An implementation of the selectboost algorithm (Bertrand et al. 2020, <arXiv:1810.01670>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
Version: | 2.0.0 |
Depends: | R (≥ 2.10) |
Imports: | lars, glmnet, igraph, parallel, msgps, Rfast, methods, Cascade, graphics, grDevices, varbvs, spls, abind |
Suggests: | knitr, rmarkdown, mixOmics, CascadeData |
Published: | 2020-02-23 |
Author: | Frederic Bertrand [cre, aut], Myriam Maumy-Bertrand [aut], Ismail Aouadi [ctb], Nicolas Jung [ctb] |
Maintainer: | Frederic Bertrand <frederic.bertrand at math.unistra.fr> |
BugReports: | https://github.com/fbertran/SelectBoost/issues |
License: | GPL-3 |
URL: | https://github.com/fbertran/SelectBoost, http://www-irma.u-strasbg.fr/~fbertran/ |
NeedsCompilation: | no |
Classification/MSC: | 62H11, 62J12, 62J99 |
Citation: | SelectBoost citation info |
Materials: | NEWS |
CRAN checks: | SelectBoost results |
Reference manual: | SelectBoost.pdf |
Vignettes: |
Benchmarking the SelectBoost Package for Network Reverse Engineering Towards confidence estimates in Cascade Networks using the SelectBoost package Simulation Tools Provided With the Selectboost Package |
Package source: | SelectBoost_2.0.0.tar.gz |
Windows binaries: | r-devel: SelectBoost_2.0.0.zip, r-release: SelectBoost_2.0.0.zip, r-oldrel: SelectBoost_2.0.0.zip |
macOS binaries: | r-release: SelectBoost_2.0.0.tgz, r-oldrel: SelectBoost_2.0.0.tgz |
Old sources: | SelectBoost archive |
Reverse imports: | Patterns |
Please use the canonical form https://CRAN.R-project.org/package=SelectBoost to link to this page.