GPareto: Gaussian Processes for Pareto Front Estimation and Optimization

Gaussian process regression models, a.k.a. Kriging models, are applied to global multi-objective optimization of black-box functions. Multi-objective Expected Improvement and Step-wise Uncertainty Reduction sequential infill criteria are available. A quantification of uncertainty on Pareto fronts is provided using conditional simulations.

Version: 1.1.4.1
Depends: DiceKriging, emoa
Imports: Rcpp (≥ 0.12.15), methods, rgenoud, pbivnorm, pso, randtoolbox, KrigInv, MASS, DiceDesign, ks, rgl
LinkingTo: Rcpp
Suggests: knitr
Published: 2020-04-01
Author: Mickael Binois, Victor Picheny
Maintainer: Mickael Binois <mickael.binois at inria.fr>
BugReports: http://github.com/mbinois/GPareto/issues
License: GPL-3
URL: http://github.com/mbinois/GPareto
NeedsCompilation: yes
Citation: GPareto citation info
Materials: README NEWS
In views: Optimization
CRAN checks: GPareto results

Downloads:

Reference manual: GPareto.pdf
Vignettes: a guide to the GPareto package
Package source: GPareto_1.1.4.1.tar.gz
Windows binaries: r-devel: GPareto_1.1.4.1.zip, r-release: GPareto_1.1.4.1.zip, r-oldrel: GPareto_1.1.4.1.zip
macOS binaries: r-release: GPareto_1.1.4.1.tgz, r-oldrel: GPareto_1.1.4.1.tgz
Old sources: GPareto archive

Reverse dependencies:

Reverse imports: GPGame, moko
Reverse suggests: DiceOptim

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GPareto to link to this page.