clustree: Visualise Clusterings at Different Resolutions

Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.

Version: 0.4.3
Depends: R (≥ 3.5), ggraph
Imports: checkmate, igraph, dplyr, grid, ggplot2, viridis, methods, rlang, tidygraph, ggrepel
Suggests: testthat (≥ 2.1.0), knitr, rmarkdown, SingleCellExperiment, Seurat (≥ 2.3.0), covr, SummarizedExperiment, pkgdown, spelling
Published: 2020-06-14
Author: Luke Zappia ORCID iD [aut, cre], Alicia Oshlack ORCID iD [aut], Andrea Rau [ctb], Paul Hoffman ORCID iD [ctb]
Maintainer: Luke Zappia <luke at lazappi.id.au>
BugReports: https://github.com/lazappi/clustree/issues
License: GPL-3
URL: https://github.com/lazappi/clustree
NeedsCompilation: no
Language: en-GB
Citation: clustree citation info
Materials: README NEWS
CRAN checks: clustree results

Downloads:

Reference manual: clustree.pdf
Vignettes: Plotting clustering trees
Package source: clustree_0.4.3.tar.gz
Windows binaries: r-devel: clustree_0.4.3.zip, r-release: clustree_0.4.3.zip, r-oldrel: clustree_0.4.3.zip
macOS binaries: r-release: clustree_0.4.3.tgz, r-oldrel: clustree_0.4.3.tgz
Old sources: clustree archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=clustree to link to this page.