3324CHO5.gxd

9/21/04 9:53 AM Page 239 $

CHAPTER 5
Joins, Temporary
Tables, and
Transactions

IN THIS CHAPTER, WE'LL DISCUSS three additional features you can use to speed up
your MySQL applications. While these aren'’t directly related to one another, each
represents an opportunity to decrease the amount of database or code overhead
required to perform useful tasks with MySQL by combining queries or opera-
tions on the code level into fewer units that perform more work.

e Joins allow for the selection of data from multiple tables using a single SQL
statement.

» Temporary tables provide a way to organize data derived from queries into
new tables, which can themselves be queried repeatedly over the lifetime
of a MySQL user session.

 Transactions allow you to group together related operations into logical
units in such a way that all operations either succeed or fail together.

We'll spend some time with each of these features, discussing what it is, how
it works, and how you can put it to use in your applications.

The rationale behind joins is relatively simple: it's more efficient to issue a
single query than to use a series of them, with the resultset from the first query
providing the conditions for one or more additional queries. There are several
types of joins, which are distinguished chiefly by how they treat values in one
table column that aren’t matched in the related column of the other table; we'll
cover each of these in turn. In addition, we’ll discuss the two basic styles for join
notation (theta-style and ANSI-style) and the variations on these that are avail-
able in MySQL.

The use of temporary tables is another way to save time and effort, particu-
larly when dealing with several queries that return very large and similar
resultsets. When you find yourself dealing with the same subset of table data sev-
eral times in a single session, it’s often faster and more economical to obtain it
once and store it in a temporary table, rather than either saving the data in a

239

e

3324CHO05.gxd 9/21/04 9:53 AM Page 240 $

Chapter 5

programming structure (such as an array or hash) or repeating a complex join
several times. If you're using several resultsets that contain a large proportion of
data in common, it can also make sense to obtain a single resultset that has all
the data that’s required, store this in a temporary table, and then select from this
temporary table as needed. Temporary tables are very convenient to use in
MySQL because they are unique to the user session in which they were created.
We'll explain just what this means, as well as how to use temporary tables.

Transactions are beneficial because they make it much easier to guarantee
data integrity. It’s also much more efficient to use transactions than to attempt to
perform each query separately in your application logic, testing for its success or
failure, and then undoing any previously successful operations in the event that
one does fail. By using InnoDB or Berkeley DB (BDB) tables and transactions,
you can let MySQL handle this task for you. Using transactions is not necessarily
faster in and of itself than not using them; in fact, MyISAM tables (which don’t
support transactions) are faster than either InnoDB or BDB tables (which do).
However, you'll almost certainly save time in development, and your applica-
tions will require less code, because you don’t need to test and possibly undo
each query individually. In this chapter, we’ll cover the basic theory of transac-
tions and how they’re implemented in MySQL. Later in this book (in Chapter 7),
you'll see how these are used in PHP, Python, and Perl.

Joins

Ajoin in MySQL or any other relational database is simply the selection of data
from two or more related tables in a single query based on column values com-
mon to all of those tables. The cardinal rule for relating tables can be stated as
follows: Tables to be joined must have one or more columns sharing a set of values
that allow those tables to be connected in some meaningful way.

In other words, if we think of tables as modeling real objects, then joins are
simply a way of relating objects according to the attributes they hold in com-
mon. The column held in common by both tables is usually referred to as the
common key or join key. Of course, it’s possible to have more than one common
column between two tables, and so it’s possible to use more than one join key in
any particular join. Most often, the join key will be the primary key of one table
and a foreign key in the other.

Before going any further, let’s provide a scenario that we’ll employ for
generating some examples in the rest of this section. This represents a slight
modification of the students/classes schema used in Chapter 3. This updated
schema is shown in Figure 5-1.

240

Joins, Temporary Tables, and Transactions

students_classes

PK,FK2
PK,FK1

class id

student id

semester
year
grade

classes

PK

class id

3324CH05.gxd 9/21/04 9:53 AM Page 241 $
students
students_courses)
PK | student id
PK,FK2 | studentid -]
PK,FK1 | course id) firstname
— lastname
type sex
dob
Y instructors
courses PK | instructor id
PK | course id 4 <
== FK1 | course_id |
name firstname
lastname

Figure 5-1. Updated students/classes schema

This schema consists of six tables from a database used for tracking students’
schedules and grades at a small college. Four of these characterize students,
instructors, classes, and courses of study. (Obviously, this is greatly simplified for
illustrative purposes.) We also have two lookup tables (students_classes and
students_courses) linking students with classes and students with courses of
instruction. In a real-world application, we might do some things differently, but

FK

=

instructor_id
name
hours

we hope you'll be able to overlook that for the time being.

<4

NOTE The students-tables.sql file is included in the ch5 folder of
the code accompanying this book (available from the Downloads
section of http://www.apress.com). Also in that folder you'll find
the students-data.sql file, which contains the SQL statements for

inserting the test data we'll be referring to in our examples.

The following is the SQL code for generating the required tables:

CREATE TABLE classes (
class_id int(11) NOT NULL auto_increment,
instructor id int(11) NOT NULL default '0',
name varchar(50) NOT NULL default '',
hours int(1) NOT NULL default 'o',

PRIMARY KEY (class_id)

);

241

3324CHO05.gxd 9/21/04 9:53 AM Page 242 $

Chapter 5

CREATE TABLE courses (
course_id int(11) NOT NULL auto_increment,
name varchar(50) NOT NULL default "',
PRIMARY KEY (course id)

)s

CREATE TABLE instructors (
instructor id int(11) NOT NULL auto_increment,
course_id int(11) NOT NULL default ‘o',
firstname varchar(50) NOT NULL default '',
lastname varchar(50) NOT NULL default '',
PRIMARY KEY (instructor id)

)s

CREATE TABLE students (
student_id int(11) NOT NULL auto_increment,
firstname varchar(50) NOT NULL default '',
lastname varchar(50) NOT NULL default '',
sex enum('M"',"F"') NOT NULL default 'M',
dob date NOT NULL default '0000-00-00',
PRIMARY KEY (student_id)

)s

CREATE TABLE students_classes (
student_id int(11) NOT NULL default 'o',
class_id int(11) NOT NULL default 'o',
semester enum('FALL', 'SPRING', 'SUMMER') NOT NULL default 'FALL',
year int(4) NOT NULL default '2005',
grade int(1) default NULL,
PRIMARY KEY (student id,class id,semester,year)

)s

Note: For the grade column, we assume that the US system is being used:
A=4,B=3,C=2,D=1, F=0; for our purposes we'll assume that
a value of NULL represents incomplete status (class in progress, etc.)

CREATE TABLE students courses (
student_id int(11) NOT NULL default 'o',
course_id int(11) NOT NULL default ‘o',
type enum('MAJOR',"MINOR') NOT NULL default 'MAJOR',
PRIMARY KEY (student id,course id)

)s

242

3324CHO5.gxd

9/21/04 9:53 AM Page 243 $

Joins, Temporary Tables, and Transactions

NOTE We've constructed this in such a way that students may have

L 3 double majors and/or minors. Limiting students to no more than
i two of each would need to be done in the application, as MySQL
— doesn't yet support triggers; we'll discuss this further in Chapter 8.

While we’'ve shown the foreign key relationships in Figure 5-1, we have not
bothered to include them in the table definition statements. However, you
should keep them mind, since join keys at least imply a foreign key relationship
between the tables being joined, even if it's not made mandatory through the
use of constraints.

As for the use of joins, consider the following problem: Suppose we want to
know the name of the course area in which a given instructor teaches classes. We
could do this by using two separate queries. First, we get the course area number
from that instructor’s record in the instructors table, and then we plug that
number into the courses table to obtain the name of the corresponding course:

SELECT @cnum := course_id FROM instructors
WHERE firstname = 'Mary' AND lastname = 'Williams';
SELECT name FROM courses WHERE course id = @cnum;

Notice that we employ a user variable in order to preserve the result of the
first query and make it available to the second. As you learned in Chapter 4, this
frees us from the need to create, set, and refer to an additional application vari-
able in programming code.

Here’s what happens when we run these two queries from the MySQL com-
mand line:

ommand Prompt - mysgl -h m

mysql»> SELECT @cnum:=course_id FROM instructors
—» WHERE firstname='Mary’' AND lastname='Williams';

mysql>

Since the course number (course_id column) is common to both tables, we
can write a single query joining both tables using this as the common key for the

243

e

3324CHO05.gxd 9/21/04 9:53 AM Page 244 j\%

Chapter 5

join. We merely combine any conditions required by each of the original two
queries and set the columns common to both tables equal to one another:

SELECT c.name
FROM instructors i, courses c

WHERE i.firstname = 'Mary' AND i.lastname = 'Williams'
AND i.course id = c.course id;

Here’s the result:

ommand Prompt - myzgl -h megal

mysql»> SELECT c.name FROM instructors i, courses c
—» WHERE 1i.firstname="Mary"' AND i.lastname='Williams"
AND 1 e_id=c.course_id;

mysql>

This result is the same as that obtained by using the two previous queries in
succession.

Theta-Style Joins vs. ANSI-Style Joins

There are two accepted styles for writing joins, known as theta-style joins and
ANSI-style joins. Perhaps the best way to explain the difference is to show an
example. Let’s suppose we want a listing of all instructors that shows the names
of the courses of study for which they teach classes. Since the names of the
instructors are in one table (instructors) and those of the courses are in another
(courses), we'll need to execute a join on these two tables in order to obtain the
desired set of data.

Theta-style join syntax uses commas to separate multiple table names and
aliases, just as in the previous example:

SELECT c.name

FROM instructors i, courses c

WHERE i.firstname = 'Mary' AND i.lastname = 'Williams'
AND i.course_id = c.course_id;

ANSI syntax uses the JOIN and ON keywords instead:

SELECT c.name
FROM instructors i JOIN courses c
ON i.course id = c.course_id
WHERE i.firstname = 'Mary' AND i.lastname = 'Williams';
244

e

3324CHO5.gxd

9/21/04 9:53 AM Page 245 $

Joins, Temporary Tables, and Transactions

The JOIN keyword is used to separate the names of the tables being joined,
and the ON clause contains the equality relation showing which column is being
used as the join key. Both varieties of join syntax are permissible in MySQL; how-
ever, the ANSI syntax is generally preferable because it’s usually easier to read
and understand, particularly when writing joins involving three or more tables.
There are also some types of joins that can’t be written using theta-style notation
in MySQL, as you'll see shortly.

In addition, MySQL supports a nonstandard extension of the ANSI syntax
that can be used as a sort of shorthand for when the join column has the same
name in both tables to be joined:

SELECT c.name
FROM instructors i JOIN courses c
USING (course_id)
WHERE i.firstname = 'Mary' AND i.lastname = 'Williams';

This has the same result as our earlier example.

mmand Prompt - mysql -h megalon 5

mysql»> SELECT c.name
—» FROM instructors i JOIN courses c USING {course_id)
—» WHERE 1i.firstname="Mary"' AND i.lastname="Williams';

mysql>

The USING keyword is not supported in other database systems; however, if
portability isn't an issue, it can be handy for eliminating a bit of typing, as well as
for conceptualization purposes.

Join Types

When joining two tables together, MySQL can handle rows that are or aren’t
matched in one or both tables in several different ways. We'll look briefly at each
of these in turn.

Cross Join

Each row from the first table in a cross join is joined to all rows from the second.
Also known as the Cartesian product of two tables, this type of join yields

245

e

3324CHO5.gxd

Chapter 5

246

9/21/04 9:53 AM Page 246 $

extremely large resultsets, the size of the resultset being the product of the
number of rows in each table. Here is an example of a cross join written using
theta-style notation:

SELECT i.firstname, i.lastname, c.name
FROM instructors i, courses c;

Using ANSI-style notation, we would write this as follows:

SELECT i.firstname, i.lastname, c.name
FROM instructors i
JOIN courses c;

or like this:

SELECT i.firstname, i.lastname, c.name
FROM instructors i
CROSS JOIN courses c;

The two ANSI-style forms are equivalent in MySQL.

The reason for this multiplication might be more apparent if you visualize a
cross join as shown in Figure 5-2. Very simply, every row in the left-hand table of
the join is matched to every row in the table on the right. For the sake of clarity,
we've indicated only the matches on the first two rows of the instructors table, but
you should be able to extrapolate from this and see that there will be 6 X 13 =78
rows in the resultset. (Don’'t worry that we're asking you to take this as merely an

instructor_id | course_id | firstname lastname
1 2 | George Martin
2 1| Mary Williams N\
3 3 | William Anderson \\\ course_id name
4 4 | Sarah Schmidt \\ 1| Computer Science
5 5 [José Gonzalez \\ 2 | Mathematics
6 5| Beatriz__| Gallego \\\\ 3| English
7 4| George | Chiu ‘_“ 4| Physics
8 3 | Alicia Martin M 5 | Spanish
9 2 | Frederick | Albright 6 | Botany
10 1 [Chandra | Ramayuman
11 3 | Ronald Pinkerton
12 2 | Janet Allen
13 0 | Buford Smith

Figure 5-2. A cross join matches every row in the tables.

3324CHO5.gxd

9/21/04 9:53 AM Page 247 $

Joins, Temporary Tables, and Transactions

article of faith; we'll offer proof of a more concrete sort very shortly.) Note that the
last row in instructors, for which there are no records in the courses table having
the same value in the course_id column, is still matched against every row in the

right-hand table.

Assuming that we're using the data supplied in students-data.sql, the result-
set produced by this query (written in any of the three ways shown) would
contain 78 rows (for 13 instructors and 6 course areas). Cross joins are very inef-
ficient due to the sheer size of their resultsets and to the fact that, given a equal
to the number of rows in the first table and b equal to the number of rows in the
second, the proportion of redundant data in the result will be:

Mb—D_l_l
ba b

In the example shown, approximately 92% (12/13) of the data returned is
repetitive and therefore useless to us.

NOTE Ifa join condition is not specified for any other type of join

o 4 (except a natural join), MySQL will treat it as a cross join. This is true
i for most other databases as well.
Inner Join

An inner join is defined as a join in which unmatched rows from either table are
not to be returned.

Writing inner joins using the theta-style notation is just a matter of adding
an appropriate WHERE clause that relates the columns comprising the join key:

SELECT i.firstname, i.lastname, c.name
FROM instructors i, courses c
WHERE i.course id = c.course id;

This join will produce a list of all instructors with the names of the course areas
in which they teach.

To accomplish the same thing in an ANSI-style join, use an ON or USING clause
to define the join key:

SELECT i.firstname, i.lastname, c.name
FROM instructors i

JOIN courses c
USING (course_id);

247

e

3324CHO05.gxd 9/21/04 9:53 AM Page 248 $

Chapter 5

The USING keyword is specific to MySQL; the ANSI-standard equivalent to
this join is as follows:

SELECT i.firstname, i.lastname, c.name
FROM instructors i
JOIN courses c
ON i.course id = c.course id;

This query is illustrated in Figure 5-3, which shows how just a few of the
rows on the left correspond to rows in the table on the right. The last row in the
instructors table has a course_id value of 0; since there are no rows in courses
with that value in the course_id column, the row from instructors isn’'t included
in the resultset. This is indicated by the X over the arrow in the diagram in
Figure 5-3.

instructor_id | course_id [firstname lastname
1 2| George Martin
2 1| Mary Williams
3 3 | William __ [Anderson course_id name
4 4 [Sarah Schmidt 1/| Computer Science
5 5| José Gonzélez 2)| Mathematics
6 5 | Beatriz Gallego 3| English
7 4 | George Chiu 4 | Physics
8 3 [Alicia Martin 5| Spanish
9 2 | Frederick | Albright 6 [Botany
10 1| Chandra | Ramayuman
11 3 [Ronald Pinkerton
12 2[Janet | Allen 7
13 0[Buford |Ssmith |~
Figure 5-3. An inner join does not return unmatched rows.
CAUTION You should never place restrictions on the rows to be
returned in a join'’s ON clause; only join conditions of the form
t1.col1l = t2.col2 (where t1 and t2 are table aliases) should be
placed here. Any restrictions intended to filter the resultset should
be placed in a WHERE clause.
248

3324CHO05.gxd 9/21/04 9:53 AM Page 249 :F

Joins, Temporary Tables, and Transactions

You may use the optional INNER keyword as well. However, you should note
that using this does not by itself make your query into an inner join; in fact,
without an ON or USING clause, MySQL will still treat the query as a cross join.
Compare the following two queries.

mmand Prompt - mysgl -h

mysql> SELECT COUNT(*)
-» FROM instructors INNER JOIN courses
—» USING {course_id};

+
1 row in set {0.04 sec)

mysql> SELECT COUNT(*)
—» FROM instructors INMER JOIN courses;

+
1 row in set {0.01 sec)

mysql>

Unless there’s an actual need to find rows in one table that aren’t matched in
another (and sometimes there can be, as you'll see shortly), inner joins are gen-
erally the most efficient joins to use. There’s no point in returning records you
don’t need, and you'll save time and effort by not being required to filter out NULL
rows from your results.

style join, MySQL will treat the join as an inner join, just as SQL

NOTE Ifa join condition but no join type is specified in an ANSI-
%5
?_ Server and PostgreSQL will.

Left (Outer) Join

Outer joins differ from inner joins in that outer joins will return records in one
table that aren’t matched in another. In a left outer join (or more simply, left-
hand join or even just left join), all records from the first (left-hand) table in a
join that meet any conditions set in the WHERE clause are returned, whether or
not there’s a match in the second (right-hand) table.

For example, let’s suppose we would like a list of all instructors whose last
name begins with the letter A, along with any classes that they teach. If we want
a list including only those instructors who actually teach any classes, we use an
inner join:

249

3324CHO5.gxd

Chapter 5

250

9/21/04 9:53 AM Page 250 :F

Command Prompt - mys '

mysql» SELECT 1.firstname, 1.lastname, c.name
FROM instructors i
INNER JOIN classes c
USING (instructor_id)
WHERE 1.lastname LIKE "A%';
I
firstname
L
Frederick Albright Calculus
Frederick Albright Introduction to Matrices
Frederick Albright Modern Geometry
Frederick Albright Probability & Statistics
William Anderson English Grammar and Composition
William Anderson The Romantic Period
William Anderson Shakespearean Plays and Sonnets

rows in set

mysql>

As previously mentioned, the INNER keyword is optional. We could also use
theta-style syntax for this query:

SELECT i.firstname, i.lastname, c.name
FROM instructors I, classes c
WHERE i.instructor id = c.instructor id
AND i.lastname LIKE 'A%';

Using a left join, we can obtain a list of all instructors whose last name
begins with A, whether or not there are any matching entries for those instruc-
tors in the classes table. As you can see from Figure 5-4, there are three
instructors whose last names begin with the letter A: William Anderson’s instruc-
tor ID matches that listed for three classes, and the instructor ID for Frederick
Albright is the same as that of four classes. Janet Allen’s instructor ID doesn’t
match with that for any classes at all; since this is a left join, we show an arrow
pointing from her record in the instructors table to the word NULL.

The query and its result are as follows.

Command Prompt - mpsql

mysql» SELECT i.firstname, 1.lastname, c.name
FROM instructors i
LEFT JOIN classes cC
USING {instructor_id)
WHERE 1.lastname LIKE "A%';

Anderson English Grammar and Composition |

Anderson The Romantic Period

Anderson Shakespearean Plays and Sonnets |
Frederick Albright Calculus |
Frederick Albright Introduction to Matrices |
Frederick Albright Modern Geometry |
Frederick Albright Probability & Statistics I

mysql>

There are no matching class records for the instructor named Janet Allen, so
MySQL dutifully returns a row containing her first and last names in the corre-
sponding columns from instructors and a NULL value for the name column that
was requested from the classes table.

e

3324CHO05.gxd 9/21/04 9:53 AM Page 251 $

Joins, Temporary Tables, and Transactions

class-id | instructor-id name hours

1 2 | Introduction to Computer Science 4

2 2 | Data Structures 4

3 10 | C++ Programming 5

4 10 | Principles of Networks 4

5 2 | Software Design 4

6 10 | Relational Databases 4

7 2 | Scripting Languages 5

8 9| Calculus 5

9 1| Linear Algebra 4

10 9| Introduction to Matrices 4

11 1 | Differential Equations 5

12 9/[Modern Geometry 4

instructor_id| course_id | firstname lastname 13 1 | Vector Analysis 4
1 2| George | Martin 14 91| Probability & Statistics 5
2 1 [Mary Williams Fa 15 31| English Grammar and Composition 3
3 3 | William__ [(Anderson // / / 16 8 | Introduction to Literary Criticism 4
4 4| Sarah Schmidt 17 8 | Modern British Poets 4
5 5| José Gonzdlez 18 3| The Romantic Period 3
6 5| Beatriz__| Gallego 19 8 | Modern American Literature 3
7 4 | George Chiu 20 3| Shakespearean Plays and Sonnets 4
8 3 | Alicia Martin 21 4 | Bodies in Motion 5
9 2 | Frederick [(Albright 22 4 | Heat, Light and Sound 5
10 1| Chandra | Ramayuman 23 7 | Advanced Kinetics 4
11 3 | Ronald Pinkerton 24 7 | Particle Theory 4
12 2 | Janet Allen 25 0 | Introduction to Geophysics 4
13 0 | Buford Smith 26 7 | Concepts of Quantum Mechanics 3
27 6 | Beginning Spanish | 5

28 5 | Beginning Spanish Il 5

29 6 [Gramatica y Composicion 4

30 5 | Culturas Hispanoaméricas 3

NULL 31 6 | Literatura del Nuevo Mundo 4

32 5| LaVida Cubanay Puertorriquefia 3

33 6 | Literatura Clasica de Espaiia 4

34 0 | Introduction to Botany 4

35 0 | Fundamentals of Hydroponics 4

36 0| Greenhouse Management 5

Figure 5-4. A left (outer) join returns all records from the left-hand table that
meet any conditions in the WHERE clause, whether or not there’s a match in the
right-hand table.

Let’s consider for a minute what happens when we encounter this NULL value
in an application. We probably wouldn’'t want to display the word NULL, since
it's not very descriptive. Instead, we would likely prefer something a bit more
user-friendly, along the lines of “No classes assigned.” Rather than test for the
NULL value in our application code and make a suitable substitution there, we
can use a flow-control operator to accomplish the same thing in the join itself.
While we're at it, let’s reduce the number of columns in the output to two by
using the CONCAT() function on the instructor’s first and last names to form a
single instructor column. We'll also include an ORDER BY clause in the query to
alphabetize the results by the instructor’s last name.

251

e

3324CHO5.gxd

Chapter 5

252

9/21/04 9:53 AM Page 252 :F

SELECT

CONCAT(i.firstname, ' ', i.lastname) AS instructor,

IFNULL(c.name, '[Not currently assigned to any classes.]') AS class

FROM instructors i

LEFT JOIN classes c
USING(instructor id)

WHERE i.lastname LIKE 'A%’
ORDER BY i.lastname;

The result looks like this in the MySQL Monitor:

mysql>

ommand Prompt - mys: -,

SELECT
CONCAT{1.firstname, " ', i.lastname) AS instructor,
IFNULL{c.name, '[Mot currently assigned to any classes.]') AS class
FROM instructors i
LEFT JOIN classes c
USING(instructor_id)
WHERE 1i.lastname LIKE ‘A%’
ORDER BY 1i.lastname;
I —
instructor
I
Frederick Albright Modern Geometry
Frederick Albright Introduction to Matrices
Frederick Albright Calculus
Frederick Albright Probability & Statistics
Janet Allen
William Anderson English Grammar and Composition
William Anderson Shakespearean Plays and Sonnets
William Anderson The Romantic Period

+
rows in set (0.00 sec)

[Mot currently assigned to any classes.]

Generally speaking, you can employ any operators, built-in functions,
and flow-control operators in multiple-table joins that you could use in SELECT
queries from a single table.

LSS

e

NOTE MySQL does not support Oracle-style (+) = or= (+) theta
syntax for outer joins. If you need to specify a left join, you must use
ANSI syntax with LEFT JOIN or LEFT OUTER JOIN. The same is true
with respect to right joins: use RIGHT JOIN or RIGHT OUTER JOIN
Oracle 9 also implements the SQL92 syntax supported by MySQL,
as does PostgreSQL 7.1 and later:

3324CHO5.gxd

9/21/04 9:53 AM Page 253 $

Joins, Temporary Tables, and Transactions
Right (Outer) Join

A right outer join (or more, commonly, right or right-hand join) is similar to a left
join, except that all rows from the second (or right-hand) table in the join that
satisfy any included WHERE clause are returned, whether or not matching rows are
found in the first (left-hand) table. MySQL supports ANSI-style right joins using
either the RIGHT JOIN or RIGHT OUTER JOIN keywords.

As you can see in Figure 5-5, this works as you would expect: in the opposite
fashion from a left join.

class-id | instructor-id name hours

1 2 | Introduction to Computer Science 4

2 2 | Data Structures 4

3 10 [C++ Programming 5

4 10 [Principles of Networks 4

5 2 | Software Design 4

6 10 [Relational Databases 4

7 2 | Scripting Languages 5

8 9 [Calculus 5

9 1| LinearAlgebra 4
10 9 [Introduction to Matrices 4
1 1| Differential Equations 5
12 9 [Modern Geometry 4
13 1| Vector Analysis 4 instructor_id| course_id | firstname lastname
14 9 | Probability & Statistics 5 1 2| George | Martin
15 3/| English Grammar and Composition 3 2 1| Mary Williams
16 81| Introduction to Literary Criticism 4 3 3)| William _| Anderson
17 8| Modern British Poets 4 4 4| Sarah Schmidt
18 3]| The Romantic Period 3|, 5 5| José Gonzalez
19 8| Modern American Literature 3w/ 6 5| Beatriz | Gallego
20 3| Shakespearean Plays and Sonnets 4 A(7 4 | George Chiu
21 4| Bodies in Motion 5 8 3| Alicia Martin
22 4 | Heat, Light and Sound 5 9 2 | Frederick | Albright
23 7 | Advanced Kinetics 4 10 1 | Chandra | Ramayuman
24 7 | Particle Theory 4 11 3| Ronald Pinkerton
25 0 [Introduction to Geophysics 4 12 2 | Janet Allen
26 7 | Concepts of Quantum Mechanics 3 13 0 | Buford Smith
27 6 [Beginning Spanish | 5
28 5 | Beginning Spanish Il 5
29 6 | Gramética y Composicién 4
30 5 | Culturas Hispanoaméricas 3 NULL
31 6 | Literatura del Nuevo Mundo 4
32 5 [LaVida Cubanay Puertorriqueia 3
33 6 | Literatura Clasica de Espana 4
34 0 | Introduction to Botany 4
35 0 | Fundamentals of Hydroponics 4
36 0 [Greenhouse Management 5

Figure 5-5. A right (outer) join returns all records from the right-hand table that
meet any conditions in the WHERE clause, whether or not there’s a match in the
left-hand table.

253

e

3324CHO05.gxd 9/21/04 9:53 AM Page 254 $

Chapter 5
The following shows the query represented in Figure 5-5 being run in the
MySQL Monitor.
ommand Prompt - mysgl -h me:
SELECT c.name, c.hours, i.firstname, i.lastname
FROM classes c .
RIGHT JOIN instructors 1
USING (instructor_id)
WHERE 1.course_id=3;
+ +
| |
+ +
English Grammar and Composition | i | Anderson
The Romantic Period | i | Anderson
Shakespearean Plays and Sonnets | i | Anderson
Introduction to Literary Criticism | i | Martin
Modern British Poets | i | Martin
Modern American Literature | i | Martin
| | Pinkerton
+ +
rows in set (0.00 sec)
mysql>
You can see that there are three instructors whose course_id column value
is 3 (that is, they all teach English classes). Two instructors teach three classes
each, and the third (Ronald Pinkerton) isn’t listed as teaching any classes at all.
In this case, NULL values are returned in both columns in the classes table for
rows that don't match any instructor_id values from the instructors table. If this
seems a bit confusing, try turning it into a left join:
SELECT c.name, c.hours, i.firstname, i.lastname
FROM instructors i
LEFT JOIN classes c
USING(instructor id)
WHERE i.course id = 3;
If you run this query in the MySQL Monitor, you'll find that the results are
exactly the same as those produced by the previous right join.
TIP Left or right? In most cases, it really doesn’t matter whether you
, use left joins or right joins, as long as the tables to be joined are in
2 the correct order. However, the recommended practice by most profes-
> sionals is to use left joins whenever possible. Using either one or the
other (but not both) is desirable for reasons of consistency. In addi-
tion, most people seem to find left joins easier to visualize than right
joins when reading and writing queries.
Full Join
A full join returns all rows from both tables being joined that otherwise fulfill
any conditions set in a query’s WHERE clause. All columns in rows from either
table that don’t have matches in the other one are filled with NULL values.
254

e

3324CHO05.gxd 9/21/04 9:53 AM Page 255 $

Joins, Temporary Tables, and Transactions

MySQL doesn’t support explicit full joins; instead we’'ll offer a couple of alter-
native ways to simulate a full join later in this chapter, in the “Emulating a Full
Join Using a UNION Query” and “Emulating a Full Join Using a Temporary Table”
sections.

CAUTION Some references state that the default join type in MySQL
, is the full join, but this is incorrect usage of the term full join, where
= % crossjoin is what’s really meant.

Natural Join

A natural join is a MySQL-specific shortcut that performs the same task as an
inner or left join in which the ON or USING clause refers to all columns that the
tables to be joined have in common. Using this form:

SELECT i.firstname, i.lastname, c.name
FROM instructors i

NATURAL JOIN classes c

WHERE i.lastname LIKE 'A%';

is the same as using this form:

SELECT i.firstname, i.lastname, c.name
FROM instructors i

INNER JOIN classes c
USING(instructor id)

WHERE i.lastname LIKE 'A%';

Similarly, you can make MySQL assume automatically that all same-named
columns are to be used as join keys for a left outer join:

SELECT i.firstname, i.lastname, c.name
FROM instructors i

NATURAL LEFT JOIN classes c

WHERE i.lastname LIKE 'A%';

This yields the same result as the following:

SELECT i.firstname, i.lastname, c.name
FROM instructors i

LEFT JOIN classes c
USING(instructor id)

WHERE i.lastname LIKE 'A%';
255

e

3324CHO5.gxd

Chapter 5

256

9/21/04 9:53 AM Page 256 :F

/,\ CAUTION You can’t use the INNER keyword with NATURAL JOIN. You'll
u get a syntax error if you try to do this.

You can also perform natural right joins, as in the following example.

mysql» SELECT i.firstname, 1.lastname, c.name
-» FROM instructors i
—>» MATURAL RIGHT JOIN courses cj

Computer Science
Chandra Ramayuman Computer Science
George Martin Mathematics
Frederick Albright Mathematics
Janet Allen Mathematics
William Anderson English
Alicia Martin English
Ronald Pinkerton English
Sarah Schmidt Physics
George Chiu Physics
JosB GonzBlez Spanish
Beatriz Gallego Spanish
Botany
- -
13 rows in set (0.00 sec

mysql>

Since there are no instructors in the Botany department, the columns from
the left-hand table in the row containing "Botany" from the right-hand table are
filled with NULL values.

By using the same name for related columns in different tables and
NATURAL [LEFT | RIGHT] JOIN syntax, you can save a lot of typing in your joins. The
principal drawback to the USING notation is that this isn’t portable from MySQL to
other databases. It’s also true that someone who is not familiar with your table
schemas may need to look them up before being to able to know for certain on
which columns the tables in the query are being joined.

’ TIP You can also use NATURAL LEFT OUTER JOIN and
AL NATURAL RIGHT OUTER JOIN, in addition to what'’s shown

in the examples.

Self Join

Self joins aren’t used often, but they are very handy for one particular purpose:
retrieving information that represents a hierarchy. Suppose we want to model
the supervisory responsibilities for personnel in an office department, such as
that represented by the tree graph in Figure 5-6.

e

3324CHO5.gxd

9/21/04 9:53 AM Page 257 $

Joins, Temporary Tables, and Transactions

Nora Doe
M

|
\2 v

James Wu Nancy Beck
@ (©)]

3 '

Al Smith Mary Lester Alice Ramone
@) ®) (6)
i’ Y
Bernie Jones Ted Knight
) ®)

\2 v

Jill Davis Anne Cantor
9) (10)
Y

Scott Mason
(11)

Figure 5-6. A hierarchy of department personnel

As shown here, Nora Doe (Employee #1) supervises James Wu (Employee #2)
and Nancy Beck (Employee #3), James Wu supervises Al Smith (Employee #4)
and Mary Lester (Employee #5), and so on. It’s fairly straightforward to construct
a table to hold this data:

CREATE TABLE employees (
employee id int(11) NOT NULL auto increment,
supervisor id int(11) default NULL,
firstname varchar(50) NOT NULL default '',
lastname varchar(50) NOT NULL default '',
PRIMARY KEY (employee id)

)s

This table contains an employee_id column to store the employee’s ID
number, a supervisor_id column to hold the employee ID of the supervisor to
whom the employee reports, and firstname and lastname columns to store the
employee’s first and last names. We'll allow the supervisor_id column of this
table to take a NULL value to indicate an employee with no supervisors. The first
two statements for inserting the data into this table look like this:

257

e

3324CHO05.gxd 9/21/04 9:53 AM Page 258 j\%

Chapter 5

INSERT INTO employees (employee id, supervisor id, firstname, lastname)
VALUES (1, NULL, 'Nora', 'Doe');

INSERT INTO employees (employee id, supervisor id, firstname, lastname)
VALUES (2, 1, 'James', 'Wu');

NOTE Writing the remaining INSERT statements based on the dia-
L 5 gram in Figure 5-6 should be a trivial exercise. Alternatively, you can
3 use the self-join.sql script included in the ch5 directory of the code
— download for this book (available from the Downloads section of
http://www.apress.com) fo create and populate the employees table.

Data that refers to other data stored in the same table exhibits what’s com-
monly referred to as a recursive, or reflexive, relationship. A self join is used to
extract this data in such a way that this recursive relationship is preserved, and it
works by joining the table to itself. Since we can refer to the same table identifier
(table name or alias) only once in a given query, we indulge in a couple of bits of
alias trickery here:

* We use the same table name twice, but use a different table alias each
time. In effect, we're telling MySQL to refer to the same table under two
different guises.

e Since the columns which we're retrieving have the same names, we use
column aliases to distinguish the columns returned from the table under
the first table alias from those returned from the table under the table
second alias.

We'll take the additional step of concatenating the first and last names of
each employee as well. The resulting query might look like this:

ommand Prompt - mysqgl -h

SELECT

CONCAT{el.firstname, ' ', el.lastname)} AS superwvisor,
CONCAT(e2.firstname, ' ', e2.lastname)} AS employee
FROM employees el

JOIN employees e2 ON el.employee_id = e2.supervisor_id;

James Wu
Nancy Beck
Al smith
Mary Lester
Nancy Beck Alice Ramone
Al smith Bernie Jones
Alice Ramone Ted Knight
Ted Knight 3411 Dawvis
Ted Knight Anne Cantor
Ted Knight Scott Mason
+
10 rows in set (D.05 sec)

mysql»

258

3324CHO5.gxd

9/21/04 9:53 AM Page 259 $

Joins, Temporary Tables, and Transactions

If we want to include a record showing that Nora Doe is the department
head (that she has no immediate supervisor), we can do that using an outer join.
Since we're displaying the supervisor column on the left side of the output, we’ll
need to use a right join:

mmand Prompt - mysgl

SELECT
IFNULL{CONCAT{el.firstname, ' ', el.lastname}, " [DEPARTMENT HEAD]")
AS supervisor,
CONCAT(e2.firstname, ' ', e2.lastname)} AS employee
FROM employees el
RIGHT JOIN employees e2 ON el.employee_id = e2.supervisor_id;
+

+ +
[DEPARTMENT HEAD]
Hora Doe
Nora Doe Nancy Beck
James Wu Al smith
James Wu Mary Lester
Nancy Beck Alice Ramone
Al smith Bernie Jones
Alice Ramone Ted Knight
Ted Knight 3411 Dawvis
Ted Knight Anne Cantor
Ted Knight Scott Mason

mysql»

Notice that we use IFNULL() once again in order to substitute a descriptive
message in place of the word NULL in Nora’s employee record, making use of the
fact that the result of concatenating any value to NULL is also NULL. If we wanted
to use a left join, we could rewrite this query as follows:

SELECT
IFNULL(CONCAT(e2.firstname, ' ', e2.lastname), "[DEPARTMENT HEAD]")
AS supervisor,
CONCAT(e1.firstname, " ', el.lastname) AS employee
FROM employees el
LEFT JOIN employees e2 ON e2.employee id = el.supervisor id;

We just switch the aliases used for the columns to be selected and in the ON
clause.

Other likely scenarios for using self joins include relating parts of items that
themselves are used as parts of other items; department hierarchies in an orga-
nization; and sections and subsections of a document, an application, or a
web site.

Unions

Beginning with MySQL 4.0, you can use the UNION keyword to combine the
results of multiple SELECT queries into a single resultset. This can be very useful

259

e

3324CHO05.gxd 9/21/04 9:53 AM Page 260 $

Chapter 5

in eliminating the need to store resultsets in programming data structures such
as arrays or to employ temporary tables (which we’ll look at very shortly) in
order to preserve intermediate results.

The basic syntax for UNION is as follows:

(SELECT ...)

UNION [DISTINCT | ALL]
(SELECT ...)

[UNION

(SELECT ...) [...]]

The SELECT statements can be any that are legal in MySQL, as long as each
query yields the same number of columns. The parentheses surrounding the
individual SELECT statements are required if you want to use an ORDER BY clause
that affects the combined resultset. However, it’s good practice to use parenthe-
ses in any case, to make your queries easier to read.

. CAUTION Prior to MySQL 4.1.1, there’s a further restriction in that

, the values of the columns in the first SELECT query’s resultset are used

= to determine the result types and lengths of the same columns for the
combined resultset. This means that column values from the second
query and any additional ones might be truncated or otherwise
altered in order to match the sizes and types of those resulting from
the first SELECT.

Let’s look at a simple example. Suppose we have two tables listing a small
firm’s salespeople and service technicians. Here’s the definition for the sales
table:

CREATE TABLE sales (
firstname varchar(50) NULL,
lastname varchar(50) NULL

)s

NOTE The table definitions and data for this example are included
o 4 in the union.sql file in the ch5 directory of this book’s downloadable
2 code.

4
4
e

The structure of the service_techs table is identical to this one. In order to
obtain a combined listing of all the employees from both tables in a single result,
we can do this:

260

e

3324CHO5.gxd

9/21/04 9:53 AM Page 261 $

Joins, Temporary Tables, and Transactions

mmand Prompt -

{SELECT lastname, firstname FROM sales)
UNION
{SELECT lastname, firstname FROM serwvice_techs)
ORDER BY lastname;
- H————————— +
1lastname firstname |
- +
Anderson |
Bridges Lucinda |
Fields Hope |
ariffith George |
Miller Lisette |
Nelson Mike |
Norton Steve |
Roberts Peter |
Roberts Denise |
Thomas Jerry |
williams Franklin I

Notice that the ORDER BY clause following the second SELECT (and outside the
parentheses surrounding it) controls the sort order for the entire resultset.

By default, MySQL eliminates any duplicated rows from the combined
resultset. Beginning with MySQL 4.0.17, you can indicate this behavior using the
DISTINCT keyword. While it actually has no effect (since it represents the default
behavior), it can serve as a reminder that you're dropping any duplicates. The
DISTINCT keyword is also required by the SQL standard, so using it will make your
code more portable as well.

If we want all rows to be included in the final result, we can use the ALL key-
word, like so:

mmand Prompt - m

{SELECT lastname, firstname FROM sales)

UNION ALL

{SELECT lastname, firstname FROM serwvice_techs)

ORDER BY lastname;

- H————————— +
1astname firstname |
————— - +

Anderson |
Anderson Jane |
Bridges Lucinda |
Fields Hope |
ariffith George |
ariffith George |
Miller Lisette |
Nelson Mike |
Norton Steve |
Roberts Denise |
Roberts Peter |
Thomas Jerry |
Thomas Jerry |
Williams Franklin I

Emulating a Full Join Using a UNION Query

In some cases, you can UNION together a left join and a right join to simulate a full
join, as shown in the following example.

261

e

3324CHO05.gxd 9/21/04 9:53 AM Page 262 $

Chapter 5
Command Prompt - mysq
SELECT CONCAT{s.firstname, ' ', s.lastname) AS salesperson,
CONCAT(t.firstname, ' ', t.lastname) AS tech
FROM =sales s
LEFT JOIN service_techs t
USING {firstname, lastname)
UNION
SELECT CONCAT{s.firstname, ' ', s.lastname) AS salesperson,
CONCAT({t.firstname, ' ', t.lastname) AS tech
FROM =sales s
RIGHT JOIN serwvice_techs t
USING {firstname, lastname)
+
|
H
Jane Anderson | Jane Anderson
Franklin Williams | HULL |
Jerry Thomas | Jerry Thomas
Lisette Miller | NuLL |
Peter Roberts | NuLL |
Mandy Yates | NuLL |
Lucinda Bridges | NuLL |
George Griffith | George Griffith
Hope Fields | NULL |
NULL | Denise Roberts |
NULL | 5teve Norton |
NULL | Mike Nelson |
+ +
sec)
mysql»
In order for this to work, all the columns in the first query’s resultset must
accept NULL values. (This is true through MySQL 5.0.0.)
As an exercise, try writing a query (using the union.sql tables and data as a
basis) whose output looks something like this:
EMPLOYEE SALES TECH
Jane Anderson X X
Franklin Williams X
Jerry Thomas X X
letc. . .]
Steve Norton X
Mike Nelson X
4 CAUTION Any column names used in an ORDER BY clause applying
,./ \ to an entire union must be common to the resultsets produced by all
; ' \ p y
&‘ of the SELECT queries making up the union.
We'll look at another method for simulating full joins using temporary tables
a little later in this chapter.
262

e

3324CHO5.gxd

9/21/04 9:53 AM Page 263 $

Joins, Temporary Tables, and Transactions
Temporary Tables

Now let’s talk about another advanced MySQL feature: femporary tables. These
allow you to create a short-term storage place within the database itself for a set
of data that you need to use several times in a single series of operations. One
advantage of this is that you can use SQL to access the data, rather than using
programming code, which means that if you need to port your application from,
say, PHP to Java, there’s that much less code to be translated. There are addi-
tional benefits to using temporary tables, as you'll see shortly.

Most often, it’s best to obtain a desired set of data in a single SELECT query.
However, sometimes this simply isn’t possible, or you may want to work with
subsets of the same, larger resultset over several successive operations. You can
handle intermediate or temporary results for reuse within a single session in two
basic ways:

e Using programming constructs such as arrays, hashes, or objects and
retrieving data from these when required by the application logic

* Using database tables

The second option is preferable because it tends to be faster, there’s less like-
lihood of bugs in the programming code, and applications are more easily
ported (the latter two reasons derive from the simple fact that there’s less code to
manage). The one drawback to doing this is that you're then required to manage
the tables for storing the intermediate results. The solution to this problem is to
use temporary tables, which are supported in MySQL 3.23 and later.

native for handling intermediate or temporary results for reuse. See

NOTE Beginning with MySQL 5.0.1, views may offer another alter-
&S
i Chapter 8 for more information about views.

Creating Temporary Tables

To create a temporary table, simply include the TEMPORARY keyword in a table cre-
ation statement. Otherwise, the statements used to create them are no different
than those used to create normal tables.

A temporary table can be of type MyISAM, HEAP, MERGE, or InnoDB. (Your
MySQL installation must support InnoDB tables in order to use these as tempo-
rary tables, of course.) You can also use ISAM as the table type for temporary
tables in MySQL versions through the 4.0.x series. (Don’t forget that ISAM tables
are disabled in MySQL 4.1 and removed altogether beginning with MySQL 5.0.0.)

263

e

3324CHO05.gxd 9/21/04 9:53 AM Page 264 $

Chapter 5

Temporary tables differ from normal tables in that temporary tables exist only
for the duration of the current session and are automatically deleted after it ends.
(For web applications, this means that temporary tables generally cease to exist
upon completion of the current page or script.) The following is a simple example
(this particular example was produced on a PC running Windows 2000 Server, but
the results will be the same regardless of operating system or platform).

ommand Prompt - mys:
C:%»>mysql -h megalon -u root -p
o

Commands end with ; or ‘\g.
Your MySQL connection id is 3 to server version: 5.0.0-alpha-max-nt-log

Type "help; ' or 'ZVh' for help. Type '“c' to clear the buffer.

q
mysql> CREATE TEMPORARY TABLE temptable {wval INT);
Query OK, O rows affected {0.06 sec)

mysql> INSERT INTO temptable {wval) VALUES {123);
Query OK, 1 row affected (0.01 sec)

mysql»> SELECT * FROM temptable;
+

iC:%»>mysql -h megalon -u root -p
o

Commands end with ; or ‘Zg.
Your MySQL connection id is 4 to server version: 5.0.0-alpha-max-nt-log

Type "help; ' or 'ZVh' for help. Type '“c' to clear the buffer.

q
mysql»> SELECT * FROM temptable;
ERROR 1146 (42502): Table "test.temptable’ doesn't exist
mysql>

Notice that the table was deleted as soon as the session was ended using the
\q (or quit) command. You can verify this by logging in again as the same user
and trying to query the table you created previously. One interesting and poten-
tially useful side effect of this behavior is that multiple users can employ the
same table names for temporary tables without fear of collisions between them.
This also means that different users can’t access each other’s temporary tables. If
one user or process needs to access a table created by a different one, you'll need
to omit the TEMPORARY keyword from the table definition and take care of mainte-
nance issues (such as deleting the table once there’s no further use for it) in your
application code.

CAUTION In MySQL, you can’t refer to the same temporary table
},./ | more than once in a single query. This means you can’t do a self join

&r on a temporary table.

264

e

3324CHO5.gxd

9/21/04 9:53 AM Page 265 $

Joins, Temporary Tables, and Transactions
Emulating a Full Join Using a Temporary Table

We've already looked at one way of duplicating what a full join does by using a
UNION query. Now we'll demonstrate how to simulate a full join with a temporary
table, in the event you're working with a MySQL version earlier than 4.0. This will
be fairly straightforward, but should serve as a good example of the use of a tem-
porary table.

We'll use the same sales and service_techs tables defined and populated in
the union.sql script, which we used in our earlier example of emulating a full
join. We perform the emulation in four steps:

1. Create the temporary table used to store the intermediate result.

2. Insert the data returned by a left join on the two employees tables.

3. [Insert the data from a right join on the same two tables.

4. Select the final data set from the temporary table.

We'll actually combine steps 1 and 2 using CREATE TABLE ... SELECT syntax,

as this is just as valid for temporary tables as it is for normal ones. The left join is
simply the one we used earlier in the first part of the UNION join.

Command Prompt - mysgl -h

mysql> CREATE TEMPORARY TABLE temptable
SELECT
CONCAT{s.firstname, ' ', s.lastname) A5 salesperson,
CONCAT(t.firstname, ' ', t.lastname)} AS tech
FROM sales s
LEFT JOIN service_techs t
USING {firstname, lastname);
9 rows affected {0.02 sec)
: 9 Duplicates: O Warnings: O

+
salesperson | char{101) | YES
char{101) | YES

H————————————— H——————————— H——————

2 rows in set {D.00 sec)

mysql>

265

3324CHO05.gxd 9/21/04 9:53 AM Page 266 $

Chapter 5
And here’s the data that we inserted:
mmand Prompt -
mysql»> SELECT * FROM temptable;
H————— +
zalesperson |
- ———— +
Jane Anderson | Jane Anderson
Franklin Williams | HULL
Jerry Thomas | Jerry Thomas
Lisette Miller | NuLL
Peter Roberts | NuLL
Mandy Yates | NuLL
Lucinda Bridges | NULL
George Griffith | George Griffith
Hope Fields]
+
rows in set (0.00 sec)
mysql>
Now we need to insert the data from a right join on the same two tables. We
already have the necessary SELECT query for this. All we need to do is turn it into
an INSERT SELECT, as follows.
mmand Prompt - m
mysql> INSERT INTO temptable {salesperson, tech)
SELECT
CONCAT{s.firstname, ' ', s.lastname) AS salesperson,
CONCAT(t.firstname, ' ', t.lastname) AS tech
FROM sales s
RIGHT JOIN service_techs t
USING {firstname, lastname);
Query OK, 6 rows affected {0.04 sec)
Records: 6 Duplicates: 0 Warnings: O
mysql>
The temporary table now contains the following data:
mmand Prompt - m;
mysql»> SELECT * FROM temptable;
- —— +
salesperson |
- ———— +
Jane Anderson | Jane Anderson
Franklin Williams | HULL
Jerry Thomas | Jerry Thomas
Lisette Miller | NULL
Peter Roberts | NuLL
Mandy Yates | NULL
Lucinda Bridges | NULL
George Griffith | George Griffith
Hope Fields | NULL
Jane Anderson | Jane Anderson
NULL | Denise Roberts
Jerry Thomas | Jerry Thomas
NULL | 5teve Norton
NULL | Mike Helson
George Griffith | George Griffith
+ +
sec)
mysql>
We have some duplicate rows. We can take care of this problem easily
enough by using a SELECT DISTINCT instead:
266

S

3324CHO5.gxd

9/21/04 9:54 AM Page 267 $

Joins, Temporary Tables, and Transactions

mmand Prompt - mysgl -h .,-:\::

mysql»> SELECT DISTINCT * FROM temptable;
- ———— e — +
| salesperson |
L ___
Jane Anderson
Franklin Williams
Jerry Thomas
Lisette Miller
Peter Roberts
Mandy Yates
Lucinda Bridges
George Griffith
Hope Fields
HULL
NULL
NULL

i
1
1
I
1
1
1
1
1
1
1
1
1
I
!
|
+

Jane Anderson
NULL

Jerry Thomas
NULL

HULL

HULL

HULL

George Griffith
NULL

Denise Roberts
5teve Norton
Mike Nelson

e e

i
1
1
I
1
1
1
1
1
1
1
1
I
1
!
|
+

sec)

mysql>

This is the same data that we obtained using the UNION join earlier.

older versions of MySQL that don’t support these. We'll look at how

NOTE You can also use temporary tables to simulate subselects in
s
2:"_ this can be accomplished when we discuss subqueries in Chapter 8.

Transactions

Both joins and temporary tables can help reduce the amount of application code
needed to get a given amount of work out of MySQL. A third way to streamline
your applications that use MySQL is to employ transactions.

A transaction is simply a group of related operations that make up a logical
or conceptual whole. For example, when you make a purchase using a credit
card from a web site, your cardholder account must be debited and the site
owner’s merchant account must be credited. When problems such as a power
outage, a system failure, or loss of a network connection occur, it is possible that
all of these necessary operations may not take place, causing data integrity prob-
lems. (For example, your card is debited, but the merchant’s account doesn’t get
the credit for the sale.) Transactional features have been added to most popular
databases in order to provide a solution to exactly this type of problem. Since
version 3.23-max and all 4.0 versions and later, MySQL has provided transac-
tional support using the InnoDB and BDB storage engines.

In MySQL (when using InnoDB or BDB tables) or in any other transactional
database, a transaction must follow what are known as the ACID rules:

267

3324CHO5.gxd

Chapter 5

268

9/21/04

9:54 AM Page 268 #:

e Atomicity: All operations associated with any given transaction must

occur as a single unit. If any single operation fails, then the transaction
does not take place, and the database is returned to its previous state. This
is often stated like this: In the event of the failure of an operation that
makes up part of the transaction, the transaction is not committed, and
the transaction is rolled back.

Consistency: The system’s state following the transaction must be consis-
tent with its original state. For example, if you're transferring money
between two checking accounts, the total of the two accounts must be
the same before and after the transfer takes place. If the balance of one
account has increased by $100, then the balance of the other account
must have decreased by the same amount.

Isolation: Each transaction must appear to be independent of all other
actions taking place in the system. In other words (to use our banking
example again), the system must behave as though the two accounts
between which funds are being transferred have exclusive use of the sys-
tem while this transaction is taking place. (In practice, true concurrent
isolation is fairly difficult to achieve without causing major performance
problems, and what usually happens instead is some sort of sequential
prioritization.)

Durability: Simply put, once a transaction is completed, it must stay com-
pleted. This is achieved in MySQL and other transaction-safe databases by
means of a transaction log file, which is updated whenever a transaction is
completed.

The main benefit of using transactional tables with your application is that
you can ensure data integrity and concurrency in the event that something
unexpected may occur. This is very important in the business world, such as for
financial institutions.

NOTE Both InnoDB and BDB tables support transactions, but there

L 4 are some problems with BDB tables. They tend to be slow when large
3 numbers of them are simultaneously open; they can’t be moved
— between directories; and you may not be able to delete BDB tables

unless you're running in auto-commit mode. Also, BDB tables cur-
rently aren’t supported on Linux running on other than 32-bit Intel
processors, and they aren’t supported at all on Mac OS X. For these
and other reasons, we recommend that you use InnoDB tables when
you need to support transactions in a production environment.

e

3324CHO05.gxd 9/21/04 9:54 AM Page 269 $

Joins, Temporary Tables, and Transactions

MySOL Transaction Commands

MySQL has three commands for use in performing transactions:

BEGIN: This command begins a transaction. MySQL supports BEGIN WORK
as an alias for this command. Since MySQL 4.0.11, you can also use the
standard SQL command START TRANSACTION. Alternatively, you may use
SET AUTOCOMMIT = 0;.With all of these commands, changes are not writ-
ten to disk and logged until a COMMIT statement has been issued. The
difference between SET AUTOCOMMIT = 0; and the others is that it disables
auto-commit mode until you explicitly turn it back on (by issuing a

SET AUTOCOMMIT = 1;); the others merely disable auto-commit mode
temporarily, until either a COMMIT or ROLLBACK command has been issued.

ROLLBACK: If there is a failure in any of the queries required for the transac-
tion, you can issue this command to cancel the transaction and return the
database to its previous state. Issuing a ROLLBACK requires the “undoing” of
each query that was successful prior to the advent of the error condition
that necessitated it. Fortunately, thanks to improved versioning tech-
niques, this doesn'’t take as long as you might think it would.

COMMIT: Once all required queries are completed successfully, this com-
mits the transaction; that is, all changes are saved to the transaction log
on disk or in other permanent storage. COMMIT statements execute fairly
rapidly, since there is no requirement for any actual additional work in
the database to be done, only that operations be recorded.

In MySQL you cannot nest transactions. If you issue a BEGIN statement for a
given user while that user has a pending transaction, MySQL will treat it as a
COMMIT followed by a BEGIN. In other words, MySQL allows individual users to per-
form only sequential transactions.

4 NOTE MySQL does not support save points as do some other data-
?:“ bases. You can only commit or roll back a complete transaction.

Transaction Processing Considerations

It’s best to keep transactions as small as possible. Since MySQL must guarantee
that transactions belonging to different users are kept separate, this means that
table rows involved in those transactions must be kept locked (and thus not
accessible by other others) for the duration of each transaction. In addition,
since transactions must be logged as sets of queries, using the minimum

269

e

3324CHO05.gxd 9/21/04 9:54 AM Page 270 $

Chapter 5

number of SQL statements possible per transaction ensures that your applica-
tion isn’t slowed down by the need to log a large number of queries before the
next transaction can commence.

You should perform all transactions before and after obtaining user input.
Don't write your application in such a way that a transaction is in progress while
awaiting user response. Imagine what could happen if a user decided to leave for
his lunch break while the database was waiting for one or more of his transac-
tions to finish! Plan your application in such a way that all necessary data is
obtained, then the transaction performed, before collecting the next item or set
of data.

Summary

In this chapter, we've looked at three features that can help increase the efficiency
of your MySQL applications: joins (including UNION joins), temporary tables, and
transactions. Each of these can be used in different ways to cut down on the
number of queries required to isolate the data you need, reduce or eliminate the
need to store data as part of application logic, decrease the number of bugs in
programming code, and help guarantee data integrity.

Using joins reduces the number of queries needed to obtain a given set of
data by allowing you to combine queries. These also tend to make applications
more efficient because they can often eliminate the need to store data in pro-
gramming constructs so that they can be used in subsequent queries. They make
applications less error-prone because less code means less of a chance for bugs
to creep into the codebase. We looked at all of the major join types supported by
MySQL.

Temporary tables are useful when you want to store the results of queries in
tables for reuse several times during a single user or application session, rather
than in programming constructs such as arrays or hashes. MySQLs temporary
tables are unique to each session, and they are cleaned up for you at the end of
each session, which cuts down drastically on table management requirements
and worries about issues such as table name collisions. They’re also useful in
cases where it’s unwieldy or even impossible to derive a desired set of data in a
single query, such as in our example using a temporary table to simulate a full
join, which isn’t currently supported in MySQL.

Transactions, supported in MySQL via the InnoDB and BDB storage engines,
are useful because they provide a mechanism whereby queries can be grouped
together logically and performed as a unit. This is extremely important in scenar-
ios where the state of the database must be preserved; for example, in the case of
transferring funds between checking accounts, where the total of the amounts in
both accounts must be the same before and after the transfer. Without transac-
tions, you must lock all affected tables and track the success or failure of each
single query required to complete the transfer, and in the event of failure, you

270

e

3324CHO5.gxd

9/21/04 9:54 AM Page 271 $

Joins, Temporary Tables, and Transactions

must be prepared to perform the inverse of each query that succeeded up to that
point. (There are also concurrency and other issues involved, but we won't dwell
on those here.) Because transactions handle commits and rollbacks for you auto-
matically, you're saved a tremendous amount of code overhead. Many database
APIs that are compatible with MySQL provide enhanced support for transactions,
including Python’s MySQLdb module and ext/mysqli in PHP 5, as you'll see in
Chapter 7, when we discuss MySQL application programming.

What’s Next

In the next chapter, we'll look at additional ways to speed up and improve the
efficiency of MySQL-backed applications by identifying bottlenecks in them as
they’re running. Some of these methods include analysis of log files and status
variables, evaluation of table design and queries, caching issues, application
bloat, and the configuration of the MySQL server.

271

3324CHO05.gxd 9/21/04 9:54 AM Page 272 $

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

