Estimation of Bayesian Global Vector Autoregressions (BGVAR) with different prior setups and the possibility to introduce stochastic volatility. Built-in priors include the Minnesota, the stochastic search variable selection and Normal-Gamma (NG) prior. For a reference see also Crespo Cuaresma, J., Feldkircher, M. and F. Huber (2016) "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach", Journal of Applied Econometrics, Vol. 31(7), pp. 1371-1391 <doi:10.1002/jae.2504>. Post-processing functions allow for doing predictions, structurally identify the model with short-run or sign-restrictions and compute impulse response functions, historical decompositions and forecast error variance decompositions. Plotting functions are also available.
Version: | 2.0.1 |
Depends: | R (≥ 2.10) |
Imports: | abind, bayesm, coda, doParallel, foreach, GIGrvg, graphics, knitr, MASS, Matrix, methods, parallel, Rcpp (≥ 1.0.3), stats, stochvol, utils, xts, zoo |
LinkingTo: | Rcpp, RcppArmadillo, RcppProgress, stochvol, GIGrvg |
Suggests: | testthat (≥ 2.1.0), rmarkdown |
Published: | 2020-06-24 |
Author: | Maximilian Boeck [aut, cre], Martin Feldkircher [aut], Florian Huber [aut], Christopher Sims [ctb] |
Maintainer: | Maximilian Boeck <maximilian.boeck at wu.ac.at> |
License: | GPL-3 |
NeedsCompilation: | yes |
Language: | en-US |
Citation: | BGVAR citation info |
Materials: | README NEWS |
In views: | TimeSeries |
CRAN checks: | BGVAR results |
Reference manual: | BGVAR.pdf |
Vignettes: |
examples |
Package source: | BGVAR_2.0.1.tar.gz |
Windows binaries: | r-devel: BGVAR_2.0.1.zip, r-release: BGVAR_2.0.1.zip, r-oldrel: BGVAR_2.0.1.zip |
macOS binaries: | r-release: BGVAR_2.0.1.tgz, r-oldrel: BGVAR_2.0.1.tgz |
Old sources: | BGVAR archive |
Please use the canonical form https://CRAN.R-project.org/package=BGVAR to link to this page.