Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.
Version: | 1.3.0 |
Depends: | R (≥ 3.5.0) |
Imports: | methods, stats |
Suggests: | lme4, boot, testthat, car, covr, knitr, rmarkdown, pscl, dynlm, ggplot2, reshape2, betareg |
Published: | 2020-01-08 |
Author: | Claudio Bustos Navarrete
|
Maintainer: | Claudio Bustos Navarrete <clbustos at gmail.com> |
License: | GPL-2 |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | dominanceanalysis results |
Reference manual: | dominanceanalysis.pdf |
Vignettes: |
Exploring predictors' importance in binomial logistic regressions |
Package source: | dominanceanalysis_1.3.0.tar.gz |
Windows binaries: | r-devel: dominanceanalysis_1.3.0.zip, r-release: dominanceanalysis_1.3.0.zip, r-oldrel: dominanceanalysis_1.3.0.zip |
macOS binaries: | r-release: dominanceanalysis_1.3.0.tgz, r-oldrel: dominanceanalysis_1.3.0.tgz |
Old sources: | dominanceanalysis archive |
Please use the canonical form https://CRAN.R-project.org/package=dominanceanalysis to link to this page.