Provides a collection of self-labeled techniques for semi-supervised classification. In semi-supervised classification, both labeled and unlabeled data are used to train a classifier. This learning paradigm has obtained promising results, specifically in the presence of a reduced set of labeled examples. This package implements a collection of self-labeled techniques to construct a classification model. This family of techniques enlarges the original labeled set using the most confident predictions to classify unlabeled data. The techniques implemented can be applied to classification problems in several domains by the specification of a supervised base classifier. At low ratios of labeled data, it can be shown to perform better than classical supervised classifiers.
Version: | 2.1-0 |
Depends: | R (≥ 3.2.3) |
Imports: | stats, proxy |
Suggests: | caret, e1071, C50, kernlab, testthat, timeDate, stringi, R.rsp |
Published: | 2019-12-15 |
Author: | Mabel González |
Maintainer: | Christoph Bergmeir <c.bergmeir at decsai.ugr.es> |
BugReports: | https://github.com/mabelc/SSC/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/mabelc/SSC |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | ssc results |
Reference manual: | ssc.pdf |
Vignettes: |
ssc: An R Package for Semi-Supervised Classification |
Package source: | ssc_2.1-0.tar.gz |
Windows binaries: | r-devel: ssc_2.1-0.zip, r-release: ssc_2.1-0.zip, r-oldrel: ssc_2.1-0.zip |
macOS binaries: | r-release: ssc_2.1-0.tgz, r-oldrel: ssc_2.1-0.tgz |
Old sources: | ssc archive |
Please use the canonical form https://CRAN.R-project.org/package=ssc to link to this page.