An implementation for the 'LUCID' model (Peng (2019) <doi:10.1093/bioinformatics/btz667>) to jointly estimate latent unknown clusters/subgroups with integrated data. An EM algorithm is used to obtain the latent cluster assignment and model parameter estimates. Feature selection is achieved by applying the L1 regularization method.
Version: | 2.1.0 |
Depends: | R (≥ 3.6.0) |
Imports: | mclust, nnet, networkD3, parallel, boot, lbfgs, glasso, glmnet |
Suggests: | knitr, rmarkdown |
Published: | 2020-07-22 |
Author: | Yinqi Zhao, David V. Conti, Cheng Peng, Zhao Yang |
Maintainer: | Yinqi Zhao <yinqiz at usc.edu> |
License: | GPL-3 |
URL: | https://github.com/Yinqi93/LUCIDus |
NeedsCompilation: | no |
Citation: | LUCIDus citation info |
Materials: | README NEWS |
CRAN checks: | LUCIDus results |
Reference manual: | LUCIDus.pdf |
Vignettes: |
LUCIDus |
Package source: | LUCIDus_2.1.0.tar.gz |
Windows binaries: | r-devel: LUCIDus_2.1.0.zip, r-release: LUCIDus_2.1.0.zip, r-oldrel: LUCIDus_2.1.0.zip |
macOS binaries: | r-release: LUCIDus_2.1.0.tgz, r-oldrel: LUCIDus_2.1.0.tgz |
Old sources: | LUCIDus archive |
Please use the canonical form https://CRAN.R-project.org/package=LUCIDus to link to this page.