Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.
Version: | 0.1.4 |
Depends: | methods, R (≥ 3.4.0), Rcpp (≥ 0.12.18) |
Imports: | assertthat, broom, broom.mixed, cluster, dplyr (≥ 0.8.0), forcats, ggplot2 (≥ 2.2.0), loo (≥ 2.0.0), mvtnorm, nlme, reshape2, rstan (≥ 2.18.2), rstantools (≥ 1.5.1), tibble |
LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.8), RcppEigen (≥ 0.3.3.3.0), rstan (≥ 2.18.2), StanHeaders (≥ 2.18.0) |
Suggests: | bayesplot, coda, knitr, parallel, rmarkdown, testthat, viridis |
Published: | 2020-07-09 |
Author: | Sean C. Anderson [aut, cre], Eric J. Ward [aut], Trustees of Columbia University [cph] |
Maintainer: | Sean C. Anderson <sean at seananderson.ca> |
BugReports: | https://github.com/seananderson/glmmfields/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/seananderson/glmmfields |
NeedsCompilation: | yes |
SystemRequirements: | GNU make |
Citation: | glmmfields citation info |
Materials: | NEWS |
CRAN checks: | glmmfields results |
Reference manual: | glmmfields.pdf |
Vignettes: |
Spatial GLMs with glmmfields |
Package source: | glmmfields_0.1.4.tar.gz |
Windows binaries: | r-devel: glmmfields_0.1.4.zip, r-release: glmmfields_0.1.4.zip, r-oldrel: glmmfields_0.1.4.zip |
macOS binaries: | r-release: glmmfields_0.1.4.tgz, r-oldrel: glmmfields_0.1.4.tgz |
Old sources: | glmmfields archive |
Please use the canonical form https://CRAN.R-project.org/package=glmmfields to link to this page.