Sparse Linear Method(SLIM) predicts ratings and top-n recommendations suited for sparse implicit positive feedback systems. SLIM is decomposed into multiple elasticnet optimization problems which are solved in parallel over multiple cores. The package is based on "SLIM: Sparse Linear Methods for Top-N Recommender Systems" by Xia Ning and George Karypis <doi:10.1109/ICDM.2011.134>.
| Version: | 0.1.0 | 
| Depends: | R (≥ 3.3.3), stats (≥ 3.3.3) | 
| Imports: | assertthat (≥ 0.1), parallel (≥ 3.3.3), Matrix (≥ 1.2.8), glmnet (≥ 2.0.5), bigmemory (≥ 4.5.19), pbapply (≥ 1.3.2) | 
| Published: | 2017-03-25 | 
| Author: | Srikanth KS [aut, cre] | 
| Maintainer: | Srikanth KS <sri.teach at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| Materials: | README NEWS | 
| CRAN checks: | slimrec results | 
| Reference manual: | slimrec.pdf | 
| Package source: | slimrec_0.1.0.tar.gz | 
| Windows binaries: | r-devel: slimrec_0.1.0.zip, r-release: slimrec_0.1.0.zip, r-oldrel: slimrec_0.1.0.zip | 
| macOS binaries: | r-release: slimrec_0.1.0.tgz, r-oldrel: slimrec_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=slimrec to link to this page.