lava: Latent Variable Models

A general implementation of Structural Equation Models with latent variables (MLE, 2SLS, and composite likelihood estimators) with both continuous, censored, and ordinal outcomes (Holst and Budtz-Joergensen (2013) <doi:10.1007/s00180-012-0344-y>). Mixture latent variable models and non-linear latent variable models (Holst and Budtz-Joergensen (2019) <doi:10.1093/biostatistics/kxy082>). The package also provides methods for graph exploration (d-separation, back-door criterion), simulation of general non-linear latent variable models, and estimation of influence functions for a broad range of statistical models.

Version: 1.6.7
Depends: R (≥ 3.0)
Imports: grDevices, graphics, methods, numDeriv, stats, survival, SQUAREM, utils
Suggests: KernSmooth, Matrix, Rgraphviz, data.table, ellipse, fields, foreach, geepack, gof (≥ 0.9), graph, igraph (≥ 0.6), lava.tobit (≥ 0.4.7), lme4, mets (≥ 1.1), nlme, optimx, polycor, quantreg, rgl, testthat (≥ 0.11), visNetwork, zoo
Published: 2020-03-05
Author: Klaus K. Holst [aut, cre], Brice Ozenne [ctb], Thomas Gerds [ctb]
Maintainer: Klaus K. Holst <klaus at holst.it>
BugReports: https://github.com/kkholst/lava/issues
License: GPL-3
URL: https://github.com/kkholst/lava
NeedsCompilation: no
Citation: lava citation info
Materials: NEWS
In views: Psychometrics
CRAN checks: lava results

Downloads:

Reference manual: lava.pdf
Package source: lava_1.6.7.tar.gz
Windows binaries: r-devel: lava_1.6.7.zip, r-release: lava_1.6.7.zip, r-oldrel: lava_1.6.7.zip
macOS binaries: r-release: lava_1.6.7.tgz, r-oldrel: lava_1.6.7.tgz
Old sources: lava archive

Reverse dependencies:

Reverse depends: gof, lava.tobit, lavaSearch2, mets, targeted
Reverse imports: BuyseTest, prodlim, Publish, riskRegression, SmoothHazard, timereg
Reverse suggests: pec

Linking:

Please use the canonical form https://CRAN.R-project.org/package=lava to link to this page.