Implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses (Tsutsumida N. et al., (2019) <doi:10.17608/k6.auckland.9850826.v1>).
| Version: | 0.0.2 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | sp, sf, GWmodel, nsprcomp, methods | 
| Published: | 2020-07-29 | 
| Author: | Narumasa Tsutsumida | 
| Maintainer: | Narumasa Tsutsumida <rsnaru.jp at gmail.com> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| SystemRequirements: | C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0) | 
| Language: | en-US | 
| Materials: | README | 
| CRAN checks: | GWnnegPCA results | 
| Reference manual: | GWnnegPCA.pdf | 
| Package source: | GWnnegPCA_0.0.2.tar.gz | 
| Windows binaries: | r-devel: GWnnegPCA_0.0.2.zip, r-release: GWnnegPCA_0.0.2.zip, r-oldrel: GWnnegPCA_0.0.2.zip | 
| macOS binaries: | r-release: GWnnegPCA_0.0.2.tgz, r-oldrel: GWnnegPCA_0.0.2.tgz | 
| Old sources: | GWnnegPCA archive | 
Please use the canonical form https://CRAN.R-project.org/package=GWnnegPCA to link to this page.