y, p=4, M=2, model="StMAR")
quantileResidualPlot(fit42)
# Restricted StMAR model: plot also the individual statistics with
# their approximate critical bounds using the given data
fit42r <- fitGSMAR(T10Y1Y, 4, 2, model="StMAR", restricted=TRUE)
quantileResidualPlot(fit42r)
# Non-mixture version of StMAR model
fit101t <- fitGSMAR(T10Y1Y, 10, 1, model="StMAR", ncores=1, ncalls=1)
quantileResidualPlot(fit101t)
# G-StMAR model
fit42g <- fitGSMAR(T10Y1Y, 4, M=c(1, 1), model="G-StMAR")
quantileResidualPlot(fit42g)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
fit22c <- fitGSMAR(T10Y1Y, 2, 2, constraints=constraints)
quantileResidualPlot(fit22c)
```


Description

quantileResiduals computes the quantile residuals of the specified GMAR, StMAR, or G-StMAR model.

Usage

```
    quantileResiduals(
        data,
        p,
        M,
        params,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL,
        parametrization = c("intercept", "mean")
    )
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec-
tor $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.

Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?

Details

Numerical integration is employed if the quantile residuals cannot be obtained analytically with the hypergeometric function using the package 'gsl'.

Value

Returns a (Tx1) numeric vector containing the quantile residuals of the specified GMAR, StMAR or G-StMAR model.

Suggested packages

Install the suggested package "gsl" for faster evaluation of the quantile residuals of StMAR and G-StMAR models.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

Examples

```
# StMAR model
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
    -0.3, -0.03, 0.03, 1.54, 0.06, 1.19, -0.3, 0.42, -0.4, 0.01,
    0.57, 0.22, 8.05, 2.02, 10000)
quantileResiduals(T10Y1Y, p=4, M=3, params=params43, model="StMAR")
# Restricted G-StMAR-model
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
quantileResiduals(T10Y1Y, p=4, M=c(1, 1), params=params42gsr, model="G-StMAR",
    restricted=TRUE)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.03, 1.27, -0.29, 0.03, -0.01, 0.91, 0.34, 0.88)
quantileResiduals(T10Y1Y, p=2, M=2, params=params22c, model="GMAR",
    constraints=constraints)
```

quantileResiduals_int Compute quantile residuals of GMAR, StMAR, or G-StMAR model

Description

quantileResiduals_int computes the quantile residuals of the specified GMAR, StMAR, or GStMAR model.

```
Usage
    quantileResiduals_int(
        data,
        p,
        M,
        params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    parametrization = c("intercept", "mean")
)
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p
a positive integer specifying the autoregressive order of the model.
M
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.

Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?

Details

Numerical integration is employed if the quantile residuals cannot be obtained analytically with the hypergeometric function using the package 'gsl'.

Value

Returns a ($T x 1$) numeric vector containing the quantile residuals of the specified GMAR, StMAR or G-StMAR model.

Suggested packages

Install the suggested package "gsl" for faster evaluation of the quantile residuals for the StMAR and G-StMAR models.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM]. rameter vector

Description

randomIndividual creates a random GMAR, StMAR, or G-StMAR model compatible meanparametrized parameter vector.
smartIndividual creates a random GMAR, StMAR, or G-StMAR model compatible parameter vector close to argument params. Sometimes returns exactly the given parameter vector.

```
Usage
    randomIndividual(
        p,
        M,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL,
        meanscale,
        sigmascale,
        forcestat = FALSE
    )
    smartIndividual(
        p,
        M,
        params,
        model = c("GMAR", "StMAR", "G-StMAR"),
        restricted = FALSE,
        constraints = NULL,
        meanscale,
        sigmascale,
        accuracy,
        whichRandom = numeric(0),
        forcestat = FALSE
    )
```


Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components $M 2$ in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
model
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.

Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
forcestat use the algorithm by Monahan (1984) to force stationarity on the AR parameters
meanscale
sigmascale
params
accuracy
whichRandom
a real valued vector of length two specifying the mean (the first element) and standard deviation (the second element) of the normal distribution from which the $\phi_{m, 0}$ or μ_{m} (depending on the desired parametrization) parameters (for random regimes) should be generated.
a positive real number specifying the standard deviation of the (zero mean, positive only by taking absolute value) normal distribution from which the component variance parameters (for random regimes) should be generated. (slower) for random regimes? Not supported for constrained models. a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: $\operatorname{Size}(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
a real number larger than zero specifying how close to params the generated parameter vector should be. Standard deviation of the normal distribution from which new parameter values are drawn from will be corresponding parameter value divided by accuracy.
a numeric vector of maximum length M specifying which regimes should be random instead of "smart" when using smartIndividual. Does not affect mixing weight parameters. Default in none.

Details

These functions can be used, for example, to create initial populations for the genetic algorithm. Mean-parametrization (instead of intercept terms $\phi_{m, 0}$) is assumed.

Value

Returns estimated parameter vector with the form described in initpop.

References

- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.

Examples

\# GMAR model parameter vector
params22 <- randomIndividual(2, 2, meanscale=c(0, 1), sigmascale=1)
smart22 <- smartIndividual(2, 2, params22, accuracy=10)
cbind(params22, smart22)

```
# Restricted GMAR parameter vector
params12r <- randomIndividual(1, 2, restricted=TRUE, meanscale=c(-2, 2), sigmascale=2)
smart12r <- smartIndividual(1, 2, params12r, restricted=TRUE, accuracy=20)
cbind(params12r, smart12r)
```

\# StMAR parameter vector: first regime is random in the "smart individual"
params13t <- randomIndividual(1, 3, model="StMAR", meanscale=c(3, 1), sigmascale=3)
smart13t <- smartIndividual(1, 3, params13t, model="StMAR", accuracy=15,
meanscale $=c(3,3)$, sigmascale $=3$, whichRandom=1)
cbind(params13t, smart13t)
\# Restricted StMAR parameter vector
params22tr <- randomIndividual(2, 2, model="StMAR", restricted=TRUE,
meanscale=c (3, 2), sigmascale=0.5)
smart22tr <- smartIndividual(2, 2, params22tr, model="StMAR", restricted=TRUE,
accuracy=30)
cbind(params22tr, smart22tr)
\# G-StMAR parameter vector
params12gs <- randomIndividual(1, c(1, 1), model="G-StMAR", meanscale=c(0, 1),
sigmascale=1)
smart12gs <- smartIndividual(1, c(1, 1), params12gs, model="G-StMAR", accuracy=20)
cbind(params12gs, smart12gs)
\# Restricted G-StMAR parameter vector
params23gsr <- randomIndividual(2, c(1, 2), model="G-StMAR", restricted=TRUE,
meanscale $=c(-1,1)$, sigmascale=3)
smart23gsr <- smartIndividual(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE,
meanscale=c(0, 1), sigmascale=1, accuracy=20, whichRandom=2)
cbind(params23gsr, smart23gsr)

```
# GMAR model as a mixture of AR(2) and AR(1) models
C <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- randomIndividual(2, 2, constraints=C, meanscale=c(1, 1),
    sigmascale=1)
smart22c <- smartIndividual(2, 2, params22c, constraints=C, accuracy=10)
cbind(params22c, smart22c)
# Such constrained StMAR(3, 2) model that the second order AR coefficients
# are constrained to zero.
C0 = matrix(c(1, 0, 0, 0, 0, 1), ncol=2)
C = list(C0, C0)
params32c <- randomIndividual(3, 2, model="StMAR", constraints=C,
    meanscale=c(1, 1), sigmascale=1)
smart32c <- smartIndividual(3, 2, params32c, model="StMAR", constraints=C, accuracy=10)
cbind(params32c, smart32c)
# Such StMAR(3,2) that the AR coefficients are restricted to be
# the same for both regimes and that the second AR coefficients are
# constrained to zero. Second regime is random in the "smart individual".
params32trc <- randomIndividual(3, 2, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2),
    meanscale=c(-2, 0.5), sigmascale=4)
smart32trc <- smartIndividual(3, 2, params32trc, model="StMAR", restricted=TRUE,
    constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2),
    meanscale=c(0, 0.1), sigmascale=0.1, whichRandom=2,
    accuracy=20)
cbind(params32trc, smart32trc)
```

randomIndividual_int Create random GMAR, StMAR, or G-StMAR model compatible parameter vector

Description

randomIndividual_int creates a random GMAR, StMAR, or G-StMAR model compatible parameter vector.
smartIndividual_int creates a random GMAR, StMAR, or G-StMAR model compatible parameter vector close to argument params.

Usage

randomIndividual_int(
p ,
M,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,

```
    meanscale,
    sigmascale,
    forcestat = FALSE
)
smartIndividual_int(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    meanscale,
    sigmascale,
    accuracy,
    whichRandom,
    forcestat = FALSE
)
```


Arguments

p
M
model
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
meanscale a real valued vector of length two specifying the mean (the first element) and standard deviation (the second element) of the normal distribution from which the $\phi_{m, 0}$ or μ_{m} (depending on the desired parametrization) parameters (for random regimes) should be generated.
sigmascale a positive real number specifying the standard deviation of the (zero mean, positive only by taking absolute value) normal distribution from which the component variance parameters (for random regimes) should be generated.
forcestat use the algorithm by Monahan (1984) to force stationarity on the AR parameters (slower) for random regimes? Not supported for constrained models.
params
accuracy a real number larger than zero specifying how close to params the generated parameter vector should be. Standard deviation of the normal distribution from which new parameter values are drawn from will be corresponding parameter value divided by accuracy.
whichRandom a numeric vector of maximum length M specifying which regimes should be random instead of "smart" when using smartIndividual. Does not affect mixing weight parameters. Default in none.

Value

Returns estimated parameter vector with the form described in initpop.

References

- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.

```
random_arcoefs Create random AR coefficients
```


Description

random_arcoefs generates random AR coefficients.

Usage

random_arcoefs(p, forcestat $=$ FALSE, sd $=0.6 / p)$

Arguments

$\mathrm{p} \quad$ a positive integer specifying the autoregressive order of the model.
forcestat use the algorithm by Monahan (1984) to force stationarity on the AR parameters (slower)?
sd if forcestat==FALSE, then AR parameters are drawn from zero mean normal distribution with sd given by this parameter.

Details

If forcestat==TRUE, then the AR coefficients are relatively large, otherwise they are usually relatively small.

Value

Returns $p x 1$ vector containing random AR coefficients.

References

- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.

```
random_regime Create random regime parameters
```


Description

random_regime generates random regime parameters.

Usage

```
    random_regime(
        p,
        meanscale,
        sigmascale,
        restricted = FALSE,
        constraints = NULL,
        m,
        forcestat \(=\) FALSE
    )
```


Arguments

p
meanscale
sigmascale
restricted
constraints
m
forcestat use the algorithm by Monahan (1984) to force stationarity on the AR parameters (slower)? Not supported for constrained models.

Details

If forcestat==TRUE, then the AR coefficients are relatively large, otherwise they are usually relatively small.

Value

Regular models: $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ where $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$.
Restricted models: Not supported!
Constrained models: Replace the vectors ϕ_{m} with vectors ψ_{m}.

References

- Monahan J.F. 1984. A Note on Enforcing Stationarity in Autoregressive-Moving Average Models. Biometrica 71, 403-404.

```
reformConstrainedPars Reform parameter vector with linear constraints to correspond non-
constrained parameter vector.
```


Description

reformConstrainedPars reforms the parameter vector of a model with linear constrains to the "standard form" so that it's comparable with non-constrained models.

Usage

reformConstrainedPars(
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL
)

Arguments

p
M
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: $\operatorname{Size}(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.

For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.

Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns such parameter vector corresponding to the input vector that is the form described in params for non-restricted or restricted models (for non-constrained models), and can hence be used just as the parameter vectors of non-constrained models.

Description

reformParameters takes a parameter vector of any (non-constrained) GMAR, StMAR, or GStMAR model and returns a list with the parameter vector in the standard form, parameter matrix containing AR coefficients and component variances, mixing weights alphas, and in case of StMAR or G-StMAR model also degrees of freedom parameters.

Usage

reformParameters(
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted $=$ FALSE
)

Arguments

p
M
params
model
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.

Details

This function does not support models imposing linear constraints. No argument checks in this function.

Value

Returns a list with...
\$params parameter vector in the standard form.
\$pars corresponding parameter matrix containing AR coefficients and component variances. First row for phi0 or means depending on the parametrization. Column for each component.
\$alphas numeric vector containing mixing weight parameters for all of the components (also for the last one).
$\$ \mathrm{dff}$ numeric vector containing degrees of freedom parameters for all of components. Returned only if model == "StMAR" or model == "G-StMAR".

```
reformRestrictedPars Reform parameter vector with restricted autoregressive parameters to
correspond non-restricted parameter vector.
```


Description

reformRestrictedPars reforms parameter vector with restricted autoregressive parameters to correspond non-restricted parameter vector.

Usage

reformRestrictedPars(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted $=$ FALSE
)

Arguments

p
a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $M=M 1+M 2$.
params a real valued parameter vector specifying the model.

For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.

Value

Returns such parameter vector corresponding to the input vector that is the form describted in params for non-restricted models (for non-constrained models). Linear constraints are not supported.

```
regime_distance Calculate "distance" between two regimes
```


Description

regime_distance scales each regime parameter to the same magnitude and then calculates distance between scaled regime_pars1 and regime_pars2.

Usage

regime_distance(regime_pars1, regime_pars2)

Arguments

regime_pars1 a numeric vector representing a regime.
regime_pars2 a numeric vector representing another regime, same length as regime_pars1

Value

Returns "distance" between regime_pars1 and regime_pars2. Values are scaled to the same magnitude before calculating the "distance". Read the source code for details.

$$
\begin{array}{ll}
\text { removeAllConstraints } & \begin{array}{l}
\text { Transform constrained and restricted parameter vector into the regu- } \\
\text { lar form }
\end{array}
\end{array}
$$

Description

removeAllConstraints transforms constrained and restricted parameter vector into the regular form.

Usage

removeAllConstraints(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL
)

Arguments

p
M
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec$\operatorname{tor} \theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.

With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: $\operatorname{Size}(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M 2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.

Value

Returns such parameter vector corresponding to the input vector that is the form described in params for non-restricted and non-constrained models.
simudata Simulated data

Description

A dataset containing 200 observations simulated from a GMAR $\mathrm{p}=1, \mathrm{M}=2$ process.

Usage

simudata

Format

A numeric vector of length 200.

Source

Simulated
simulateGSMAR Simulate values from GMAR, StMAR, and G-StMAR processes

Description

simulateGSMAR simulates values from the specified GMAR, StMAR, or G-StMAR process. Can be utilized for forecasting future values of the process.

Usage

simulateGSMAR(gsmar, nsimu, initvalues, ntimes = 1, drop = TRUE)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
nsimu a positive integer specifying how many values (ahead from initvalues) will be simulated.
initvalues a numeric vector with length >=p specifying the initial values for the simulation. The last element will be used as the initial value for the first lag, the second last element will be initial value for the second lag, etc. If not specified, initial values will be simulated from the process's stationary distribution.
ntimes a positive integer specifying how many sets of simulations should be performed.
drop if TRUE (default) then the components of the returned list are coerced to lower dimension if ntimes==1, i.e., \$sample and \$component will be vectors and \$mixing_weights will be matrix.

Details

The argument ntimes is intended for forecasting: a GSMAR process can be forecasted by simulating its possible future values. One can perform a large number of sets of simulations and calculate the sample quantiles from the simulated values to obtain prediction intervals. See the forecasting example below for a hand-on demonstration.

Value

If drop==TRUE and ntimes==1 (default): \$sample and \$component are vectors and \$mixing_weights is a (nsimux M) matrix. Otherwise, returns a list with...
\$sample a size (nsimuxntimes) matrix containing the simulated values.
\$component a size (nsimuxntimes) matrix containing the information from which mixture component each value was generated from.
\$mixing_weights a size (nsimuxMxntimes) array containing the mixing weights corresponding to the sample: the dimension [i, l] is the time index, the dimension [, i,] indicates the regime, and the dimension $[,, i]$ indicates the $i:$ th set of simulations.

References

- Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
- Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, predict.gsmar, add_data, condMoments, mixingWeights

Examples

```
# GMAR model
params12 <- c(0.18, 0.93, 0.01, 0.86, 0.68, 0.02, 0.88)
gmar12 <- GSMAR(p=1, M=2, params=params12, model="GMAR")
sim12 <- simulateGSMAR(gmar12, nsimu=500)
ts.plot(sim12$sample)
ts.plot(sim12$component)
ts.plot(sim12$mixing_weights, col=rainbow(2), lty=2)
# FORECASTING EXAMPLE:
# Restricted GMAR model, 10000 sets of simulations with initial values 6 and 6.2.
params22r <- c(1.4, 1.8, 0.8, -0.1, 0.29, 3.18, 0.84)
gmar22r <- GSMAR(p=2, M=2, params=params22r, model="GMAR",
    restricted=TRUE)
sim22r <- simulateGSMAR(gmar22r, nsimu=5, initval=c(6, 6.2), ntimes=10000)
apply(sim22r$sample, 1, median) # Point forecast
apply(sim22r$sample, 1, quantile, probs=c(0.025, 0.975)) # 95% interval
apply(sim22r$mixing_weights, MARGIN=1:2, FUN=median) # mix.weight point forecast
apply(sim22r$mixing_weights, MARGIN=1:2, FUN=quantile,
```

```
probs=c(0.025, 0.975)) # mix.weight 95% intervals
# G-StMAR model, with initial values
params12gs <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 3.6)
gstmar12 <- GSMAR(p=1, M=c(1, 1), params=params12gs,
model="G-StMAR")
sim12gs <- simulateGSMAR(gstmar12, nsimu=500, initvalues=5:6)
ts.plot(sim12gs$sample)
ts.plot(sim12gs$component)
ts.plot(sim12gs$mixing_weights, col=rainbow(3), lty=2)
```


Description

sortComponents sorts mixture components of the specified GMAR, StMAR, or G-StMAR model according to the mixing weight parameters when the parameter vector has the "standard/regular form" for restricted or non-restricted models.

Usage

```
sortComponents(
    p,
    M,
    params,
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE
)
```


Arguments

p
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2x1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components $M 2$ in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.

With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M 2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.

Details

This function does not support models imposing linear constraints.

Value

Returns a parameter vector sorted according to its mixing weight parameters, described in params.

Description

standardErrors numerically approximates standard errors for the given estimates of GMAR, StMAR, or GStMAR model.

Usage

standardErrors(data,
p,
M,
params,

```
    model = c("GMAR", "StMAR", "G-StMAR"),
    restricted = FALSE,
    constraints = NULL,
    conditional = TRUE,
    parametrization = c("intercept", "mean"),
    custom_h = NULL,
    minval
)
```


Arguments

data a numeric vector or class 'ts' object containing the data. NA values are not supported.
p a positive integer specifying the autoregressive order of the model.
M
For GMAR and StMAR models: a positive integer specifying the number of mixture components.
For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components $M 2$ in the second element. The total number of mixture components is $M=M 1+M 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vec$\operatorname{tor} \theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.

```
restricted a logical argument stating whether the AR coefficients \(\phi_{m, 1}, \ldots, \phi_{m, p}\) are re-
    stricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
    For non-restricted models: a list of size \(\left(p x q_{m}\right)\) constraint matrices \(C_{m}\) of
    full column rank satisfying \(\phi_{m}=C_{m} \psi_{m}\) for all \(m=1, \ldots, M\), where \(\phi_{m}=\)
    \(\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)\) and \(\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)\).
    For restricted models: a size \((p x q)\) constraint matrix \(C\) of full column rank
    satisfying \(\phi=C \psi\), where \(\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)\) and \(\psi=\psi_{1}, \ldots, \psi_{q}\).
    Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the
    nominal autoregressive order is always \(p\) for all regimes. Ignore or set to NULL
    if applying linear constraints is not desired.
conditional a logical argument specifying whether the conditional or exact log-likelihood
    function should be used.
parametrization
    is the model parametrized with the "intercepts" \(\phi_{m, 0}\) or "means" \(\mu_{m}=\phi_{m, 0} /(1-\)
    \(\left.\sum \phi_{i, m}\right)\) ?
custom_h a numeric vector with the same length as params specifying the difference ' \(h\) '
    used in finite difference approximation for each parameter separately. If NULL
    (default), then the difference used for differentiating overly large degrees of free-
    dom parameters is adjusted to avoid numerical problems, and the difference is
    \(6 e-6\) for the other parameters.
minval this will be returned when the parameter vector is outside the parameter space
    and boundaries==TRUE.
```

Value
Returns approximate standard errors of the parameter values in a numeric vector.
stmarpars_to_gstmar Transform a StMAR model parameter vector to a corresponding GStMAR model parameter vector with large dfs parameters reduced.

Description

stmarpars_to_gstmar transforms a StMAR model parameter vector to a corresponding G-StMAR model parameter vector with large dfs parameters reduced by swicthing the related regimes to be GMAR type.

Usage

stmarpars_to_gstmar(
p,
M,
params,
restricted = FALSE,
constraints = NULL,
maxdf = 100
)

Arguments

p
M
params
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
maxdf regimes with degrees of freedom parameter value larger than this will be turned into GMAR type.

Value

Returns a list with three elements: \$params contains the corresponding G-StMAR model parameter vector, \$reg_order contains the permutation that was applied to the regimes (GMAR type components first, and decreasing ordering by mixing weight parameters), and $\$ M$ a vector of length two containing the number of GMAR type regimes in the first element and the number of StMAR type regimes in the second.

Examples

params $12<-c(2,0.9,0.1,0.8,0.5,0.5,0.4,12,300)$
stmarpars_to_gstmar (1, 2, params12, maxdf=100)
stmar_to_gstmar Estimate a G-StMAR model based on a StMAR model with large degrees of freedom parameters

Description

stmar_to_gstmar estimates a G-StMAR model based on a StMAR model with large degree of freedom parameters.

Usage

stmar_to_gstmar (gsmar, maxdf = 100, estimate, calc_std_errors, maxit = 100, custom_h = NULL
)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
maxdf regimes with degrees of freedom parameter value larger than this will be turned into GMAR type.
estimate set TRUE if the new model should be estimated with a variable metric algorithm using the StMAR model parameter value as the initial value. By default TRUE iff the model contains data.
calc_std_errors
set TRUE if the approximate standard errors should be calculated. By default TRUE iff the model contains data.
maxit the maximum number of iterations for the variable metric algorithm. Ignored if estimate==FALSE.
custom_h A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 e-6$ for the other parameters.

Details

If a StMAR model contains large estimates for the degrees of freedom parameters, one should consider switching to the corresponding G-StMAR model that lets the corresponding regimes to be GMAR type. stmar_to_gstmar does this switch conveniently.

Value

Returns an object of class 'gsmar' defining the specified GMAR, StMAR, or G-StMAR model. If data is supplied, the returned object contains (by default) empirical mixing weights, some conditional and unconditional moments, and quantile residuals. Note that the first p observations are taken as the initial values so the mixing weights, conditional moments, and quantile residuals start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also
fitGSMAR, GSMAR, iterate_more, get_gradient, get_regime_means, swap_parametrization, stmar_to_gstmar

Examples

```
# These are long running examples and use parallel computing
fit43t <- fitGSMAR(T10Y1Y, 4, 3, model="StMAR", ncalls=2, seeds=1:2)
fit43t
fit43gst <- stmar_to_gstmar(fit43t)
fit43gst
```

```
swap_parametrization Swap the parametrization of object of class 'gsmar' defining a GMAR,
StMAR, or G-StMAR model
```


Description

swap_parametrization swaps the parametrization of object of class 'gsmar' to "mean" if the current parametrization is "intercept", and vice versa.

Usage

swap_parametrization(gsmar, calc_std_errors = TRUE, custom_h = NULL)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.
calc_std_errors
should approximate standard errors be calculated?
custom_h A numeric vector with same the length as the parameter vector: i:th element of custom_h is the difference used in central difference approximation for partial differentials of the log-likelihood function for the i:th parameter. If NULL (default), then the difference used for differentiating overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is $6 \mathrm{e}-6$ for the other parameters.

Details

swap_parametrization is a convenient tool if you have estimated the model in "intercept"-parametrization but wish to work with "mean"-parametrization in the future, or vice versa. For example, approximate standard errors are readily available for parametrized parameters only.

Value

Returns an object of class 'gsmar' defining the specified GMAR, StMAR, or G-StMAR model. If data is supplied, the returned object contains (by default) empirical mixing weights, some conditional and unconditional moments, and quantile residuals. Note that the first p observations are taken as the initial values so the mixing weights, conditional moments, and quantile residuals start from the $\mathrm{p}+1$:th observation (interpreted as $\mathrm{t}=1$).

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's tdistribution. arXiv:2003.05221 [econ.EM].

See Also

fitGSMAR, GSMAR, iterate_more, get_gradient, get_regime_means, swap_parametrization,
stmar_to_gstmar

Examples

```
# Restricted G-StMAR-model with intercept paarametrization
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
gstmar42r <- GSMAR(data=T10Y1Y, p=4, M=c(1, 1), params=params42gsr,
model="G-StMAR", restricted=TRUE)
summary(gstmar42r)
# Swap to mean parametrization
gstmar42r <- swap_parametrization(gstmar42r)
summary(gstmar42r)
```

 T10Y1Y Spread between 10-Year and 1-Year treasury rates: T10Y1Y

Description

A dataset containing monthly U.S. interest rate spread between the 10-Year Treasury constant maturity rate and 1-Year Treasury constant maturity rate from 1953IV to 2020II.

Usage

T10Y1Y

Format

A class 'ts' time series object containing 803 observations.

Source

https://fred.stlouisfed.org/series/GS10 https://fred.stlouisfed.org/series/GS1

```
uGMAR
uGMAR: Estimate Univariate Gaussian and Student's t Mixture Au-
toregressive Models
```


Description

uGMAR is a package for estimating univariate Gaussian Mixture Autoregressive (GMAR), Student's
t Mixture Autoregressive (StMAR), and Gaussian and Student's t Mixture Autoregressive (G-
StMAR) models. It provides tools for quantile residuals based model diagnostics, forecasting, and simulation, to name a few. Imposing linear constraints to the autoregressive parameters of each regime or restricting them to be the same for all regimes is supported.
Many of the functions documented are not exported but for intended internal use only. The readme file and the vignette are a good place to start.
uncondMoments Calculate unconditional mean, variance, first pautocovariances and autocorrelations of the GSMAR process.

Description

uncondMoments calculates the unconditional mean, variance, and the first p autocovariances and autocorrelations of the GSMAR process.

Usage

uncondMoments(gsmar)

Arguments

gsmar object of class 'gsmar' created with the function fitGSMAR or GSMAR.

Value

Returns a list containing the unconditional mean, variance, and the first p autocovariances and autocorrelations. Note that the lag-zero autocovariance/correlation is not included in the "first p" but is given in the uncond_variance component separately.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.
- Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Springer.
uncondMoments_int

See Also

Other moment functions: condMoments(), get_regime_autocovs(), get_regime_means(), get_regime_vars()

Examples

```
# GMAR model
params13 <- c(1.4, 0.88, 0.26, 2.46, 0.82, 0.74, 5.0, 0.68, 5.2, 0.72, 0.2)
gmar13 <- GSMAR(p=1, M=3, params=params13, model="GMAR")
uncondMoments(gmar13)
# StMAR model
params12t <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 100, 3.6)
stmar12t <- GSMAR(p=1, M=2, params=params12t, model="StMAR")
uncondMoments(stmar12t)
# G-StMAR model (similar to the StMAR model above)
params12gs <- c(1.38, 0.88, 0.27, 3.8, 0.74, 3.15, 0.8, 3.6)
gstmar12 <- GSMAR(p=1, M=c(1, 1), params=params12gs, model="G-StMAR")
uncondMoments(gstmar12)
```

uncondMoments_int Calculate unconditional mean, variance, and the first p autocovariances and autocorrelations of a GSMAR process.

Description

uncondMoments_int calculates the unconditional mean, variance, and the first p autocovariances and autocorrelations of the specified GSMAR process.

Usage

uncondMoments_int(
p ,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
parametrization = c("intercept", "mean")
)

Arguments

p
a positive integer specifying the autoregressive order of the model.
M
For GMAR and StMAR models: a positive integer specifying the number of mixture components.

For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: Size $(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$ For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}\right.$,
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2 .
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
parametrization
is the model parametrized with the "intercepts" $\phi_{m, 0}$ or "means" $\mu_{m}=\phi_{m, 0} /(1-$ $\left.\sum \phi_{i, m}\right)$?

Details

Differs from the function uncondMoments in arguments. This function exists for technical reasons only.

Value

Returns a list containing the unconditional mean, variance, and the first p autocovariances and autocorrelations. Note that the lag-zero autocovariance/correlation is not included in the "first p " but is given in the uncond_variance component separately.

References

- Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
- Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
- There are currently no published references for the G-StMAR model, but it's a straightforward generalization with theoretical properties similar to the GMAR and StMAR models.
- Lutkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Springer.

```
warn_dfs
```

Warn about large degrees of freedom parameter values

Description

warn_dfs warns if the model contains large degrees of freedom parameter values.

Usage

warn_dfs(
object,
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
warn_about = c("derivs", "errors")
)

Arguments

object an object to be tested
p
a positive integer specifying the autoregressive order of the model.
M For GMAR and StMAR models: a positive integer specifying the number of mixture components.

For G-StMAR models: a size (2 x 1) integer vector specifying the number of GMAR type components M1 in the first element and StMAR type components M2 in the second element. The total number of mixture components is $\mathrm{M}=\mathrm{M} 1+\mathrm{M} 2$.
params a real valued parameter vector specifying the model.
For non-restricted models: For GMAR model: Size $(M(p+3)-1 x 1)$ vector $\theta=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $v_{m}=\left(\phi_{m, 0}, \phi_{m}, \sigma_{m}^{2}\right)$ and $\phi_{m}=\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right), m=$ $1, \ldots, M$.
For StMAR model: Size $(M(p+4)-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}, \alpha_{1}, \ldots, \alpha_{M-1}, \nu_{1}, \ldots, \nu_{M}\right)$.
For G-StMAR model: $\operatorname{Size}(M(p+3)+M 2-1 x 1)$ vector $(\theta, \nu)=\left(v_{1}, \ldots, v_{M}\right.$, $\left.\alpha_{1}, \ldots, \alpha_{M-1}, \nu_{M 1+1}, \ldots, \nu_{M}\right)$.
With linear constraints: Replace the vectors ϕ_{m} with vectors ψ_{m} and provide a list of constraint matrices \mathbf{C} that satisfy $\phi_{m}=R_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: For GMAR model: Size $(3 M+p-1 x 1)$ vector $\theta=$ $\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{M}\right)$.
For StMAR model: Size $(4 M+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1}, \ldots, \alpha_{M-1}\right.$
For G-StMAR model: Size $(3 M+M 2+p-1 x 1)$ vector $(\theta, \nu)=\left(\phi_{1,0}, \ldots, \phi_{M, 0}, \phi, \sigma_{1}^{2}, \ldots, \sigma_{M}^{2}, \alpha_{1},\right.$.
With linear constraints: Replace the vector ϕ with vector ψ and provide a constraint matrix C that satisfies $\phi=R \psi$, where $\psi=\left(\psi_{1}, \ldots, \psi_{q}\right)$.
Symbol ϕ denotes an AR coefficient, σ^{2} a variance, α a mixing weight, and ν a degrees of freedom parameter. If parametrization=="mean", just replace each intercept term $\phi_{m, 0}$ with regimewise mean $\mu_{m}=\phi_{m, 0} /\left(1-\sum \phi_{i, m}\right)$. In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type. Note that in the case $\mathbf{M}=\mathbf{1}$, the parameter α is dropped, and in the case of StMAR or G-StMAR model, the degrees of freedom parameters ν_{m} have to be larger than 2.
model is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1 components are GMAR type and the rest M2 components are StMAR type.
restricted a logical argument stating whether the AR coefficients $\phi_{m, 1}, \ldots, \phi_{m, p}$ are restricted to be the same for all regimes.
constraints specifies linear constraints applied to the autoregressive parameters.
For non-restricted models: a list of size $\left(p x q_{m}\right)$ constraint matrices C_{m} of full column rank satisfying $\phi_{m}=C_{m} \psi_{m}$ for all $m=1, \ldots, M$, where $\phi_{m}=$ $\left(\phi_{m, 1}, \ldots, \phi_{m, p}\right)$ and $\psi_{m}=\left(\psi_{m, 1}, \ldots, \psi_{m, q_{m}}\right)$.
For restricted models: a size $(p x q)$ constraint matrix C of full column rank satisfying $\phi=C \psi$, where $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ and $\psi=\psi_{1}, \ldots, \psi_{q}$.
Symbol ϕ denotes an AR coefficient. Note that regardless of any constraints, the nominal autoregressive order is always p for all regimes. Ignore or set to NULL if applying linear constraints is not desired.
warn_about warn about inaccurate derivatives or standard errors?

Details

Either provide a class 'gsmar' object or specify the model by hand.

Value

Doesn't return anything but throws a warning if any degrees of freedom parameters have value larger than 100.

Index

```
*Topic datasets
    simudata, 102
    T10Y1Y, 113
add_data, 3, 30, 48, 104
add_dfs, 5
all_pos_ints, 5
alt_gsmar,6
calc_gradient, 7, 57
calc_hessian (calc_gradient),7
change_parametrization, 11
changeRegime, }
check_data, 15
check_gsmar,16
check_model,16
check_params_length,17
checkAndCorrectData, 13
checkConstraintMat,14
checkPM, 15
condmomentPlot, 18, 24,81
condMoments, 20, 30, 40-42, 48, 78, 104, 115
diagnosticPlot, 19, 22, 30, 75, 78, 81,82
extractRegime, 25
fitGSMAR, 4, 7, 19, 24, 27, 39, 48, 54, 57, 75,
        78,82,104, 111,113
format_valuef,31
GAfit, 32, 39
get_ar_roots, 38
get_foc, 24
get_foc (calc_gradient), 7
get_gradient, 4, 7, 30, 48, 111,113
get_gradient (calc_gradient), 7
get_hessian (calc_gradient),7
get_IC, 39
get_minval, 39
get_regime_autocovs, 22, 40, 41, 42,115
```

*Topic datasets

```
simudata, 102
T10Y1Y, 113
add_data, 3, 30, 48, 104
add_dfs, 5
all_pos_ints, 5
alt_gsmar, 6
calc_gradient, 7, 57
calc_hessian (calc_gradient), 7
change_parametrization, 11
check data, 15
check_gsmar, 16
check_model, 16
check_params_length, 17
checkAndCorrectData, 13
checkConstraintMat, 14
checkPM, 15
condmomentplot, 18, 24, 81
condMoments, 20, 30, 40-42, 48, 78, 104, 115
diagnosticPlot, 19, 22, 30, 75, 78, 81, 82
extractRegime, 25
fitGSMAR, 4, 7, 19, 24, 27, 39, 48, 54, 57, 75, \(78,82,104,111,113\)
format_valuef, 31
GAfit, 32, 39
get_ar_roots, 38
get_foc, 24
get_foc (calc_gradient), 7
get_gradient, 4, 7, 30, 48, 111, 113
get_gradient (calc_gradient), 7
get_hessian (calc_gradient), 7
get_IC, 39
get_minval, 39
get_regime_autocovs, 22, 40, 41, 42, 115
```

get_regime_means, 4, 7, 22, 40, 41, 42, 111, 113, 115
get_regime_vars, 22, 40, 41, 42, 115
get_soc (calc_gradient), 7
get_varying_h, 43
getOmega, 36, 75
GSMAR, $4,7,19,30,44,54,57,75,78,81,82$, 104,111,113
isIdentifiable (isStationary_int), 51
isStationary, 48
isStationary_int, 51
iterate_more, 4, 7, 30, 48, 53, 111, 113
logLik.gsmar (GSMAR), 44
loglikelihood, 54
loglikelihood_int, 57
mixingWeights, 57, 60, 104
mixingWeights_int, 63
nParams, 65
optim, 54
parameterChecks, 66
pick_alphas, 67
pick_dfs, 69
pick_pars, 70
pick_phi0, 71
plot.gsmar (GSMAR), 44
plot.gsmarpred, 73
plot.qrtest, 74
predict.gsmar, 30, 48, 75, 76, 104
print.gsmar (GSMAR), 44
print.gsmarpred, 78
print.gsmarsum, 79
print.qrtest (plot.qrtest), 74
profile_logliks, $8,19,24,30,54,75,80,82$
quantileResidualPlot, 19, 24, 81, 81

```
quantileResiduals, 57, 82
quantileResiduals_int, 85
quantileResidualTests, 19, 24, 30, 38, 78,
    81,82
quantileResidualTests(plot.qrtest), 74
random_arcoefs,94
random_regime,94
randomIndividual, }8
randomIndividual_int,91
reformConstrainedPars,96
reformParameters,97
reformRestrictedPars,99
regime_distance,100
removeAllConstraints,101
residuals.gsmar (GSMAR), 44
simudata,102
simulateGSMAR, 24, 30, 48, 78, 81, 82, 103
smartIndividual (randomIndividual), }8
smartIndividual_int
    (randomIndividual_int), }9
sortComponents, }10
standardErrors, 106
stmar_to_gstmar, 4, 7, 30, 48, 54, 110,111,
    113
stmarpars_to_gstmar,108
summary.gsmar (GSMAR), 44
swap_parametrization, 4, 7, 30, 48,111,
    112,113
T10Y1Y, 113
uGMAR,114
uncondMoments, 22, 30, 40-42, 48, 114
uncondMoments_int,115
warn_dfs,117
```

