
Benchmarking and Profiling

This book departs from novice or intermediate texts in that we focus on using and develop-
ing for MySQL from a professional angle. We don’t think the difference between a normal user
and a professional user lies in the ability to recite every available function in MySQL’s SQL
extensions, nor in the capacity to administer large databases or high-volume applications.

Rather, we think the difference between a novice user and a professional is twofold. First,
the professional has the desire to understand why and how something works. Merely knowing
the steps to accomplish an activity is not enough. Second, the professional approaches a
problem with an understanding that the circumstances that created the problem can and
will change over time, leading to variations in the problem’s environment, and consequently,
a need for different solutions. The professional developer or administrator focuses on under-
standing how things work, and sets about to build a framework that can react to and adjust
for changes in the environment.

The subject of benchmarking and profiling of database-driven applications addresses
the core of this professional outlook. It is part of the foundation on which the professional’s
framework for understanding is built. As a professional developer, understanding how and
why benchmarking is useful, and how profiling can save you and your company time and
money, is critical.

As the size of an application grows, the need for a reliable method of measuring the appli-
cation’s performance also grows. Likewise, as more and more users start to query the database
application, the need for a standardized framework for identifying bottlenecks also increases.
Benchmarking and profiling tools fill this void. They create the framework on which your abil-
ity to identify problems and compare various solutions depends. Any reader who has been on
a team scrambling to figure out why a certain application or web page is not performing cor-
rectly understands just how painful not having this framework in place can be.

Yes, setting up a framework for benchmarking your applications takes time and effort.
It’s not something that just happens by flipping a switch. Likewise, effectively profiling an
application requires the developer and administrator to take a proactive stance. Waiting for
an application to experience problems is not professional, but, alas, is usually the status quo,
even for large applications. Above all, we want you to take from this chapter not only knowl-
edge of how to establish benchmarks and a profiling system, but also a true understanding of
the importance of each.

In this chapter, we don’t assume you have any knowledge of these topics. Why? Well, one
reason is that most novice and intermediate books on MySQL don’t cover them. Another rea-
son is that the vast majority of programmers and administrators we’ve met over the years
(including ourselves at various points) have resorted to the old trial-and-error method of
identifying bottlenecks and comparing changes to application code.

189

C H A P T E R 6

■ ■ ■

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 189

In this chapter, we’ll cover the following topics:

• Benefits of benchmarking

• Guidelines for conducting benchmarks

• Tools for benchmarking

• Benefits of profiling

• Guidelines for profiling

• Tools for profiling

What Can Benchmarking Do for You?
Benchmark tests allow you to measure your application’s performance, both in execution
speed and memory consumption. Before we demonstrate how to set up a reliable benchmark-
ing framework, let’s first examine what the results of benchmark tests can show you about
your application’s performance and in what situations running benchmarks can be useful.
Here is a brief list of what benchmark tests can help you do:

• Make simple performance comparisons

• Determine load limits

• Test your application’s ability to deal with change

• Find potential problem areas

BENCHMARKING, PROFILING—WHAT’S THE DIFFERENCE?

No doubt, you’ve all heard the terms benchmarking and profiling bandied about the technology schoolyard
numerous times over the years. But what do these terms mean, and what’s the difference between them?

Benchmarking is the practice of creating a set of performance results for a given set of tests. These
tests represent the performance of an entire application or a piece of the application. The performance
results are used as an indicator of how well the application or application piece performed given a specific
configuration. These benchmark test results are used in comparisons between the application changes to
determine the effects, if any, of that change.

Profiling, on the other hand, is a method of diagnosing the performance bottlenecks of an application.
Like benchmark tests, profilers produce resultsets that can be analyzed in order to determine the pieces of
an application that are problematic, either in their performance (time to complete) or their resource usage
(memory allocation and utilization). But, unlike benchmark tools, which typically test the theoretical limits of
the application, profilers show you a snapshot of what is actually occurring on your system.

Taken together, benchmarking and profiling tools provide a platform that can pinpoint the problem areas
of your application. Benchmark tools provide you the ability to compare changes in your application, and pro-
filers enable you to diagnose problems as they occur.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING190

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 190

Conducting Simple Performance Comparisons
Suppose you are in the beginning phases of designing a toy store e-commerce application.
You’ve mapped out a basic schema for the database and think you have a real winner on your
hands. For the product table, you’ve determined that you will key the table based on the com-
pany’s internal SKU, which happens to be a 50-character alphanumeric identifier. As you start
to add more tables to the database schema, you begin to notice that many of the tables you’re
adding have foreign key references to this product SKU. Now, you start to question whether
the 50-character field is a good choice, considering the large number of joined tables you’re
likely to have in the application’s SQL code.

You think to yourself, “I wonder if this large character identifier will slow down things
compared to having a trimmer, say, integer identifier?” Common sense tells you that it will, of
course, but you don’t have any way of determining how much slower the character identifier
will perform. Will the performance impact be negligible? What if it isn’t? Will you redesign the
application to use a smaller key once it is in production?

But you don’t need to just guess at the ramifications of your schema design. You can
benchmark test it and prove it! You can determine that using a smaller integer key would result
in an improvement of x% over the larger character key.

The results of the benchmark tests alone may not determine whether or not you decide to
use an alphanumeric key. You may decide that the benefit of having a natural key, as opposed to
a generated key, is worth the performance impact. But, when you have the results of your bench-
marks in front of you, you’re making an informed decision, not just a guess. The benchmark test
results show you specifically what the impact of your design choices will be.

Here are some examples of how you can use benchmark tests in performance comparisons:

• A coworker complained that when you moved from MySQL 4.0.18 to MySQL 4.1, the
performance of a specific query decreased dramatically. You can use a benchmark test
against both versions of MySQL to test the claim.

• A client complained that the script you created to import products into the database
from spreadsheets does not have the ability to “undo” itself if an error occurs halfway
through. You want to understand how adding transactions to the script will affect its
performance.

• You want to know whether replacing the normal B-tree index on your product.name
varchar(150) field with a full-text index will increase search speeds on the product
name once you have 100,000 products loaded into the database.

• How will the performance of a SELECT query against three of your tables be affected by
having 10 concurrent client connections compared with 20, 30, or 100 client connections?

Determining Load Limits
Benchmarks also allow you to determine the limitations of your database server under load. By
load, we simply mean a heavy level of activity from clients requesting data from your application.
As you’ll see in the “Benchmarking Tools” section later in this chapter, the benchmarking tools
you will use allow you to test the limits, measured in the number of queries performed per sec-
ond, given a supplied number of concurrent connections. This ability to provide insight into the
stress level under which your hardware and application will most likely fail is an invaluable tool in
assessing both your hardware and software configuration.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 191

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 191

Determining load limits is particularly of interest to web application developers. You want
to know before a failure occurs when you are approaching a problematic volume level for the
web server and database server. A number of web application benchmarking tools, commonly
called load generators, measure these limits effectively. Load generators fall into two general
categories:

Contrived load generator: This type of load generator makes no attempt to simulate actual
web traffic to a server. Contrived load generators use a sort of brute-force methodology to
push concurrent requests for a specific resource through the pipeline. In this way, con-
trived load generation is helpful in determining a particular web page’s limitations, but
these results are often theoretical, because, as we all know, few web sites receive traffic to
only a single web page or resource. Later in this chapter, we’ll take a look at the most com-
mon contrived load generator available to open-source web application developers:
ApacheBench.

Realistic load generator: On the flip side of the coin, realistic load generators attempt to
determine load limitations based on actual traffic patterns. Typically, these tools will use
actual web server log files in order to simulate typical user sessions on the site. These real-
istic load generation tools can be very useful in determining the limitations of the overall
system, not just a specific piece of one, because the entire application is put through the
ropes. An example of a benchmarking tool with the capability to do realistic load genera-
tion is httperf, which is covered later in this chapter.

Testing an Application’s Ability to Deal with Change
To continue our online store application example, suppose that after running a few early
benchmark tests, you determine that the benefits of having a natural key on the product SKU
outweigh the performance impact you found—let’s say, you discovered an 8% performance
degradation. However, in these early benchmark tests, you used a test data set of 10,000 prod-
ucts and 100,000 orders.

While this might be a realistic set of test data for the first six months into production,
it might be significantly less than the size of those tables in a year or two. Your benchmark
framework will show you how your application will perform with a larger database size, and
in doing so, will help you to be realistic about when your hardware or application design may
need to be refactored.

Similarly, if you are developing commercial-grade software, it is imperative that you know
how your database design will perform under varying database sizes and hardware configura-
tions. Larger customers may often demand to see performance metrics that match closely
their projected database size and traffic. Your benchmarking framework will allow you to
provide answers to your clients’ questions.

Finding Potential Problem Areas
Finally, benchmark tests give you the ability to identify potential problems on a broad scale.
More than likely, a benchmark test result won’t show you what’s wrong with that faulty loop
you just coded. However, the test can be very useful for determining which general parts of
an application or database design are the weakest.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING192

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 192

For example, let’s say you run a set of benchmark tests for the main pages in your toy store
application. The results show that of all the pages, the page responsible for displaying the order
history has the worst performance; that is, the least number of concurrent requests for the order
history page could be performed by the benchmark. This shows you the area of the application
that could be a potential problem. The benchmark test results won’t show you the specific code
blocks of the order history page that take the most resources, but the benchmark points you in
the direction of the problem. Without the benchmark test results, you would be forced to wait
until the customer service department started receiving complaints about slow application
response on the order history page.

As you’ll see later in this chapter, profiling tools enable you to see which specific blocks of
code are problematic in a particular web page or application screen.

General Benchmarking Guidelines
We’ve compiled a list of general guidelines to consider as you develop your benchmarking
framework. This list highlights strategies you should adopt in order to most effectively diag-
nose the health and growth prospects of your application code:

• Set real performance standards.

• Be proactive.

• Isolate the changed variables.

• Use real data sets.

• Make small changes and then rerun benchmarks.

• Turn off unnecessary programs and the query cache.

• Repeat tests to determine averages.

• Save benchmark results.

Let’s take a closer look at each of these guidelines.

Setting Real Performance Standards
Have you ever been on the receiving end of the following statement by a fellow employee or
customer? “Your application is really slow today.” (We bet just reading it makes some of you
cringe. Hey, we’ve all been there at some point or another.) You might respond with something
to the effect of, “What does ‘really slow’ mean, ma’am?”

As much as you may not want to admit it, this situation is not the customer’s fault. The prob-
lem has arisen due to the fact that the customer’s perception of the application’s performance is
that there has been a slowdown compared with the usual level of performance. Unfortunately for
you, there isn’t anything written down anywhere that states exactly what the usual performance of
the application is.

Not having a clear understanding of the acceptable performance standards of an applica-
tion can have a number of ramifications. Working with the project stakeholders to determine
performance standards helps involve the end users at an early stage of the development and
gives the impression that your team cares about their perceptions of the application’s

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 193

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 193

performance and what an acceptable response time should be. As any project manager can
tell you, setting expectations is one of the most critical components of a successful project.
From a performance perspective, you should endeavor to set at least the following acceptable
standards for your application:

Response times: You should know what the stakeholders and end users consider an
acceptable response time for most application pieces from the outset of the project.
For each application piece, work with business experts, and perhaps conduct surveys,
to determine the threshold for how fast your application should return results to the user.
For instance, for an e-commerce application, you would want to establish acceptable
performance metrics for your shopping cart process: adding items to the cart, submitting
an order, and so on. The more specific you can be, the better. If a certain process will
undoubtedly take more time than others, as might be the case with an accounting data
export, be sure to include realistic acceptable standards for those pieces.

Concurrency standards: Determining predicted levels of concurrency for a fledging
project can sometimes be difficult. However, there is definite value to recording the
stakeholders’ expectation of how many users should be able to concurrently use the
application under a normal traffic volume. For instance, if the company expects the toy
store to be able to handle 50 customers simultaneously, then benchmark tests must test
against those expectations.

Acceptable deviation: No system’s traffic and load are static. Fluctuations in concurrency
and request volumes naturally occur on all major applications, and it is important to set
expectations with the stakeholders as to a normal deviation from acceptable standards.
Typically, this is done by providing for a set interval during which performance standards
may fluctuate a certain percentage. For instance, you might say that having performance
degrade 10% over the course of an hour falls within acceptable performance standards. If
the performance decrease lasts longer than this limit, or if the performance drops by 30%,
then acceptable standards have not been met.

Use these performance indicators in constructing your baselines for benchmark testing.
When you run entire application benchmarks, you will be able to confirm that the current
database performance meets the acceptable standards set by you and your stakeholders.
Furthermore, you can determine how the growth of your database and an increase in traffic
to the site might threaten these goals.

The main objective here is to have these goals in writing. This is critical to ensuring that
expectations are met. Additionally, having the performance standards on record allows your
team to evaluate its work with a real set of guidelines. Without a record of acceptable stan-
dards and benchmark tests, you’ll just be guessing that you’ve met the client’s requirements.

Being Proactive
Being proactive goes to the heart of what we consider to be a professional outlook on applica-
tion development and database administration. Your goal is to identify problems before they
occur. Being reactive results in lost productivity and poor customer experience, and can signif-
icantly mar your development team’s reputation. There is nothing worse than working in an IT
department that is constantly “fighting fires.” The rest of your company will come to view the
team as inexperienced, and reach the conclusion that you didn’t design the application prop-
erly in the first place.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING194

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 194

Don’t let reactive attitudes tarnish your project team. Take up the fight from the start by
including benchmark testing as an integral part of your development process. By harnessing
the power of your benchmarking framework, you can predict problems well before they rear
their ugly heads.

Suppose early benchmark tests on your existing hardware have shown your e-commerce
platform’s performance will degrade rapidly once 50 concurrent users are consistently query-
ing the database. Knowing that this limit will eventually be reached, you can run benchmarks
against other hardware configurations or even different configurations of the MySQL server
variables to determine if changes will make a substantial impact. You can then turn to the
management team and show, certifiably, that without an expenditure of, say, $3,000 for new
hardware, the web site will fall below the acceptable performance standards.

The management team will appreciate your ability to solve performance problems before
they occur and provide real test results as opposed to a guess.

Isolating Changed Variables
When testing application code, or configurations of hardware or software, always isolate the
variable you wish to test. This is an important scientific principle: in order to show a correlation
between one variable and a test result, you must ensure that all other things remain equal.

You must ensure that the tests are run in an identical fashion, with no other changes to
the test other than those tested for. In real terms, this means that when you run a benchmark
to test that your integer product key is faster than your character product key, the only differ-
ence between the two benchmarks should be the product table’s key field data type. If you
make other changes to the schema, or run the tests against different data sets, you dilute the
test result, and you cannot reliably state that the difference in the benchmark results is due to
the change in the product key’s data type.

Likewise, if you are testing to determine the impact of a SQL statement’s performance
given a twentyfold increase in the data set’s size, the only difference between the two bench-
marks should be the number of rows being operated upon.

Because it takes time to set up and to run benchmarks, you’ll often be tempted to take
shortcuts. Let’s say you have a suspicion that if you increase the key_buffer_size, query_
cache_size, and sort_buffer_size server system variables in your my.cnf file, you’ll get a big
performance increase. So, you run the test with and without those variable changes, and find
you’re absolutely right! The test showed a performance increase of 4% over the previous run.
You’ve guessed correctly that your changes would increase throughput and performance, but,
sadly, you’re operating on false assumptions. You’ve assumed, because the test came back with
an overall increase in performance, that increasing all three system variable values each
improves the performance of the application. What if the changes to the sort_buffer_size
and query_cache_size increased throughput by 5%, but the change in the key_buffer_size
variable decreased performance by 1%? You wouldn’t know this was the case. So, the bottom
line is that you should try to isolate a single changed variable in your tests.

Using Real Data Sets
To get the most accurate results from your benchmark tests, try to use data sets from actual
database tables, or at least data sets that represent a realistic picture of the data to be stored
in your future tables. If you don’t have actual production tables to use in your testing, you can
use a data generator to produce sample data sets. We’ll demonstrate a simple generation tool

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 195

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 195

(the gen-data program that accompanies Super Smack) a little later in this chapter, but you
may find that writing your own homegrown data set generation script will produce test sets
that best meet your needs.

When trying to create or collect realistic test data sets, consider key selectivity, text
columns, and the number of rows.

Key Selectivity
Try to ensure that fields in your tables on which indexes will be built contain a distribution
of key values that accurately depicts the real application. For instance, assume you have an
orders table with a char(1) field called status containing one of ten possible values, say, the
letters A through J to represent the various stages that order can be in during its lifetime. You
know that once the orders table is filled with production data, more than 70% of the status
field values will be in the J stage, which represents a closed, completed order.

Suppose you run benchmark tests for an order-report SQL statement that summarizes
the orders filtered by their status, and this statement uses an index on the status field. If your
test data set uses an equal distribution of values in the status column—perhaps because you
used a data generation program that randomly chose the status value—your test will likely be
skewed. In the real-world database, the likelihood that the optimizer would choose an index
on the status column might be much less than in your test scenario. So, when you generate
data sets for use in testing, make sure you investigate the selectivity of indexed fields to ensure
the generated data set approximates the real-world distribution as closely as possible.

Text Columns
When you are dealing with larger text columns, especially ones with varying lengths, try to put
a realistic distribution of text lengths into your data sets. This will provide a much more accu-
rate depiction of how your database will perform in real-world scenarios.

If you load a test data set with similarly sized rows, the performance of the benchmark
may not accurately reflect a true production scenario, where a table’s data pages contain vary-
ing numbers of rows because of varying length text fields. For instance, let’s say you have a
table in your e-commerce database that stores customer product reviews. Clearly, these
reviews can vary in length substantially. It would be imprudent to run benchmarks against
a data set you’ve generated with 100,000 records, each row containing a text field with 1,000
bytes of character data. It’s simply not a realistic depiction of the data that would actually fill
the table.

Number of Rows
If you actually have millions of orders completed in your e-commerce application, but run
benchmarks against a data set of only 100,000 records, your benchmarks will not represent the
reality of the application, so they will be essentially useless to you. The benchmark run against
100,000 records may depict a scenario in which the server was able to cache in memory most or
all of the order records. The same benchmark performed against two million order records may
yield dramatically lower load limits because the server was not able to cache all the records.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING196

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 196

Making Small Changes and Rerunning Benchmarks
The idea of making only small changes follows nicely from our recommendation of always
isolating a single variable during testing. When you do change a variable in a test case, make
small changes if you are adjusting settings. If you want to see the effects on the application’s
load limits given a change in the max_user_connections setting, adjust the setting in small
increments and rerun the test, noting the effects. “Small” is, of course, relative, and will
depend on the specific setting you’re changing. The important thing is to continue making
similar adjustments in subsequent tests.

For instance, you might run a baseline test for the existing max_user_connections value.
Then, on the next tests, you increase the value of the max_user_connections value by 20 each
time, noting the increase or decrease in the queries per second and concurrency thresholds
in each run. Usually, your end goal will be to determine the optimal setting for the max_user_
connections, given your hardware configuration, application design, and database size.

By plotting the results of your benchmark tests and keeping changes at a small, even
pace, you will be able to more finely analyze where the optimal setting of the tested variable
should be.

Turning Off Unnecessary Programs and the Query Cache
When running benchmark tests against your development server to determine the difference
in performance between two methods or SQL blocks, make sure you turn off any unnecessary
programs during testing, because they might interfere or obscure a test’s results. For instance,
if you run a test for one block of code, and, during the test for a comparison block of code a
cron job is running in the background, the test results might be skewed, depending on how
much processing power is being used by the job.

Typically, you should make sure only necessary services are running. Make sure that any
backup jobs are disabled and won’t run during the testing. Remember that the whole purpose
is to isolate the test environment as much as possible.

Additionally, we like to turn off the query cache when we run certain performance compar-
isons. We want to ensure that one benchmark run isn’t benefiting from the caching of resultsets
inserted into the query cache during a previous run. To disable the query cache, you can simply
set the query_cache_size variable to 0 before the run:

mysql> SET GLOBALS query_cache_size = 0;

Just remember to turn it back on when you need it!

Repeating Tests to Determine Averages
Always repeat your benchmark tests a number of times. You’ll sometimes find that the test results
come back with slightly different numbers each time. Even if you’ve shut down all nonessential
processes on the testing server and eliminated the possibility that other programs or scripts may
interfere with the performance tests, you still may find some discrepancies from test to test. So, in
order to get an accurate benchmark result, it’s often best to take a series of the same benchmark,
and then average the results across all test runs.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 197

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 197

Saving Benchmark Results
Always save the results of your benchmarks for future analysis and as baselines for future bench-
mark tests. Remember that when you do performance comparisons, you want a baseline test to
compare the change to. Having a set of saved benchmarks also allows you to maintain a record
of the changes you made to your hardware, application configuration, and so on, which can be a
valuable asset in tracking where and when problems may have occurred.

Benchmarking Tools
Now that we’ve taken a look at how benchmarking can help you and some specific strategies
for benchmarking, let’s get our hands dirty. We’re going to show you a set of tools that, taken
together, can provide the start of your benchmarking framework. Each of these tools has its
own strengths, and you will find a use for each of them in different scenarios. We’ll investigate
the following tools:

• MySQL benchmarking suite

• MySQL Super Smack

• MyBench

• ApacheBench

• httperf

MySQL’s Benchmarking Suite
MySQL comes with its own suite of benchmarking tools, available in the source distribution
under the /sql-bench directory. This suite of benchmarking shell and Perl scripts is useful
for testing differences between installed versions of MySQL and testing differences between
MySQL running on different hardware. You can also use MySQL’s benchmarking tools to com-
pare MySQL with other database server systems, like Oracle, PostgreSQL, and Microsoft SQL
Server.

■Tip Of course, many benchmark tests have already been run. You can find some of these tests
in the source distribution in the /sql-bench/Results directory. Additionally, you can find other
non-MySQL-generated benchmarks at http://www.mysql.com/it-resources/benchmarks/.

In addition to the benchmarking scripts, the crash-me script available in the /sql-bench
directory provides a handy way to test the feature set of various database servers. This script
is also available on MySQL’s web site: http://dev.mysql.com/tech-resources/features.html.

However, there is one major flaw with the current benchmark tests: they run in a serial
manner, meaning statements are issued one after the next in a brute-force manner. This
means that if you want to test differences between hardware with multiple processes, you
will need to use a different benchmarking toolset, such as MyBench or Super Smack, in order

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING198

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 198

to get reliable results. Also note that this suite of tools is not useful for testing your own spe-
cific applications, because the tools test only a specific set of generic SQL statements and
operations.

Running All the Benchmarks
Running the MySQL benchmark suite of tests is a trivial matter, although the tests themselves
can take quite a while to execute. To execute the full suite of tests, simply run the following:

#> cd /path/to/mysqlsrc/sql-bench
#> ./run-all-tests [options]

Quite a few parameters may be passed to the run-all-tests script. The most notable of
these are outlined in Table 6-1.

Table 6-1. Parameters for Use with MySQL Benchmarking Test Scripts

Option Description

--server='server name' Specifies which database server the benchmarks should be run against.
Possible values include 'MySQL', 'MS-SQL', 'Oracle', 'DB2', 'mSQL',
'Pg', 'Solid', 'Sybase', 'Adabas', 'AdabasD', 'Access', 'Empress',
and 'Informix'.

--log Stores the results of the tests in a directory specified by the --dir
option (defaults to /sql-bench/output). Result files are named in
a format RUN-xxx, where xxx is the platform tested; for instance,
/sql-bench/output/RUN-mysql-Linux_2.6.10_1.766_FC3_i686.
If this looks like a formatted version of #> uname -a, that’s because it is.

--dir Directory for logging output (see --log).

--use-old-result Overwrites any existing logged result output (see --log).

--comment A convenient way to insert a comment into the result file indicating the
hardware and database server configuration tested.

--fast Lets the benchmark framework use non-ANSI-standard SQL commands
if such commands can make the querying faster.

--host='host' Very useful option when running the benchmark test from a remote
location. 'Host' should be the host address of the remote server where
the database is located; for instance 'www.xyzcorp.com'.

--small-test Really handy for doing a short, simple test to ensure a new MySQL
installation works properly on the server you just installed it on.
Instead of running an exhaustive benchmark, this forces the suite to
verify only that the operations succeeded.

--user User login.

--password User password.

So, if you wanted to run all the tests against the MySQL database server, logging to an out-
put file and simply verifying that the benchmark tests worked, you would execute the following
from the /sql-bench directory:

#> ./run-all-tests --small-test ––log

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 199

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 199

Viewing the Test Results
When the benchmark tests are finished, the script states:

Test finished. You can find the result in:
output/RUN-mysql-Linux_2.6.10_1.766_FC3_i686

To view the result file, issue the following command:

#> cat output/RUN-mysql-Linux_2.6.10_1.766_FC3_i686

The result file contains a summary of all the tests run, including any parameters that were
supplied to the benchmark script. Listing 6-1 shows a small sample of the result file.

Listing 6-1. Sample Excerpt from RUN-mysql-Linux_2.6.10_1.766_FC3_i686

… omitted
alter-table: Total time: 2 wallclock secs (0.03 usr 0.01 sys + 0.00 cusr 0.00 \
csys = 0.04 CPU)
ATIS: Total time: 6 wallclock secs (1.61 usr 0.29 sys + 0.00 cusr 0.00 \
csys = 1.90 CPU)
big-tables: Total time: 0 wallclock secs (0.14 usr 0.05 sys + 0.00 cusr 0.00 \
csys = 0.19 CPU)
connect: Total time: 2 wallclock secs (0.58 usr 0.16 sys + 0.00 cusr 0.00 \
csys = 0.74 CPU)
create: Total time: 1 wallclock secs (0.08 usr 0.01 sys + 0.00 cusr 0.00 \
csys = 0.09 CPU)
insert: Total time: 9 wallclock secs (3.32 usr 0.68 sys + 0.00 cusr 0.00 \
csys = 4.00 CPU)
select: Total time: 14 wallclock secs (5.22 usr 0.63 sys + 0.00 cusr 0.00 \
csys = 5.85 CPU)
… omitted

As you can see, the result file contains a summary of how long each test took to execute,
in “wallclock” seconds. The numbers in parentheses, to the right of the wallclock seconds,
show the amount of time taken by the script for some housekeeping functionality; they repre-
sent the part of the total seconds that should be disregarded by the benchmark as simply
overhead of running the script.

In addition to the main RUN-xxx output file, you will also find in the /sql-bench/output
directory nine other files that contain detailed information about each of the tests run in the
benchmark. We’ll take a look at the format of those detailed files in the next section (Listing 6-2).

Running a Specific Test
The MySQL benchmarking suite gives you the ability to run one specific test against the data-
base server, in case you are concerned about the performance comparison of only a particular
set of operations. For instance, if you just wanted to run benchmarks to compare connection
operation performance, you could execute the following:

#> ./test-connect

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING200

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 200

This will start the benchmarking process that runs a series of loops to compare the con-
nection process and various SQL statements. You should see the script informing you of
various tasks it is completing. Listing 6-2 shows an excerpt of the test run.

Listing 6-2. Excerpt from ./test-connect

Testing server 'MySQL 5.0.2 alpha' at 2005-03-07 1:12:54

Testing the speed of connecting to the server and sending of data
Connect tests are done 10000 times and other tests 100000 times

Testing connection/disconnect
Time to connect (10000): 13 wallclock secs \
(8.32 usr 1.03 sys + 0.00 cusr 0.00 csys = 9.35 CPU)

Test connect/simple select/disconnect
Time for connect+select_simple (10000): 17 wallclock secs \
(9.18 usr 1.24 sys + 0.00 cusr 0.00 csys = 10.42 CPU)

Test simple select
Time for select_simple (100000): 10 wallclock secs \
(2.40 usr 1.55 sys + 0.00 cusr 0.00 csys = 3.95 CPU)
… omitted

Total time: 167 wallclock secs \
(58.90 usr 17.03 sys + 0.00 cusr 0.00 csys = 75.93 CPU)

As you can see, the test output shows a detailed picture of the benchmarks performed.
You can use these output files to analyze the effects of changes you make to the MySQL

server configuration. Take a baseline benchmark script, like the one in Listing 6-2, and save it.
Then, after making the change to the configuration file you want to test—for instance, chang-
ing the key_buffer_size value—rerun the same test and compare the output results to see if,
and by how much, the performance of your benchmark tests have changed.

MySQL Super Smack
Super Smack is a powerful, customizable benchmarking tool that provides load limitations, in
terms of queries per second, of the benchmark tests it is supplied. Super Smack works by pro-
cessing a custom configuration file (called a smack file), which houses instructions on how to
process one or more series of queries (called query barrels in smack lingo). These configura-
tion files are the heart of Super Smack’s power, as they give you the ability to customize the
processing of your SQL queries, the creation of your test data, and other variables.

Before you use Super Smack, you need to download and install it, since it does not come
with MySQL. Go to http://vegan.net/tony/supersmack and download the latest version of
Super Smack from Tony Bourke’s web site.1 Use the following to install Super Smack, after

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 201

1. Super Smack was originally developed by Sasha Pachev, formerly of MySQL AB. Tony Bourke now
maintains the source code and makes it available on his web site (http://vegan.net/tony/).

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 201

changing to the directory where you just downloaded the tar file to (we’ve downloaded version
1.2 here; there may be a newer version of the software when you reach the web site):

#> tar -xzf super-smack-1.2.tar.gz
#> cd super-smack-1.2
#> ./configure –with-mysql
#> make install

Running Super Smack
Make sure you’re logged in as a root user when you install Super Smack. Then, to get an idea of
what the output of a sample smack run is, execute the following:

#> super-smack -d mysql smacks/select-key.smack 10 100

This command fires off the super-smack executable, telling it to use MySQL (-d mysql), passing
it the smack configuration file located in smack/select-key.smack, and telling it to use 10 con-
current clients and to repeat the tests in the smack file 100 times for each client.

You should see something very similar to Listing 6-3. The connect times and q_per_s values
may be different on your own machine.

Listing 6-3. Executing Super Smack for the First Time

Error running query select count(*) from http_auth: \
Table 'test.http_auth' doesn't exist
Creating table 'http_auth'
Populating data file '/var/smack-data/words.dat' \
with # command 'gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d'
Loading data from file '/var/smack-data/words.dat' into table 'http_auth'
Table http_auth is now ready for the test
Query Barrel Report for client smacker1
connect: max=4ms min=0ms avg= 1ms from 10 clients
Query_type num_queries max_time min_time q_per_s
select_index 2000 0 0 4983.79

Let’s walk through what’s going on here. Going from the top of Listing 6-3, you see that
when Super Smack started the benchmark test found in smack/select-key.smack, it tried to
execute a query against a table (http_auth) that didn’t exist. So, Super Smack created the
http_auth table. We’ll explain how Super Smack knew how to create the table in just a
minute. Moving on, the next two lines tell you that Super Smack created a test data file
(/var/smack-data/words.dat) and loaded the test data into the http_auth table.

■Tip As of this writing, Super Smack can also benchmark against the PostgreSQL database server (using
the -d pg option). See the file TUTORIAL located in the /super-smack directory for some details on speci-
fying PostgreSQL parameters in the smack files.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING202

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 202

Finally, under the line Query Barrel Report for client smacker1, you see the output of
the benchmark test (highlighted in Listing 6-3). The first highlighted line shows a breakdown
of the times taken to connect for the clients we requested. The number of clients should
match the number from your command line. The following lines contain the output results
of each type of query contained in the smack file. In this case, there was only one query type,
called select_index. In our run, Super Smack executed 2,000 queries for the select_index
query type. The corresponding output line in Listing 6-3 shows that the minimum and maxi-
mum times for the queries were all under 1 millisecond (thus, 0), and that 4,982.79 queries
were executed per second (q_per_s). This last statistic, q_per_s, is what you are most inter-
ested in, since this statistic gives you the best number to compare with later benchmarks.

■Tip Remember to rerun your benchmark tests and average the results of the tests to get the most accu-
rate benchmark results. If you rerun the smack file in Listing 6-3, even with the same parameters, you’ll
notice the resulting q_per_s value will be slightly different almost every time, which demonstrates the need
for multiple test runs.

To see how Super Smack can help you analyze some useful data, let’s run the following
slight variation on our previous shell execution. As you can see, we’ve changed only the num-
ber of concurrent clients, from 10 to 20.

#> super-smack -d mysql smacks/select-key.smack 20 100
Query Barrel Report for client smacker1
connect: max=206ms min=0ms avg= 18ms from 20 clients
Query_type num_queries max_time min_time q_per_s
select_index 4000 0 0 5054.71

Here, you see that increasing the number of concurrent clients actually increased the per-
formance of the benchmark test. You can continue to increment the number of clients by a small
amount (increments of ten in this example) and compare the q_per_s value to your previous runs.
When you start to see the value of q_per_s decrease or level off, you know that you’ve hit your
peak performance for this benchmark test configuration.

In this way, you perform a process of determining an optimal condition. In this scenario,
the condition is the number of concurrent clients (the variable you’re changing in each itera-
tion of the benchmark). With each iteration, you come closer to determining the optimal value
of a specific variable in your scenario. In our case, we determined that for the queries being
executed in the select-key.smack benchmark, the optimal number of concurrent client con-
nections would be around 30—that’s where this particular laptop peaked in queries per
second. Pretty neat, huh?

But, you might ask, how is this kind of benchmarking applicable to a real-world example?
Clearly, select-key.smack doesn’t represent much of anything (just a simple SELECT statement,
as you’ll see in a moment). The real power of Super Smack lies in the customizable nature of
the smack configuration files.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 203

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 203

Building Smack Files
You can build your own smack files to represent either your whole application or pieces of the
application. Let’s take an in-depth look at the components of the select-key.smack file, and you’ll
get a feel for just how powerful this tool can be. Do a simple #> cat smacks/select-key.smack to
display the smack configuration file you used in the preliminary benchmark tests. You can follow
along as we walk through the pieces of this file.

■Tip When creating your own smack files, it’s easiest to use a copy of the sample smack files included
with Super Smack. Just do #> cp smacks/select-key.smack smacks/mynew.smack to make a new
copy. Then modify the mynew.smack file.

Configuration smack files are composed of sections, formatted in a way that resembles
C syntax. These sections define the following parts of the benchmark test:

• Client configuration: Defines a named client for the smack program (you can view this
as a client connection to the database).

• Table configuration: Names and defines a table to be used in the benchmark tests.

• Dictionary configuration: Names and describes a source for data that can be used in
generating test data.

• Query definition: Names one or more SQL statements to be run during the test and
defines what those SQL statements should do, how often they should be executed, and
what parameters and variables should be included in the statements.

• Main: The execution component of Super Smack.

Going from the top of the smack file to the bottom, let’s take a look at the code.

First Client Configuration Section

Listing 6-4 shows the first part of select-key.smack.

Listing 6-4. Client Configuration in select-key.smack

// this is will be used in the table section
client "admin"
{
user "root";
host "localhost";
db "test";
pass "";
socket "/var/lib/mysql/mysql.sock"; // this only applies to MySQL and is
// ignored for PostgreSQL
}

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING204

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 204

This is pretty straightforward. This section of the smack file is naming a new client for the
benchmark called admin and assigning some connection properties for the client. You can cre-
ate any number of named client components, which can represent various connections to the
various databases. We’ll take a look at the second client configuration in the select-key.smack
file soon. But first, let’s examine the next configuration section in the file.

Table Configuration Section

Listing 6-5 shows the first defined table section.

Listing 6-5. Table Section Definition in select-key.smack

// ensure the table exists and meets the conditions
table "http_auth"
{
client "admin"; // connect with this client
// if the table is not found or does not pass the checks, create it
// with the following, dropping the old one if needed
create "create table http_auth
(username char(25) not null primary key,
pass char(25),
uid integer not null,
gid integer not null
)";

min_rows "90000"; // the table must have at least that many rows
data_file "words.dat"; // if the table is empty, load the data from this file
gen_data_file "gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d";

// if the file above does not exist, generate it with the above shell command
// you can replace this command with anything that prints comma-delimited
// data to stdout, just make sure you have the right number of columns
}

Here, you see we’re naming a new table configuration section, for a table called http_auth,
and defining a create statement for the table, in case the table does not exist in the database.
Which database will the table be created in? The database used by the client specified in the
table configuration section (in this case the client admin, which we defined in Listing 6-4).

The lines after the create definition are used by Super Smack to populate the http_auth
table with data, if the table has less than the min_rows value (here, 90,000 rows). The data_file
value specifies a file containing comma-delimited data to fill the http_auth table. If this file
does not exist in the /var/smack-data directory, Super Smack will use the command given in
the gen_data_file value in order to create the data file needed.

In this case, you can see that Super Smack is executing the following command in order to
generate the words.dat file:

#> gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d

gen-data is a program that comes bundled with Super Smack. It enables you to generate
random data files using a simple command-line syntax similar to C’s fprintf() function. The
-n [rows] command-line option tells gen-data to create 90,000 rows in this case, and the -f
option is followed by a formatting string that can take the tokens listed in Table 6-2. The

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 205

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 205

formatting string then outputs randomized data to the file in the data_file value, delimited
by whichever delimiter is used in the format string. In this case, a comma was used to delimit
fields in the data rows.

Table 6-2. Super Smack gen-data -f Option Formatting Tokens

Token Used For Comments

%[min][-][max]s String fields Prints strings of lengths between the min and max
values. For example, %10-25s creates a character field
between 10 and 25 characters long. For fixed-length
character fields, simply set min equal to the
maximum number of characters.

%n Row numbers Puts an integer value in the field with the value of the
row number. Use this to simulate an auto-increment
column.

%d Integer fields Creates a random integer number. The version of
gen-data that comes with Super Smack 1.2 does not
allow you to specify the length of the numeric data
produced, so %07d does not generate a seven-digit
number, but a random integer of a random length of
characters. In our tests, gen-data simply generated
7-, 8-, 9-, and 10-character length positive integers.

You can optionally choose to substitute your own scripts or executables in place of the sim-
ple gen-data program. For instance, if you had a Perl script /tests/create-test-data.pl, which
created custom test tables, you could change the table configuration section’s gen-data-file
value as follows:

gen-data-file "perl /tests/create-test-data.pl"

POPULATING TEST SETS WITH GEN-DATA

gen-data is a neat little tool that you can use in your scripts to generate randomized data. gen-data
prints its output to the standard output (stdout) by default, but you can redirect that output to your own
scripts or another file. Running gen-data in a console, you might see the following results:

#> gen-data -n 12 -f %10-10s,%n,%d,%10-40s
ilcpsklryv,1,1025202362,pjnbpbwllsrehfmxr
kecwitrsgl,2,1656478042,xvtjmxypunbqfgxmuvg
fajclfvenh,3,1141616124,huorjosamibdnjdbeyhkbsomb
ltouujdrbw,4,927612902,rcgbflqpottpegrwvgajcrgwdlpgitydvhedt
usippyvxsu,5,150122846,vfenodqasajoyomgsqcpjlhbmdahyvi
uemkssdsld,6,1784639529,esnnngpesdntrrvysuipywatpfoelthrowhf
exlwdysvsp,7,87755422,kfblfdfultbwpiqhiymmy
alcyeasvxg,8,2113903881,itknygyvjxnspubqjppj
brlhugesmm,9,1065103348,jjlkrmgbnwvftyveolprfdcajiuywtvg
fjrwwaakwy,10,1896306640,xnxpypjgtlhf
teetxbafkr,11,105575579,sfvrenlebjtccg
jvrsdowiix,12,653448036,dxdiixpervseavnwypdinwdrlacv

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING206

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 206

You can use a redirect to output the results to a file, as in this example:

#> gen-data -n 12 -f %10-10s,%n,%d,%10-40s > /test-data/table1.dat

A number of enhancements could be made to gen-data, particularly in the creation of more random
data samples. You’ll find that rerunning the gen-data script produces the same results under the same
session. Additionally, the formatting options are quite limited, especially for the delimiters it's capable of pro-
ducing. We tested using the standard \t character escape, which produces just a "t" character when the
format string was left unquoted, and a literal "\t" when quoted. Using ";" as a delimiter, you must remem-
ber to use double quotes around the format string, as your console will interpret the string as multiple
commands to execute.

Regardless of these limitations, gen-data is an excellent tool for quick generation, especially of text
data. Perhaps there will be some improvements to it in the future, but for now, it seems that the author pro-
vided a simple tool under the assumption that developers would generally prefer to write their own scripts for
their own custom needs.

As an alternative to gen-data, you can always use a simple SQL statement to dump existing data into
delimited files, which Super Smack can use in benchmarking. To do so, execute the following:

SELECT field1, field2, field3 INTO OUTFILE "/test-data/test.csv"
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\n"
FROM table1

You should substitute your own directory for our /test-data/ directory in the code. Ensure that the
mysql user has write permissions for the directory as well.

Remember that Super Smack looks for the data file in the /var/smack-data directory by default (you
can configure it to look somewhere else during installation by using the --datadir configure option). So,
copy your test file over to that directory before running a smack file that looks for it:

#> cp /test-data/test.csv /var/smack-data/test.csv

Dictionary Configuration Section

The next configuration section is to configure the dictionary, which is named word in
select-key.smack, as shown in Listing 6-6.

Listing 6-6. Dictionary Configuration Section in select-key.smack

//define a dictionary
dictionary "word"
{
type "rand"; // words are retrieved in random order
source_type "file"; // words come from a file
source "words.dat"; // file location
delim ","; // take the part of the line before,
file_size_equiv "45000"; // if the file is greater than this

//divive the real file size by this value obtaining N and take every Nth
//line skipping others. This is needed to be able to target a wide key
// range without using up too much memory with test keys
}

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 207

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 207

This structure defines a dictionary object named word, which Super Smack can use in
order to find rows in a table object. You’ll see how the dictionary object is used in just a
moment. For now, let’s look at the various options a dictionary section has. The variables are
not as straightforward as you might hope.

The source_type variable is where to find or generate the dictionary entries; that is, where
to find data to put into the array of entries that can be retrieved by Super Smack from the dic-
tionary. The source_type can be one of the following:

• "file": If source_type = "file", the source value will be interpreted as a file path rela-
tive to the data directory for Super Smack. By default, this directory is /var/smack-data,
but it can be changed with the ./configure --with-datadir=DIR option during installa-
tion. Super Smack will load the dictionary with entries consisting of the first field in the
row. This means that if the source file is a comma-delimited data set (like the one gen-
erated by gen-data), only the first character field (up to the comma) will be used as an
entry. The rest of the row is discarded.

• "list": When source_type = "list", the source value must consist of a list of comma-
separated values that will represent the entries in the dictionary. For instance, source =
"cat,dog,owl,bird" with a source_type of "list" produces four entries in the diction-
ary for the four animals.

• "template": If the "template" value is used for the source_type variable, the source vari-
able must contain a valid printf()2 format string, which will be used to generate the
needed dictionary entries when the dictionary is called by a query object. When the
type variable is also set to "unique", the entries will be fed to the template defined in
the source variable, along with an incremented integer ID of the entry generated by
the dictionary. So, if you had set up the source template value as "%05d", the generated
entries would be five-digit auto-incremented integers.

The type variable tells Super Smack how to initialize the dictionary from the source vari-
able. It can be any of the following:

• "rand": The entries in the dictionary will be created by accessing entries in the source
value or file in a random order. If the source_type is "file", to load the dictionary, rows
will be selected from the file randomly, and the characters in the row up to the delimiter
(delim) will be used as the dictionary entry. If you used the same generated file in popu-
lating your table, you’re guaranteed of finding a matching entry in your table.

• "seq": Super Smack will read entries from the dictionary file in sequential order, for
as many rows as the benchmark dictates (as you’ll see in a minute). Again, you’re
guaranteed to find a match if you used the same generated file to populate the table.

• "unique": Super Smack will generate fields in a unique manner similar to the way
gen-data creates field values. You’re not guaranteed that the uniquely generated
field will match any values in your table. Use this type setting with the "template"
source_type variable.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING208

2. If you’re unfamiliar with printf() C function, simply do a #> man sprintf from your console for
instructions on its usage.

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 208

Query Definition Section

The next section in select-key.smack shows the query object definition being tested in the
benchmark. The query object defines the SQL statements you will run for the benchmark.
Listing 6-7 shows the definition.

Listing 6-7. Query Object Definition in select-key.smack

query "select_by_username"
{
query "select * from http_auth where username = '$word'";

// $word will be substitute with the read from the 'word' dictionary
type "select_index";

// query stats will be grouped by type
has_result_set "y";

// the query is expected to return a result set
parsed "y";

// the query string should be first processed by super-smack to do
// dictionary substitution
}

First, the query variable is set to a string housing a SQL statement. In this case, it’s a
simple SELECT statement against the http_auth table defined earlier, with a WHERE expression
on the username field. We’ll explain how the '$word' parameter gets filled in just a second.
The type variable is simply a grouping for the final performance results output. Remember
the output from Super Smack shown earlier in Listing 6-3? The query_type column corre-
sponds to the type variable in the various query object definitions in your smack files. Here,
in select-key.smack, there is only a single query object, so you see just one value in the
query_type column of the output result. If you had more than one query, having distinct
type values, you would see multiple rows in the output result representing the different
query types. You can see an example of this in update-key.smack, the other sample smack
file, which we encourage you to investigate.

The has_result_set value (either "y" or "n") is fairly self-explanatory and simply informs
Super Smack that the query will return a resultset. The parsed variable value (again, either "y"
or "n") is a little more interesting. It relates to the dictionary object definition we covered ear-
lier. If the parsed variable is set to "y", Super Smack will fill any placeholders of the style $xxx
with a dictionary entry corresponding to xxx. Here, the placeholder $word in the query object’s
SQL statement will be replaced with an entry from the "word" dictionary, which was previously
defined in the file.

You can define any number of named dictionaries, similar to the way we defined the
"word" dictionary in this example. For each dictionary, you may refer to dictionary entries in
your queries using the name of the dictionary. For instance, if you had defined two dictionary
objects, one called "username" and one called "password", which you had populated with user-
names and passwords, you could have a query statement like the following:

query "userpass_select"
{
query "SELECT * FROM http_auth WHERE username='$username' AND pass='$password'";
has_result_set = "y";
parsed = "y";

}

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 209

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 209

Second Client Configuration Section

In Listing 6-8, you see the next object definition, another client object. This time, it does the
actual querying against the http_auth table.

Listing 6-8. Second Client Object Definition in select-key.smack

client "smacker1"
{
user "test"; // connect as this user
pass ""; // use this password
host "localhost"; // connect to this host
db "test"; // switch to this database
socket "/var/lib/mysql/mysql.sock"; // this only applies to MySQL and is
// ignored for PostgreSQL
query_barrel "2 select_by_username"; // on each round,
// run select_by_username query 2 times
}

This client is responsible for the brunt of the benchmark queries. As you can see,
"smacker1" is a client object with the normal client variables you saw earlier, but with an
extra variable called query_barrel.3

A query barrel, in smack terms, is simply a series of named queries run for the client object.
The query barrel contains a string in the form of "n query_object_name […]", where n is the num-
ber of “shots” of the query defined in query_object_name that should be “fired” for each invocation
of this client. In this case, the "select_by_username" query object is shot twice for each client
during firing of the benchmark smack file. If you investigate the other sample smack file, update-➥

key.smack, you’ll see that Super Smack fires one shot for an "update_by_username" query object
and one shot for a "select_by_username" query object in its own "smacker1" client object.

Main Section

Listing 6-9 shows the final main execution object for the select-key.smack file.

Listing 6-9. Main Execution Object in select-key.smack

main
{
smacker1.init(); // initialize the client
smacker1.set_num_rounds($2); // second arg on the command line defines

// the number of rounds for each client
smacker1.create_threads($1);

// first argument on the command line defines how many client instances
// to fork. Anything after this will be done once for each client until
// you collect the threads
smacker1.connect();

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING210

3. Super Smack uses a gun metaphor to symbolize what’s going on in the benchmark runs. super-smack
is the gun, which fires benchmark test bullets from its query barrels. Each query barrel can contain a
number of shots.

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 210

// you must connect after you fork
smacker1.unload_query_barrel(); // for each client fire the query barrel

// it will now do the number of rounds specified by set_num_rounds()
// on each round, query_barrel of the client is executed
smacker1.collect_threads();

// the master thread waits for the children, each child reports the stats
// the stats are printed
smacker1.disconnect();

// the children now disconnect and exit
}

This object describes the steps that Super Smack takes to actually run the benchmark
using all the objects you’ve previously defined in the smack file.

■Note It doesn’t matter in which order you define objects in your smack files, with one exception. You
must define the main executable object last.

The client "smacker1", which you’ve seen defined in Listing 6-8, is initialized (loaded into
memory), and then the next two functions, set_num_rounds() and create_threads(), use argu-
ments passed in on the command line to configure the test for the number of iterations you
passed through and spawn the number of clients you’ve requested. The $1 and $2 represent
the command-line arguments passed to Super Smack after the name of the smack file (those
of you familiar with shell scripting will recognize the nomenclature here). In our earlier sam-
ple run of Super Smack, we executed the following:

#> super-smack –d mysql smacks/select-key.smack 10 100

The 10 would be put into the $1 variable, and 100 goes into the $2 variable.
Next, the smacker1 client connects to the database defined in its db variable, passing the

authentication information it also contains. The client’s query_barrel variable is fired, using
the unload_query_barrel() function, and finally some cleanup work is done with the collect_
threads() and disconnect() functions. Super Smack then displays the results of the bench-
mark test to stdout.

When you’re doing your own benchmarking with Super Smack, you’ll most likely want to
change the client, dictionary, table, and query objects to correspond to the SQL code you
want to test. The main object definition will not need to be changed, unless you want to start
tinkering with the C++ super-smack code.

■Caution For each concurrent client you specify for Super Smack to create, it creates a persistent con-
nection to the MySQL server. For this reason, unless you want to take a crack at modifying the source code,
it’s not possible to simulate nonpersistent connections. This constraint, however, is not a problem if you are
using Super Smack simply to compare the performance results of various query incarnations. If, however,
you wish to truly simulate a web application environment (and thus, nonpersistent connections) you should
use either ApacheBench or httperf to benchmark the entire web application.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 211

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 211

MyBench
Although Super Smack is a very powerful benchmarking program, it can be difficult to bench-
mark a complex set of logical instructions. As you’ve seen, Super Smack’s configuration files are
fairly limited in what they can test: basically, just straight SQL statements. If you need to test some
complicated logic—for instance, when you need to benchmark a script that processes a number
of statements inside a transaction, and you need to rely on SQL inline variables (@variable . . .)—
you will need to use a more flexible benchmarking system.

Jeremy Zawodny, coauthor of High Performance MySQL (O’Reilly, 2004) has created a
Perl module called MyBench (http://jeremy.zawodny.com/mysql/mybench/), which allows you
to benchmark logic that is a little more complex. The module enables you to write your own
Perl functions, which are fed to the MyBench benchmarking framework using a callback. The
framework handles the chore of spawning the client threads and executing your function,
which can contain any arbitrary logic that connects to a database, executes Perl and SQL
code, and so on.

■Tip For server and configuration tuning, and in-depth coverage of Jeremy Zawodny’s various utility
tools like MyBench and mytop, consider picking up a copy of High Performance MySQL (O’Reilly, 2004), by
Jeremy Zawodny and Derek Bailing. The book is fairly focused on techniques to improve the performance
of your hardware and MySQL configuration, the material is thoughtful, and the book is an excellent tuning
reference.

The sample Perl script, called bench_example, which comes bundled with the software,
provides an example on which you can base your own benchmark tests. Installation of the
module follows the standard GNU make process. Instructions are available in the tarball
you can download from the MyBench site.

■Caution Because MyBench is not compiled (it’s a Perl module), it can be more resource-intensive than
running Super Smack. So, when you run benchmarks using MyBench, it’s helpful to run them on a machine
separate from your database, if that database is on a production machine. MyBench can use the standard
Perl DBI module to connect to remote machines in your benchmark scripts.

ApacheBench (ab)
A good percentage of developers and administrators reading this text will be using MySQL
for web-based applications. Therefore, we found it prudent to cover two web application
stress-testing tools: ApacheBench (described here) and httperf (described in the next section).

ApacheBench (ab) comes installed on almost any Unix/Linux distribution with the Apache
web server installed. It is a contrived load generator, and therefore provides a brute-force method
of determining how many requests for a particular web resource a server can handle.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING212

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 212

As an example, let’s run a benchmark comparing the performance of two simple scripts,
finduser1.php (shown in Listing 6-10) and finduser2.php (shown in Listing 6-11), which select
records from the http_auth table we populated earlier in the section about Super Smack. The
http_auth table contains 90,000 records and has a primary key index on username, which is a
char(25) field. Each username has exactly 25 characters. For the tests, we’ve turned off the
query cache, so that it won't skew any results. We know that the number of records that match
both queries is exactly 146 rows in our generated table. However, here we’re going to do some
simple benchmarks to determine which method of retrieving the same information is faster.

■Note If you’re not familiar with the REGEXP function, head over to http://dev.mysql.com/doc/mysql/
en/regexp.html. You’ll see that the SQL statements in the two scripts in Listings 6-10 and 6-11 produce
identical results.

Listing 6-10. finduser1.php

<?php
// finduser1.php
$conn = mysql_connect("localhost","test","") or die (mysql_error());

mysql_select_db("test", $conn) or die ("Can't use database 'test'");

$result = mysql_query("SELECT * FROM http_auth WHERE username LIKE 'ud%'");

if ($result)
echo "found: " . mysql_num_rows($result);
else
echo mysql_error();
?>

Listing 6-11. finduser2.php

<?php
// finduser2.php
$conn = mysql_connect("localhost","test","") or die (mysql_error());

mysql_select_db("test", $conn) or die ("Can't use database 'test'");

$result = mysql_query("SELECT * FROM http_auth WHERE username REGEXP '^ud'");

if ($result)
echo "found: " . mysql_num_rows($result);
else
echo mysql_error();
?>

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 213

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 213

You can call ApacheBench from the command line, in a fashion similar to calling Super
Smack. Listing 6-12 shows an example of calling ApacheBench to benchmark a simple script and
its output. The resultset shows the performance of the finduser1.php script from Listing 6-10.

Listing 6-12. Running ApacheBench and the Output Results for finduser1.php

ab -n 100 -c 10 http://127.0.0.1/finduser1.php
Document Path: /finduser1.php
Document Length: 84 bytes

Concurrency Level: 10
Time taken for tests: 1.797687 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 277000 bytes
HTML transferred: 84000 bytes
Requests per second: 556.27 [#/sec] (mean)
Time per request: 17.977 [ms] (mean)
Time per request: 1.798 [ms] (mean, across all concurrent requests)
Transfer rate: 150.19 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 0 0.3 0 3
Processing: 1 15 62.2 6 705
Waiting: 1 11 43.7 5 643
Total: 1 15 62.3 6 708

Percentage of the requests served within a certain time (ms)
50% 6
66% 9
75% 10
80% 11
90% 15
95% 22
98% 91
99% 210
100% 708 (longest request)

As you can see, ApacheBench outputs the results of its stress testing in terms of the num-
ber of requests per second it was able to sustain (along with the min and max requests), given a
number of concurrent connections (the -c command-line option) and the number of requests
per concurrent connection (the -n option).

We provided a high enough number of iterations and clients to make the means accurate
and reduce the chances of an outlier skewing the results. The output from ApacheBench shows a
number of other statistics, most notably the percentage of requests that completed within a cer-
tain time in milliseconds. As you can see, for finduser1.php, 80% of the requests completed in

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING214

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 214

11 milliseconds or less. You can use these numbers to determine whether, given a certain
amount of traffic to a page (in number of requests and number of concurrent clients), you
are falling within your acceptable response times in your benchmarking plan.

To compare the performance of finduser1.php with finduser2.php, we want to execute
the same benchmark command, but on the finduser2.php script instead. In order to ensure
that we were operating in the same environment as the first test, we did a quick reboot of our
system and ran the tests. Listing 6-13 shows the results for finduser2.php.

Listing 6-13. Results for finduser2.php (REGEXP)

ab -n 100 -c 10 http://127.0.0.1/finduser2.php
Document Path: /finduser1.php
Document Length: 10 bytes

Concurrency Level: 10
Time taken for tests: 5.848457 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 203000 bytes
HTML transferred: 10000 bytes
Requests per second: 170.99 [#/sec] (mean)
Time per request: 58.485 [ms] (mean)
Time per request: 5.848 [ms] (mean, across all concurrent requests)
Transfer rate: 33.86 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 0 0.6 0 7
Processing: 3 57 148.3 30 1410
Waiting: 2 56 144.6 29 1330
Total: 3 57 148.5 30 1413

Percentage of the requests served within a certain time (ms)
50% 30
66% 38
75% 51
80% 56
90% 73
95% 109
98% 412
99% 1355
100% 1413 (longest request)

As you can see, ApacheBench reported a substantial performance decrease from the first
run: 556.27 requests per second compared to 170.99 requests per second, making finduser1.php
more than 325% faster. In this way, ApacheBench enabled us to get real numbers in order to
compare our two methods.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 215

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 215

Clearly, in this case, we could have just as easily used Super Smack to run the benchmark
comparisons, since we’re changing only a simple SQL statement; the PHP code does very little.
However, the example is meant only as a demonstration. The power of ApacheBench (and
httperf, described next) is that you can use a single benchmarking platform to test both
MySQL-specific code and PHP code. PHP applications are a mixture of both, and having a
benchmark tool that can test and isolate the performance of both of them together is a valu-
able part of your benchmarking framework.

The ApacheBench benchmark has told us only that the REGEXP method fared poorly com-
pared with the simple LIKE clause. The benchmark hasn’t provided any insight into why the
REGEXP scenario performed poorly. For that, we’ll need to use some profiling tools in order to
dig down into the root of the issue, which we’ll do in a moment. But the benchmarking frame-
work has given us two important things: real percentile orders of differentiation between two
comparative methods of achieving the same thing, and knowledge of how many requests per
second the web server can perform given this particular PHP script.

If we had supplied ApacheBench with a page in an actual application, we would have some
numbers on the load limits our actual server could maintain. However, the load limits reflect a
scenario in which users are requesting only a single page of our application in a brute-force way.
If we want a more realistic tool for assessing a web application’s load limitations, we should turn
to httperf.

httperf
Developed by David Mosberger of HP Research Labs, httperf is an HTTP load generator with a
great deal of features, including the ability to read Apache log files, generate sessions in order to
simulate user behavior, and generate realistic user-browsing patterns based on a simple scripting
format. You can obtain httperf from http://www.hpl.hp.com/personal/David_Mosberger/
httperf.html. After installing httperf using a standard GNU make installation, go through
the man pages thoroughly to investigate the myriad options available to you.

Running httperf is similar to running ApacheBench: you call the httperf program
and specify a number of connections (--num-conn) and the number of calls per connection
(--num-calls). Listing 6-14 shows the output of httperf running a benchmark against the same
finduser2.php script (Listing 6-11) we used in the previous section.

Listing 6-14. Output from httperf

httperf --server=localhost --uri=/finduser2.php --num-conns=10 --num-calls=100
Maximum connect burst length: 1

Total: connections 10 requests 18 replies 8 test-duration 2.477 s

Connection rate: 4.0 conn/s (247.7 ms/conn, <=1 concurrent connections)
Connection time [ms]: min 237.2 avg 308.8 max 582.7 median 240.5 stddev 119.9
Connection time [ms]: connect 0.3
Connection length [replies/conn]: 1.000

Request rate: 7.3 req/s (137.6 ms/req)
Request size [B]: 73.0

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING216

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 216

Reply rate [replies/s]: min 0.0 avg 0.0 max 0.0 stddev 0.0 (0 samples)
Reply time [ms]: response 303.8 transfer 0.0
Reply size [B]: header 193.0 content 10.0 footer 0.0 (total 203.0)
Reply status: 1xx=0 2xx=8 3xx=0 4xx=0 5xx=0

CPU time [s]: user 0.06 system 0.44 (user 2.3% system 18.0% total 20.3%)
Net I/O: 1.2 KB/s (0.0*10^6 bps)

Errors: total 10 client-timo 0 socket-timo 0 connrefused 0 connreset 10
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

As you’ve seen in our benchmarking examples, these tools can provide you with some
excellent numbers in comparing the differences between approaches and show valuable
information regarding which areas of your application struggle compared with others. How-
ever, benchmarks won’t allow you to diagnose exactly what it is about your SQL or application
code scripts that are causing a performance breakdown. For example, benchmark test results
fell short in identifying why the REGEXP scenario performed so poorly. This is where profilers
and profiling techniques enter the picture.

What Can Profiling Do for You?
Profilers and diagnostic techniques enable you to procure information about memory con-
sumption, response times, locking, and process counts from the engines that execute your
SQL scripts and application code.

PROFILERS VS. DIAGNOSTIC TECHNIQUES

When we speak about the topic of profiling, it’s useful to differentiate between a profiler and a profiling technique.
A profiler is a full-blown application that is responsible for conducting what are called traces on appli-

cation code passed through the profiler. These traces contain information about the breakdown of function
calls within the application code block analyzed in the trace. Most profilers commonly contain the functional-
ity of debuggers in addition to their profiling ability, which enables you to detect errors in the application code
as they occur and sometimes even lets you step through the code itself. Additionally, profiler traces come in
two different formats: human-readable and machine-readable. Human-readable traces are nice because you
can easily read the output of the profiler. However, machine-readable trace output is much more extensible,
as it can be read into analysis and graphing programs, which can use the information contained in the trace
file because it’s in a standardized format. Many profilers today include the ability to produce both types of
trace output.

Diagnostic techniques, on the other hand, are not programs per se, but methods you can deploy, either
manually or in an automated fashion, in order to grab information about the application code while it is being
executed. You can use this information, sometimes called a dump or a trace, in diagnosing problems on the
server as they occur.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 217

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 217

From a MySQL perspective, you’re interested in determining how many threads are exe-
cuting against the server, what these threads are doing, and how efficiently your server is
processing these requests. You should already be familiar with many of MySQL’s status vari-
ables, which provide insight into the various caches and statistics that MySQL keeps available.
However, aside from this information, you also want to see the statements that threads are
actually running against the server as they occur. You want to see just how many resources are
being consumed by the threads. You want to see if one particular type of query is consistently
producing a bottleneck—for instance, locking tables for an extended period of time, which
can create a domino effect of other threads waiting for a locked resource to be freed. Addition-
ally, you want to be able to determine how MySQL is attempting to execute SQL statement
requests, and perhaps get some insight into why MySQL chooses a particular path of execution.

From a web application’s perspective, you want to know much the same kind of informa-
tion. Which, if any, of your application blocks is taking the most time to execute? For a page
request, it would be nice to see if one particular function call is demanding the vast majority
of processing power. If you make changes to the code, how does the performance change?

Anyone can guess as to why an application is performing poorly. You can go on any Inter-
net forum, enter a post about your particular situation, and you’ll get 100 different responses,
all claiming their answer is accurate. But, the fact is, until they or you run some sort of diag-
nostic routines or a profiler against your application while it is executing, everyone’s answer is
simply a guess. Guessing just doesn’t cut it in the professional world. Using a profiler and diag-
nostic techniques, you can find out for yourself what specific parts of an application aren’t up
to snuff, and take corrective action based on your findings.

General Profiling Guidelines
There’s a principle in diagnosing and identifying problems in application code that is worth
repeating here before we get into the profiling tools you’ll be using. When you see the results
of a profiler trace, you’ll be presented with information that will show you an application
block broken down into how many times a function (or SQL statement) was called, and how
long the function call took to complete. It is extremely easy to fall into the trap of overoptimiz-
ing a piece of application code, simply because you have the diagnostic tools that show you
what’s going on in your code. This is especially true for PHP programmers who see the func-
tion call stack for their pages and want to optimize every single function call in their
application.

Basically, the rule of thumb is to start with the block of code that is taking the longest time
to execute or is consuming the most resources. Spend your time identifying and fixing those
parts of your application code that will have noticeable impact for your users. Don’t waste
your precious time optimizing a function call that executes in 4 milliseconds just to get the
time down to 2 milliseconds. It’s just not worth it, unless that function is called so often that
it makes a difference to your users. Your time is much better spent going after the big fish.

That said, if you do identify a way to make your code faster, by all means document it and
use that knowledge in your future coding. If time permits, perhaps think about refactoring
older code bases with your newfound knowledge. But always take into account the value of
your time in doing so versus the benefits, in real time, to the user.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING218

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 218

Profiling Tools
Your first question might be, “Is there a MySQL profiler?” The flat answer is no, there isn’t.
Although MySQL provides some tools that enable you to do profiling (to a certain extent) of
the SQL statements being run against the server, MySQL does not currently come bundled
with a profiler program able to generate storable trace files.

If you are coming from a Microsoft SQL Server background and have experience using
the SQL Server Profiler, you will still be able to use your basic knowledge of how traces and
profiling work, but unfortunately, MySQL has no similar tool. There are some third-party
vendors who make some purported profilers, but these merely display the binary log file
data generated by MySQL and are not hooked in to MySQL’s process management directly.

Here, we will go over some tools that you can use to simulate a true profiler environment,
so that you can diagnose issues effectively. These tools will prove invaluable to you as you
tackle the often-difficult problem of figuring out what is going on in your systems. We’ll
cover the following tools of the trade:

• The SHOW FULL PROCESSLIST and SHOW STATUS commands

• The EXPLAIN command

• The slow query and general query logs

• Mytop

• The Zend Advanced PHP Debugger extension

The SHOW FULL PROCESSLIST Command
The first tool in any MySQL administrator’s tool belt is the SHOW FULL PROCESSLIST command.
SHOW FULL PROCESSLIST returns the threads that are active in the MySQL server as a snapshot
of the connection resources used by MySQL at the time the SHOW FULL PROCESSLIST command
was executed. Table 6-3 lists the fields returned by the command.

Table 6-3. Fields Returned from SHOW FULL PROCESSLIST

Field Comment

Id ID of the user connection thread

User Authenticated user

Host Authenticating host

db Name of database or NULL for requests not executing database-specific requests
(like SHOW FULL PROCESSLIST)

Command Usually either Query or Sleep, corresponding to whether the thread is actually
performing something at the moment

Time The amount of time in seconds the thread has been in this particular state (shown
in the next field)

State The status of the thread’s execution (discussed in the following text)

Info The SQL statement executing, if you ran your SHOW FULL PROCESSLIST at the time
when a thread was actually executing a query, or some other pertinent information

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 219

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 219

Other than the actual query text, which appears in the Info column during a thread’s
query execution,4 the State field is what you’re interested in. The following are the major
states:

Sending data: This state appears when a thread is processing rows of a SELECT statement
in order to return the result to the client. Usually, this is a normal state to see returned,
especially on a busy server. The Info field will display the actual query being executed.

Copying to tmp table: This state appears after the Sending data state when the server
needs to create an in-memory temporary table to hold part of the result set being
processed. This usually is a fairly quick operation seen when doing ORDER BY or GROUP BY
clauses on a set of tables. If you see this state a lot and the state persists for a relatively
long time, it might mean you need to adjust some queries or rethink a table design, or it
may mean nothing at all, and the server is perfectly healthy. Always monitor things over
an extended period of time in order to get the best idea of how often certain patterns
emerge.

Copying to tmp table on disk: This state appears when the server needs to create a tempo-
rary table for sorting or grouping data, but, because of the size of the resultset, the server
must use space on disk, as opposed to in memory, to create the temporary storage area.
Remember from Chapter 4 that the buffer system can seamlessly switch from in-memory
to on-disk storage. This state indicates that this operation has occurred. If you see this
state appearing frequently in your profiling of a production application, we advise you to
investigate whether you have enough memory dedicated to the MySQL server; if so, make
some adjustments to the tmp_table_size system variable and run a few benchmarks to
see if you see fewer Copying to tmp table on disk states popping up. Remember that you
should make small changes incrementally when adjusting server variables, and test, test,
test.

Writing to net: This state means the server is actually writing the contents of the result
into the network packets. It would be rare to see this status pop up, if at all, since it usually
happens very quickly. If you see this repeatedly cropping up, it usually means your server
is getting overloaded or you’re in the middle of a stress-testing benchmark.

Updating: The thread is actively updating rows you’ve requested in an UPDATE statement.
Typically, you will see this state only on UPDATE statements affecting a large number of rows.

Locked: Perhaps the most important state of all, the Locked state tells you that the thread is
waiting for another thread to finish doing its work, because it needs to UPDATE (or SELECT ➥

FOR UPDATE) a resource that the other thread is using. If you see a lot of Locked states
occurring, it can be a sign of trouble, as it means that many threads are vying for the
same resources. Using InnoDB tables for frequently updated tables can solve many of
these problems (see Chapter 5) because of the finer-grained locking mechanism it uses
(MVCC). However, poor application coding or database design can sometimes lead to
frequent locking and, worse, deadlocking, when processes are waiting for each other
to release the same resource.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING220

4. By execution, we mean the query parsing, optimization, and execution, including returning the result-
set and writing to the network packets.

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 220

Listing 6-15 shows an example of SHOW FULL PROCESSLIST identifying a thread in the
Locked state, along with a thread in the Copying to tmp table state. (We’ve formatted the out-
put to fit on the page.) As you can see, thread 71184 is waiting for the thread 65689 to finishing
copying data in the SELECT statement into a temporary table. Thread 65689 is copying to a
temporary table because of the GROUP BY and ORDER BY clauses. Thread 71184 is requesting an
UPDATE to the Location table, but because that table is used in a JOIN in thread 65689’s SELECT
statement, it must wait, and is therefore locked.

■Tip You can use the mysqladmin tool to produce a process list similar to the one displayed by SHOW ➥

FULL PROCESSLIST. To do so, execute #> mysqladmin processlist.

Listing 6-15. SHOW FULL PROCESSLIST Results

mysql> SHOW FULL PROCESSLIST;
+-------+--------+-----------+--------+---------+------+----------------------+-----
| Id | User | Host | db | Command | Time | State | Info
+-------+--------+-----------+--------+---------+------+----------------------+-----
| 43 | job_db | localhost | job_db | Sleep | 69 | | NULL
| 65378 | job_db | localhost | job_db | Sleep | 23 | | NULL
| 65689 | job_db | localhost | job_db | Query | 1 | Copying to tmp table |
SELECT e.Code, e.Name
FROM Job j
INNER JOIN Location l
ON j.Location = l.Code
INNER JOIN Employer e
ON j.Employer = e.Code
WHERE l.State = "NY"
AND j.ExpiresOn >= "2005-03-09"
GROUP BY e.Code, e.Name
ORDER BY e.Sort ASC |
| 65713 | job_db | localhost | job_db | Sleep | 60 | | NULL
| 65715 | job_db | localhost | job_db | Sleep | 22 | | NULL
--- omitted ---
| 70815 | job_db | localhost | job_db | Sleep | 12 | | NULL
| 70822 | job_db | localhost | job_db | Sleep | 86 | | NULL
| 70824 | job_db | localhost | job_db | Sleep | 62 | | NULL
| 70826 | root | localhost | NULL | Query | 0 | NULL | \
SHOW FULL PROCESSLIST
| 70920 | job_db | localhost | job_db | Sleep | 17 | | NULL
| 70999 | job_db | localhost | job_db | Sleep | 34 | | NULL
--- omitted ---
| 71176 | job_db | localhost | job_db | Sleep | 39 | | NULL
| 71182 | job_db | localhost | job_db | Sleep | 4 | | NULL
| 71183 | job_db | localhost | job_db | Sleep | 17 | | NULL
| 71184 | job_db | localhost | job_db | Query | 0 | Locked |

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 221

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 221

UPDATE Job
SET TotalViews = TotalViews + 1
WHERE Location = 55900
AND Position = 147
| 71185 | job_db | localhost | job_db | Sleep | 6 | | NULL
+-------+--------+-----------+--------+---------+------+----------------------+-----
57 rows in set (0.00 sec)

■Note You must be logged in to MySQL as a user with the SUPER privilege in order to execute the
SHOW FULL PROCESSLIST command.

Running SHOW FULL PROCESSLIST is great for seeing a snapshot of the server at any given
time, but it can be a bit of a pain to repeatedly execute the query from a client. The mytop util-
ity, discussed shortly, takes away this annoyance, as you can set up mytop to reexecute the
SHOW FULL PROCESSLIST command at regular intervals.

The SHOW STATUS Command
Another use of the SHOW command is to output the status and system variables maintained
by MySQL. With the SHOW STATUS command, you can see the statistics that MySQL keeps on
various activities. The status variables are all incrementing counters that track the number of
times certain events occurred in the system. You can use a LIKE expression to limit the results
returned. For instance, if you execute the command shown in Listing 6-16, you see the status
counters for the various query cache statistics.

Listing 6-16. SHOW STATUS Command Example

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+----------+
| Variable_name | Value |
+-------------------------+----------+
Qcache_queries_in_cache	8725
Qcache_inserts	567803
Qcache_hits	1507192
Qcache_lowmem_prunes	49267
Qcache_not_cached	703224
Qcache_free_memory	14660152
Qcache_free_blocks	5572
Qcache_total_blocks	23059
+-------------------------+----------+
8 rows in set (0.00 sec)

Monitoring certain status counters is a good way to track specific resource and perform-
ance measurements in real time and while you perform benchmarking. Taking before and
after snapshots of the status counters you’re interested in during benchmarking can show

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING222

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 222

you if MySQL is using particular caches effectively. Throughout the course of this book, as the
topics dictate, we cover most of the status counters and their various meanings, and provide
some insight into how to interpret changes in their values over time.

The EXPLAIN Command
The EXPLAIN command tells you how MySQL intends to execute a particular SQL statement.
When you see a particular SQL query appear to take up a significant amount of resources or
cause frequent locking in your system, EXPLAIN can help you determine if MySQL has been
able to choose an optimal pattern for data access. Let’s take a look at the EXPLAIN results from
the SQL commands in the earlier finduser1.php and finduser2.php scripts (Listings 6-10 and
6-11) we load tested with ApacheBench. First, Listing 6-17 shows the EXPLAIN output from our
LIKE expression in finduser1.php.

Listing 6-17. EXPLAIN for finduser1.php

mysql> EXPLAIN SELECT * FROM test.http_auth WHERE username LIKE 'ud%' \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: http_auth
type: range

possible_keys: PRIMARY
key: PRIMARY

key_len: 25
ref: NULL
rows: 128
Extra: Using where

1 row in set (0.46 sec)

Although this is a simple example, the output from EXPLAIN has a lot of valuable informa-
tion. Each row in the output describes an access strategy for a table or index used in the
SELECT statement. The output contains the following fields:

id: A simple identifier for the SELECT statement. This can be greater than zero if there is a
UNION or subquery.

select_type: Describes the type of SELECT being performed. This can be any of the follow-
ing values:

• SIMPLE: Normal, non-UNION, non-subquery SELECT statement

• PRIMARY: Topmost (outer) SELECT in a UNION statement

• UNION: Second or later SELECT in a UNION statement

• DEPENDENT UNION: Second or later SELECT in a UNION statement that is dependent on
the results of an outer SELECT statement

• UNION RESULT: The result of a UNION

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 223

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 223

• SUBQUERY: The first SELECT in a subquery

• DEPENDENT SUBQUERY: The first SELECT in a SUBQUERY that is dependent on the result
of an outer query

• DERIVED: Subquery in the FROM clause

table: The name of the table used in the access strategy described by the row in the
EXPLAIN result.

type: A description of the access strategy deployed by MySQL to get at the data in the
table or index in this row. The possible values are system, const, eq_ref, ref, ref_or_null,
index_merge, unique_subquery, index_subquery, range, index, and ALL. We go into detail
about all the different access types in the next chapter, so stay tuned for an in-depth
discussion on their values.

possible_keys: Lists the available indexes (or NULL if there are none available) that MySQL
had to choose from in evaluating the access strategy for the table that the row describes.

key: Shows the actual key chosen to perform the data access (or NULL if there wasn’t
one available). Typically, when diagnosing a slow query, this is the first place you’ll look,
because you want to make sure that MySQL is using an appropriate index. Sometimes,
you’ll find that MySQL uses an index you didn’t expect it to use.

key_len: The length, in bytes, of the key chosen. This number is often very useful in diag-
nosing whether a key’s length is hindering a SELECT statement’s performance. Stay tuned
for Chapter 7, which has more on this piece of information.

ref: Shows the columns within the key chosen that will be used to access data in the table,
or a constant, if the join has been optimized away with a single constant value. For
instance, SELECT * FROM x INNER JOIN y ON x.1 = y.1 WHERE x.1 = 5 will be optimized
away so that the constant 5 will be used instead of a comparison of key values in the JOIN
between x and y. You’ll find more on the topic of JOIN optimization in Chapter 7.

rows: Shows the number of rows that MySQL expects to find, based on the statistics it
keeps on the table or index (key) chosen to be used and any preliminary calculations
it has done based on your WHERE clause. This is a calculation MySQL does based on its
knowledge of the distribution of key values in your indexes. The freshness of these statis-
tics is determined by how often an ANALYZE TABLE command is run on the table, and,
internally, how often MySQL updates its index statistics. In Chapter 7, you’ll learn just
how MySQL uses these key distribution statistics in determining which possible JOIN
strategy to deploy for your SELECT statement.

Extra: This column contains extra information pertaining to this particular row’s access
strategy. Again, we’ll go over all the possible things you’ll see in the Extra field in our next
chapter. For now, just think of it as any additional information that MySQL thinks you might
find helpful in understanding how it’s optimizing the SELECT statement you executed.

In the example in Listing 6-17, we see that MySQL has chosen to use the PRIMARY index on the
http_auth table. It just so happens that the PRIMARY index is the only index on the table that con-
tains the username field, so it decides to use this index. In this case, the access pattern is a range
type, which makes sense since we’re looking for usernames that begin with ud (LIKE 'ud%').

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING224

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 224

Based on its key distribution statistics, MySQL hints that there will be approximately 128 rows
in the output (which isn’t far off the actual number of 146 rows returned). In the Extra column,
MySQL kindly informs us that it is using the WHERE clause on the index in order to find the rows it
needs.

Now, let’s compare that EXPLAIN output to the EXPLAIN on our second SELECT statement
using the REGEXP construct (from finduser2.php). Listing 6-18 shows the results.

Listing 6-18. EXPLAIN Output from SELECT Statement in finduser2.php

mysql> EXPLAIN SELECT * FROM test.http_auth WHERE username REGEXP '^ud' \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: http_auth
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL
rows: 90000
Extra: Using where

1 row in set (0.31 sec)

You should immediately notice the stark difference, which should explain the perform-
ance nightmare from the benchmark described earlier in this chapter. The possible_keys
column is NULL, which indicates that MySQL was not able to use an index to find the rows in
http_auth. Therefore, instead of 128 in the rows column, you see 90000. Even though the result
of both SELECT statements is identical, MySQL did not use an index on the second statement.
MySQL simply cannot use an index when the REGEXP construct is used in a WHERE condition.

This example should give you an idea of the power available to you in the EXPLAIN state-
ment. We’ll be using EXPLAIN extensively throughout the next two chapters to show you how
various SQL statements and JOIN constructs can be optimized and to help you identify ways in
which indexes can be most effectively used in your application. EXPLAIN’s output gives you an
insider’s diagnostic view into how MySQL is determining a pathway to execute your SQL code.

The Slow Query Log
MySQL uses the slow query log to record any query whose execution time exceeds the
long_query_time configuration variable. This log can be very helpful when used in conjunc-
tion with the bundled Perl script mysqldumpslow, which simply groups and sorts the logged
queries into a more readable format. Before you can use this utility, however, you must enable
the slow query log in your configuration file. Insert the following lines into /etc/my.cnf (or
some other MySQL configuration file):

log-slow-queries
long_query_time=2

Here, we’ve told MySQL to consider all queries taking two seconds and longer to execute
as a slow query. You can optionally provide a filename for the log-slow-queries argument. By

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 225

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 225

default, the log is stored in /var/log/systemname-slow.log. If you do change the log to a spe-
cific filename, remember that when you execute mysqldumpslow, you’ll need to provide that
filename. Once you’ve made the changes, you should restart mysqld to have the changes take
effect. Then your queries will be logged if they exceed the long_query_time.

■Note Prior to MySQL version 4.1, you should also include the log-long-format configuration option in
your configuration file. This automatically logs any queries that aren’t using any indexes at all, even if the
query time does not exceed long_query_time. Identifying and fixing queries that are not using indexes is
an easy way to increase the throughput and performance of your database system. The slow query log with
this option turned on provides an easy way to find out which tables don’t have any indexes, or any appropri-
ate indexes, built on them. Version 4.1 and after have this option enabled by default. You can turn it off
manually by using the log-short-format option in your configuration file.

Listing 6-19 shows the output of mysqldumpslow on the machine we tested our
ApacheBench scripts against.

Listing 6-19. Output from mysqldumpslow

#> mysqldumpslow
Reading mysql slow query log from /var/log/mysql/slow-queries.log
Count: 1148 Time=5.74s (6585s) \
Lock=0.00s (1s) Rows=146.0 (167608), [test]@localhost
SELECT * FROM http_auth WHERE username REGEXP 'S'

Count: 1 Time=3.00s (3s) \
Lock=0.00s (0s) Rows=90000.0 (90000), root[root]@localhost
select * from http_auth

As you can see, mysqldumpslow groups the slow queries into buckets, along with some
statistics on each, including an average time to execute, the amount of time the query was
waiting for another query to release a lock, and the number of rows found by the query. We
also did a SELECT * FROM http_auth, which returned 90,000 rows and took three seconds,
subsequently getting logged to the slow query log.

In order to group queries effectively, mysqldumpslow converts any parameters passed to
the queries into either 'S' for string or N for number. This means that in order to actually see the
query parameters passed to the SQL statements, you must look at the log file itself. Alternatively,
you can use the -a option to force mysqldumpslow to not replace the actual parameters with 'S'
and N. Just remember that doing so will force many groupings of similar queries.

The slow query log can be very useful in identifying poorly performing queries, but on a
large production system, the log can get quite large and contain many queries that may have
performed poorly for only that one time. Make sure you don’t jump to conclusions about any
particular query in the log; investigate the circumstances surrounding its inclusion in the log.
Was the server just started, and the query cache empty? Was an import or export process that
caused long table locks running? You can use mysqldumpslow’s various optional arguments,
listed in Table 6-4, to help narrow down and sort your slow query list more effectively.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING226

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 226

Table 6-4. mysqldumpslow Command-Line Options

Option Purpose

-s=[t,at,l,al,r,ar] Sort the results based on time, total time, lock time, total lock time,
rows, total rows

-r Reverse sort order (list smallest values first)

-t=n Show only the top n queries (based on sort value)

-g=string Include only queries from the include "string" (grep option)

-l Include the lock time in the total time numbers

-a Don’t abstract the parameter values passed to the query into 'S' or N

For example, the -g=string option is very useful for finding slow queries run on a
particular table. For instance, to find queries in the log using the REGEXP construct, execute
#> mysqldumpslow -g="REGEXP".

The General Query Log
Another log that can be useful in determining exactly what’s going on inside your system is
the general query log, which records most common interactions with the database, including
connection attempts, database selection (the USE statement), and all queries. If you want to
see a realistic picture of the activity occurring on your database system, this is the log you
should use.

Remember that the binary log records only statements that change the database; it does
not record SELECT statements, which, on some systems, comprise 90% or more of the total
queries run on the database. Just like the slow query log, the general query log must first be
enabled in your configuration file. Use the following line in your /etc/my.cnf file:

log=/var/log/mysql/localhost.general.log

Here, we’ve set up our log file under the /var/log/mysql directory with the name
general.log. You can put the general log anywhere you wish; just ensure that the mysql
user has appropriate write permissions or ownership for the directory or file.

Once you’ve restarted the MySQL server, all queries executed against the database server
will be written to the general query log file.

■Note There is a substantial difference between the way records are written to the general query log
versus the binary log. Commands are recorded in the general query log in the order they are received by
the server. Commands are recorded in the binary log in the order in which they are executed by the server.
This variance exists because of the different purposes of the two logs. While the general query log serves
as an information repository for investigating the activity on the server, the binary log’s primary purpose is
to provide an accurate recovery method for the server. Because of this, the binary log must write records in
execution order so that the recovery process can rely on the database’s state being restored properly.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 227

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 227

Let’s examine what the general query log looks like. Listing 6-20 shows an excerpt from
our general query log during our ApacheBench benchmark tests from earlier in this chapter.

Listing 6-20. Excerpt from the General Query Log

head -n 40 /var/log/mysql/mysqld.log
/usr/local/libexec/mysqld, Version: 4.1.10-log. started with:
Tcp port: 3306 Unix socket: /var/lib/mysql/mysql.sock
Time Id Command Argument
050309 16:56:19 1 Connect root@localhost on
050309 16:56:36 1 Quit
050309 16:56:52 2 Connect test@localhost as anonymous on

3 Connect test@localhost as anonymous on
4 Connect test@localhost as anonymous on
5 Connect test@localhost as anonymous on
6 Connect test@localhost as anonymous on
7 Connect test@localhost as anonymous on
8 Connect test@localhost as anonymous on
9 Connect test@localhost as anonymous on
2 Init DB test
2 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
3 Init DB test
3 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
4 Init DB test
4 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
5 Init DB test
5 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
6 Init DB test
6 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
7 Init DB test
7 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
8 Init DB test
8 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
9 Init DB test
9 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
10 Connect test@localhost as anonymous on
10 Init DB test
10 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'

050309 16:56:53 11 Connect test@localhost as anonymous on
11 Init DB test
11 Query SELECT * FROM http_auth WHERE username LIKE 'ud%'
2 Quit
9 Quit
7 Quit
5 Quit
8 Quit

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING228

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 228

Using the head command, we’ve shown the first 40 lines of the general query log. The left-
most column is the date the activity occurred, followed by a timestamp, and then the ID of the
thread within the log. The ID does not correspond to any system or MySQL process ID. The
Command column will display the self-explanatory "Connect", "Init DB", "Query", or "Quit"
value. Finally, the Argument column will display the query itself, the user authentication infor-
mation, or the database being selected.

The general query log can be a very useful tool in taking a look at exactly what’s going on
in your system, especially if you are new to an application or are unsure of which queries are
typically being executed against the system.

Mytop
If you spent some time experimenting with SHOW FULL PROCESSLIST and the SHOW STATUS
commands described earlier, you probably found that you were repeatedly executing the
commands to see changes in the resultsets. For those of you familiar with the Unix/Linux
top utility (and even those who aren’t), Jeremy Zawodny has created a nifty little Perl script
that emulates the top utility for the MySQL environment. The mytop script works just like
the top utility, allowing you to set delays on automatic refreshing of the console, sorting of the
resultset, and so on. Its benefit is that it summarizes the SHOW FULL PROCESSLIST and various
SHOW STATUS statements.

In order to use mytop, you’ll first need to install the Term::ReadKey Perl module from
http://www.cpan.org/modules/by-module/Term/. It’s a standard CPAN installation. Just follow
the instructions after untarring the download. Then head over to http://jeremy.zawodny.com/
mysql/mytop/ and download the latest version. Follow the installation instructions and read
the manual (man mytop) to get an idea of the myriad options and interactive prompts available
to you.

Mytop has three main views:

• Thread view (default, interactive key t) shows the results of SHOW FULL PROCESSLIST.

• Command view (interactive key c) shows accumulated and relative totals of various
commands, or command groups. For instance, SELECT, INSERT, and UPDATE are com-
mands, and various administrative commands sometimes get grouped together, like
the SET command (regardless of which SET is changing). This view can be useful for
getting a breakdown of which types of queries are being executed on your system,
giving you an overall picture.

• Status view (interactive key S) shows various status variables.

The Zend Advanced PHP Debugger Extension
If you’re doing any substantive work in PHP, at some point, you’ll want to examine the inner
workings of your PHP applications. In most database-driven PHP applications, you will want
to profile the application to determine where the bottlenecks are. Without a profiler, diagnos-
ing why a certain PHP page is performing slowly is just guesswork, and that guesswork can
involve long, tedious hours of trial-and-error debugging. How do you know if the bottleneck
in your page stems from a long-running MySQL query or a poorly coded looping structure?
How can you determine if there is a specific function or object call that is consuming the
vast majority of the page’s resources?

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 229

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 229

With the Zend Advanced PHP Debugger (APD) extension, help is at hand. Zend exten-
sions are a little different from normal PHP extensions, in that they interact with the Zend
Engine itself. The Zend Engine is the parsing and execution engine that translates PHP code
into what’s called Zend OpCodes (for operation codes). Zend extensions have the ability to
interact, or hook into, this engine, which parses and executes the PHP code.

■Caution Don’t install APD on a production machine. Install it in a development or testing environment.
The installation requires a source version of PHP (not the binary), which may conflict with some production
concerns.

APD makes it possible to see the actual function call traces for your pages, with informa-
tion on execution time and memory consumption. It can display the call tree, which is the tree
organization of all subroutines executing on the page.

Setting Up APD
Although it takes a little time to set up APD, we think the reward for your efforts is substantial.
The basic installation of APD is not particularly complicated. However, there are a number of
shared libraries that, depending on your version of Linux or another operating system, may
need to be updated. Make sure you have the latest versions of gcc and libtools installed on
the server on which you’ll be installing APD.

If you are running PHP 5, you’ll want to download and install the latest version of APD.
You can do so using PEAR’s install process:

#> pear install apd

For those of you running earlier versions of PHP, or if there is a problem with the installa-
tion process through PEAR, you’ll want to download the tarball designed for your version of
PHP from the PECL repository: http://pecl.php.net/package/apd/.

Before you install the APD extension, however, you need to do a couple of things. First,
you must have installed the source version of PHP (you will need the phpize program in order
to install APD). phpize is available only in source versions of PHP. Second, while you don’t
need to provide any special PHP configuration options during installation (because APD is
a Zend extension, not a loaded normal PHP extension), you do need to ensure that the CGI
version of PHP is available. On most modern systems, this is the default.

After installing an up-to-date source version of PHP, install APD:

#> tar –xzf apd-0.9.1.tgz
#> cd apd-0.9.1
apd-0.9.1 #> phpize
apd-0.9.1 #> ./configure
apd-0.9.1 #> make
apd-0.9.1 #> make install

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING230

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 230

After the installation is completed, you will see a printout of the location of the APD
shared library. Take a quick note of this location. Once APD is installed, you will need to
change the php.ini configuration file, adding the following lines:

zend_extension = /absolute/path/to/apd.so
apd.dumpdir = /absolute/path/to/tracedir
apd.statement_trace = 0

Next, you’ll want to create the trace directory for the APD trace files. On our system, we
created the apd.dumpdir at /var/apddumps, but you can set it up anywhere. You want to create
the directory and allow the public to write to it (because APD will be running in the public
domain):

#> mkdir /var/apddumps
#> chmod 0766 /var/apddumps

Finally, restart the Apache server process to have your changes go into effect. On our sys-
tem, we ran the following:

#> /etc/init.d/httpd restart

Profiling PHP Applications with APD
With APD set up, you’re ready to see how it works. Listing 6-21 shows the script we’ll profile in
this example: finduser3.php, a modification of our earlier script that prints user information
to the screen. We’ve used a variety of PHP functions for the demonstration, including a call to
sleep() for one second every twentieth iteration in the loop.

■Note If this demonstration doesn’t work for you, there is more than likely a conflict between libraries in
your system and APD’s extension library. To determine if you have problems with loading the APD extension,
simply execute #> tail –n 20 /var/log/httpd/error_log and look for errors on the Apache process
startup (your Apache log file may be in a different location). The errors should point you in the right direction
to fix any dependency issues that arise, or point out any typo errors in your php.ini file from your recent
changes.

Listing 6-21. finduser3.php

<?php
apd_set_pprof_trace();
$conn = mysql_connect("localhost","test","") or die (mysql_error());
mysql_select_db("test", $conn) or die ("Can't use database 'test'");
$result = mysql_query("SELECT * FROM http_auth WHERE username REGEXP '^ud'");

if ($result) {
echo '<pre>';
echo "UserName\tPassword\tUID\tGID\n";
$num_rows = mysql_num_rows($result);

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 231

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 231

for ($i=0;$i<$num_rows;++$i) {
mysql_data_seek($result, $i);
if ($i % 20 == 0)
sleep(1);

$row = mysql_fetch_row($result);
printf("%s\t%s\t%d\t%d\n", $row[0], $row[1], $row[2], $row[4]);

}
echo '</pre>';

}
?>

We’ve highlighted the apd_set_pprof_trace() function. This must be called at the top of
the script in order to tell APD to trace the PHP page. The traces are dumped into pprof.XXXXX
files in your apd.dumpdir location, where XXXXX is the process ID of the web page you trace.
When we run the finduser3.php page through a web browser, nothing is displayed, which
tells us the trace completed successfully. However, we can check the apd.dumpdir for files
beginning with pprof. To display the pprof trace file, use the pprofp script available in your
APD source directory (where you installed APD) and pass along one or more of the command-
line options listed in Table 6-5.

Table 6-5. pprofp Command-Line Options

Option Description

-a Sort by alphabetic name of function

-l Sort by number of calls to the function

-r Sort by real time spent in function

-R Sort by real time spent in function and all its child functions

-s Sort by system time spent in function

-S Sort by system time spent in function and all its child functions

-u Sort by user time spent in function

-U Sort by user time spent in function and all its child functions

-v Sort by average amount of time spent in function (across all requests to function)

-z Sort by total time spent in function (default)

-c Display real time elapsed alongside call tree

-i Suppress reporting for PHP built-in functions

-m Display file/line number locations in trace

-O [n] Display n number of functions (default = 15)

-t Display compressed call tree

-T Display uncompressed call tree

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING232

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 232

Listing 6-22 shows the output of pprofp when we asked it to sort our traced functions by
the real time that was spent in the function. The trace file on our system, which resulted from
browsing to finduser3.php, just happened to be called /var/apddumps/pprof.15698 on our
system.

Listing 6-22. APD Trace Output Using pprofp

./pprofp -r /var/apddumps/pprof.15698
Content-type: text/html
X-Powered-By: PHP/4.3.10

Trace for /var/www/html/finduser3.php
Total Elapsed Time = 8.28
Total System Time = 0.00
Total User Time = 0.00

Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Memory Usage Name
--
96.7 8.01 8.01 0.00 0.00 0.00 0.00 8 1.0012 1.0012 0 sleep
2.9 0.24 0.24 0.00 0.00 0.00 0.00 1 0.2400 0.2400 0 mysql_query
0.2 0.02 0.02 0.00 0.00 0.00 0.00 1 0.0200 0.0200 0 mysql_connect
0.1 0.01 0.01 0.00 0.00 0.00 0.00 146 0.0001 0.0001 0 mysql_data_seek
0.0 0.00 0.00 0.00 0.00 0.00 0.00 146 0.0000 0.0000 0 printf
0.0 0.00 0.00 0.00 0.00 0.00 0.00 146 0.0000 0.0000 0 mysql_fetch_row
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0000 0 mysql_num_rows
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0000 0 mysql_select_db
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0000 0 main

As you can see, APD supplies some very detailed and valuable information about the
state of the page processing, which functions were used, how often they were called, and how
much of a percentage of total processing time each function consumed. Here, you see that the
sleep() function took the longest time, which makes sense because it causes the page to stop
processing for one second at each call. Other than the sleep() command, only mysql_query(),
mysql_connect(), and mysql_data_seek() had nonzero values.

Although this is a simple example, the power of APD is unquestionable when analyzing
large, complex scripts. Its ability to pinpoint the bottleneck functions in your page requests
relies on the pprofp script’s numerous sorting and output options, which allow you to drill
down into the call tree. Take some time to play around with APD, and be sure to add it to your
toolbox of diagnostic tools.

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING 233

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 233

■Tip For those of you interested in the internals of PHP, writing extensions, and using the APD profiler,
consider George Schlossnagle’s Advanced PHP Programming (Sams Publishing, 2004). This book provides
extensive coverage of how the Zend Engine works and how to effectively diagnose misbehaving PHP code.

Summary
In this chapter, we stressed the importance of benchmarking and profiling techniques for
the professional developer and administrator. You’ve learned how setting up a benchmarking
framework can enable you to perform comprehensive (or even just quick) performance com-
parisons of your design features and help you to expose general bottlenecks in your MySQL
applications. You’ve seen how profiling tools and techniques can help you avoid the guess-
work of application debugging and diagnostic work.

In our discussion of benchmarking, we focused on general strategies you can use to make
your framework as reliable as possible. The guidelines presented in this chapter and the tools
we covered should give you an excellent base to work through the examples and code pre-
sented in the next few chapters. As we cover various aspects of the MySQL query optimization
and execution process, remember that you can fall back on your established benchmarking
framework in order to test the theories we outline next. The same goes for the concepts and
tools of profiling.

We hope you come away from this chapter with the confidence that you can test your
MySQL applications much more effectively. The profilers and the diagnostic techniques we
covered in this chapter should become your mainstay as a professional developer. Figuring
out performance bottlenecks should no longer be guesswork or a mystery.

In the upcoming chapters, we’re going to dive into the SQL language, covering JOIN and
optimization strategies deployed by MySQL in Chapter 7. We’ll be focusing on real-world
application problems and how to restructure problematic SQL code. In Chapter 8, we’ll take it
to the next step, describing how you can structure your SQL code, database, and index strate-
gies for various performance-critical applications. You’ll be asked to use the information and
tools you learned about here in these next chapters, so keep them handy!

CHAPTER 6 ■ BENCHMARKING AND PROFIL ING234

505x_Ch06_FINAL.qxd 6/27/05 3:27 PM Page 234

