An integrated set of tools to allow data users to conduct meteorological normalisation on air quality data. This meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>.
Version: | 0.1.51 |
Depends: | R (≥ 3.2.0) |
Imports: | dplyr, ggplot2, lubridate, magrittr, pdp, purrr, ranger, stringr, strucchange, tibble, viridis |
Suggests: | testthat, openair |
Published: | 2020-06-15 |
Author: | Stuart K. Grange |
Maintainer: | Stuart K. Grange <stuart.grange at york.ac.uk> |
BugReports: | https://github.com/skgrange/rmweather/issues |
License: | GPL-3 | file LICENSE |
URL: | https://github.com/skgrange/rmweather |
NeedsCompilation: | no |
Citation: | rmweather citation info |
Materials: | README NEWS |
CRAN checks: | rmweather results |
Reference manual: | rmweather.pdf |
Package source: | rmweather_0.1.51.tar.gz |
Windows binaries: | r-devel: rmweather_0.1.51.zip, r-release: rmweather_0.1.51.zip, r-oldrel: rmweather_0.1.51.zip |
macOS binaries: | r-release: rmweather_0.1.51.tgz, r-oldrel: rmweather_0.1.51.tgz |
Old sources: | rmweather archive |
Please use the canonical form https://CRAN.R-project.org/package=rmweather to link to this page.