It fits scale mixture of skew-normal linear mixed models using an expectation–maximization (EM) type algorithm, including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2020) <arXiv:2002.01040>.
Version: | 0.2.2 |
Depends: | R (≥ 3.4.0) |
Imports: | dplyr, ggplot2, moments, mvtnorm, nlme, numDeriv, purrr |
Published: | 2020-07-08 |
Author: | Fernanda L. Schumacher [aut, cre], Larissa A. Matos [aut], Victor H. Lachos [aut] |
Maintainer: | Fernanda L. Schumacher <fernandalschumacher at gmail.com> |
BugReports: | https://github.com/fernandalschumacher/skewlmm/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/fernandalschumacher/skewlmm |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | skewlmm results |
Reference manual: | skewlmm.pdf |
Package source: | skewlmm_0.2.2.tar.gz |
Windows binaries: | r-devel: skewlmm_0.2.2.zip, r-release: skewlmm_0.2.2.zip, r-oldrel: skewlmm_0.2.2.zip |
macOS binaries: | r-release: skewlmm_0.2.2.tgz, r-oldrel: skewlmm_0.2.2.tgz |
Old sources: | skewlmm archive |
Please use the canonical form https://CRAN.R-project.org/package=skewlmm to link to this page.