PAFit: Generative Mechanism Estimation in Temporal Complex Networks

Statistical methods for estimating preferential attachment and node fitness generative mechanisms in temporal complex networks are provided. Thong Pham et al. (2015) <doi:10.1371/journal.pone.0137796>. Thong Pham et al. (2016) <doi:10.1038/srep32558>. Thong Pham et al. (2020) <doi:10.18637/jss.v092.i03>.

Version: 1.0.1.8
Depends: R (≥ 2.10.0)
Imports: Rcpp (≥ 0.11.3) , grDevices, graphics, stats, RColorBrewer, VGAM, MASS, magicaxis, networkDynamic, network, plyr, igraph, mapproj, knitr, methods
LinkingTo: Rcpp
Suggests: R.rsp
Published: 2020-02-17
Author: Thong Pham, Paul Sheridan, Hidetoshi Shimodaira
Maintainer: Thong Pham <thongphamthe at gmail.com>
BugReports: https://github.com/thongphamthe/PAFit/issues
License: GPL-3
URL: https://github.com/thongphamthe/PAFit
NeedsCompilation: yes
Citation: PAFit citation info
Materials: NEWS
In views: SocialSciences
CRAN checks: PAFit results

Downloads:

Reference manual: PAFit.pdf
Vignettes: PAFit: an R Package for the Non-Parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks
Package source: PAFit_1.0.1.8.tar.gz
Windows binaries: r-devel: PAFit_1.0.1.8.zip, r-release: PAFit_1.0.1.8.zip, r-oldrel: PAFit_1.0.1.8.zip
macOS binaries: r-release: PAFit_1.0.1.8.tgz, r-oldrel: PAFit_1.0.1.8.tgz
Old sources: PAFit archive

Reverse dependencies:

Reverse imports: mcPAFit

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PAFit to link to this page.