
The zipfR package for lexical statistics:
A tutorial introduction

Marco Baroni Stefan Evert

3 October 2014
zipfR version 0.6-7

1 Introduction

This document provides a tutorial introduction to the zipfR package (Evert and
Baroni, 2007) for Large-Number-of-Rare-Events (LNRE) modeling of lexical distri-
butions (Baayen, 2001). We assume that R is installed on your computer and that
you have basic familiarity with it. If this is not the case, please start by visiting the
R page at http://www.r-project.org/. The page provides links to download sites,
documentation and introductory material, as well as a wide selection of textbooks
on R programming.

2 Installing and loading zipfR

The zipfR package is available on CRAN, the central R repository. If you are us-
ing the RStudio IDE (or the native R graphical user interface under Mac OS X
or Windows, installing zipfR should be as easy as selecting Package Installer from
the Packages & Data menu, getting a list of the CRAN binaries, looking for zipfR,
selecting it and clicking on the Install Selected button (there might be small differ-
ences between operating systems and among R versions, but the Package Installer
is very user friendly, and the steps to take should always be fairly obvious).

If you are using the command-line version of R on Linux or another Unix plat-
form, you can install zipfR with the command

> install.packages("zipfR")

provided that you have the required access permissions to install packages on your
computer. See ?install.packages for further information about package installa-
tion options, or take a look at the instructions found in the general R documentation.

Whenever you intend to access zipfR functionality during a R session, you have
to load the package first. If you are using a graphical user interface, you can select
Package Manager from the Packages & Data menu (or similar) and load the package
through the graphical options. The recommended way, however, which works both
on the command line and in the GUI, is to load zipfR as follows:

> library(zipfR)

Once zipfR has been loaded, you can browse its documentation with the command:

> ?zipfR

1

3 Case study 1: Estimating the vocabulary size

of a productive process

We illustrate the basic functionalities of the package by considering a classic problem
in quantitative linguistics, i.e., that of estimating the number of distinct types that
belong to a certain category, given a sample of tokens from the relevant category.
Our example data come from the Italian word formation process of ri- prefixation
(comparable, although not identical, to English re- prefixation). The data were
extracted from a 380 million token corpus of newspaper Italian (Baroni et al., 2004),
and they consist of all verbal lemmas beginning with the prefix ri- in the corpus
(extracted with a mixture of automated methods and manual checking).

Morphology has been a traditional field of application of lexical statistics (see,
e.g., Baayen, 1992), although the general problem of computing the number of types
(vocabulary size) in a population given a sample from the population is also relevant
to many other language-related fields, from stylometry (estimating the vocabulary
size of different authors) to syntax (measuring the size and productivity of word
classes and constructions) to language acquisition (measuring lexical richness of
children or language learners).

We will use the symbol V for vocabulary size (number of types), N for sample size
(number of tokens) and Vm (m an integer value) for the number of types that have
frequency m. In particular, V1 is the number of hapax legomena, i.e., the number of
types that occur only once in the corpus.

3.1 Frequency spectra

If you have an open R session and you loaded zipfR, you can access the ri- frequency
data under the name ItaRi.spc. This object is a frequency spectrum, the most
important data structure in zipfR. A frequency spectrum summarizes a frequency
distribution in terms of number of types (Vm) per frequency class (m), i.e., it reports
how many distinct types occur once, how many types occur twice, and so on. For
example, the first few rows of the ItaRi.spc spectrum (which we can inspect by
typing the object name) are:

> ItaRi.spc

m Vm

1 1 346

2 2 105

3 3 74

4 4 43

5 5 39

6 6 25

7 7 27

8 8 15

9 9 17

10 10 9

...

N V

1399898 1098

2

Thus, we see that in our corpus there are 346 ri- verbs that occur once, 105 ri- verbs
that occur twice, 74 that occur three times, etc.

General information about the spc data structure can be found in the help entry
for spc. For information on reading your own frequency spectrum into R from a
TAB-delimited text file (and saving a spectrum object to an output text file), take
a look at the documentation for the read.spc and write.spc functions. You can
also import a type frequency list (a list of frequencies of the linguistic entities of
interest) and generate a spectrum file from it: see documentation for the read.tfl

and tfl2spc functions (while we do not discuss it further here, the zipfR type
frequency list object is of fundamental practical importance, given that input
data will often be in the form of frequency lists; see ?tfl for details and examples).

The zipfR package provides various utility functions to explore the frequency
distribution encoded in a spectrum object. First, summary applied to a spectrum
data structure returns a useful sketch of the spectrum (N , V , the type frequencies
of the first few classes of the spectrum):

> summary(ItaRi.spc)

zipfR object for frequency spectrum

Sample size: N = 1399898

Vocabulary size: V = 1098

Class sizes: Vm = 346 105 74 43 39 25 27 15 ...

The function summary can be applied to most zipfR data structures, to obtain basic
information about the structure contents. The function N returns the sample size
N , V returns the vocabulary size V :

> N(ItaRi.spc)

[1] 1399898

> V(ItaRi.spc)

[1] 1098

You can use N and V with any zipfR object for which N and V constitute relevant
information (although you might get different types of information: see the docu-
mentation for these functions). The function Vm returns the number of types with
frequency m; if the argument specifying m is a vector, it returns a vector containing
the number of types for the specified range of spectrum elements:

> Vm(ItaRi.spc, 1)

[1] 346

> Vm(ItaRi.spc, 1:5)

[1] 346 105 74 43 39

You can use Vm and N to compute the famous P measure of productivity proposed
by Harald Baayen (see, e.g., Baayen, 1992). P is obtained by dividing the number
of hapax legomena by the overall sample size:

3

> Vm(ItaRi.spc, 1) / N(ItaRi.spc)

[1] 0.0002471609

It is informative to plot a frequency spectrum, with m on the x axis and Vm on the
y axis. The zipfR package provides a special plot method for spectrum objects,
implementing two different visualization styles:

> plot(ItaRi.spc)

> plot(ItaRi.spc, log="x")

1 2 3 4 5 6 7 8 9 10 12 14

Frequency Spectrum

m

V
m

0
50

10
0

15
0

20
0

25
0

30
0

35
0

1 2 5 10 20 50

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Frequency Spectrum

m

V
m

●

●

●

● ●

● ●

● ●
● ●

●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

As the left figure shows, applying the function plot to a zipfR spectrum with no
other arguments produces a histogram of the first 15 frequency classes in the spec-
trum. If the argument log="x" is passed, we obtain by default a plot of the first 50
spectrum elements with the x (i.e., m) axis on a logarithmic scale, as illustrated in
the right figure.

You can also use visualize the frequency spectrum with a standard R scatterplot
by providing x- and y-coordinates as separate arguments:

> with(ItaRi.spc, plot(m, Vm, main="Frequency Spectrum"))

●

●

●

●●

●●

●●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●● ●●●●●●●●● ●●●●●●●●● ● ●● ●●●● ● ●● ● ● ● ● ● ●

0 50000 100000 150000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Frequency Spectrum

m

V
m

4

This figure shows why the zipfR plot method does not display the full range of fre-
quency classes. A spectrum is often characterized by very high values corresponding
to the lowest frequency classes, and a very long tail of frequency classes with only
one member (i.e., just one word with frequency 100, just one word with frequency
103, etc.) Thus, a full spectrum plot on a non-logarithmic scale will always have the
rather uninformative L-shaped profile seen above.

The zipfR functions try to provide reasonable default values for all parameters
that are not specified in a function call, making it very easy to obtain basic plots of
the desired data structures. The defaults can of course be overridden. For example,
you can pass a different title through the main argument, or use xlab and ylab to
change the axis labels. For more information on the plotting parameters, look at
the help for plot.spc. In case you need even finer control over the parameters, a
zipfR spectrum (like most other zipfR data structures) is also typed as a regular R
data frame, which means that you can access its contents with standard R syntax
(ItaRi.spc$m, ItaRi.spc$Vm, or using the shorthand with() as in the last plot
above). Keep in mind, however, that the results of directly accessing the data struc-
ture might not be what you expect. E.g., ItaRi.spc$Vm[50] does not necessarily
return the value of V50, but the value of the 50th non-zero frequency class! Use
Vm(ItaRi.spc, 50) to read out V50 reliably.

Once you have generated a plot, you can export it to a PDF file or various other
formats using standard R functionality such as the dev.copy2pdf function (or, if
you are using a GUI, by selecting Save As. . . from the File menu).

3.2 Vocabulary growth curves

Frequency spectrum plots provide valuable information about the nature of a pro-
cess: if, as is the case with ri-, a process is characterized by a high proportion of
hapax legomena and other low frequency classes, this indicates that the process is
productive, i.e., the chances that if we were to sample more tokens of the same
category we would encounter new types are high.

In order to develop an intuition about how rapidly vocabulary size is growing,
another type of data structure (and associated plot) is more informative, i.e., the
vocabulary growth curve (VGC). A vocabulary growth curve reports vocabulary size
(number of types, V) as a function of sample size (number of tokens, N). The data
necessary to plot an empirical vocabulary growth curve (we discuss interpolated and
extrapolated VGCs below) cannot be derived from a single frequency spectrum, since
the spectrum is only providing us with information about a single sample size, and
we do not know how “we got there”. Consider, for example, the two “corpora” a b

a b a b a b and a a a a b b b b: they have the same frequency spectrum, but
different vocabulary growth curves.

Vocabulary growth data can be imported into a vocabulary growth curve
(vgc) data structure, that will contain V values for increasing Ns. Moreover, the
zipfR vgc data structure can have optional columns for V1 to V9, reporting the
number of types in the corresponding frequency classes at the specified Ns (how
many distinct types occur once, how many types occur twice, etc.). The most
interesting frequency class is typically that of hapax legomena; thus, we often find
ourselves working with VGCs that contain the fields N , V and V1.

As a case in point, you can access the empirical VGC for the ri- under the name
ItaRi.emp.vgc. The first few rows of this object (inspected with the handy function

5

head) are:

> head(ItaRi.emp.vgc)

N V V1

1 1000 140 62

2 2000 178 58

3 3000 201 60

4 4000 211 53

5 5000 224 61

6 6000 235 59

This indicates that, after the first 1,000 ri- tokens in the target corpus, we saw 140
distinct ri- types, 62 of them having occurred only once at that point; after the first
2,000 tokens, we saw 178 distinct types, 58 of them being hapax legomena at that
point; and so on. For instructions on how to import your VGCs from TAB-delimited
text files and more information about this data structure, browse the documentation
for read.vgc and vgc.

If you simply print the vgc object, a random selection of 25 rows will be shown
to give you a general overview of the vocabulary development (not displayed here
for reasons of space).

> ItaRi.emp.vgc

From the corresponding summary, you can see how many samples are included in
the vocabulary growth curve:

> summary(ItaRi.emp.vgc)

zipfR object for vocabulary growth curve

1400 samples for N = 1000 ... 1399898

Spectrum elements included up to m = 1

A vocabulary growth plot (with V and V1 curves) can be created with the following
command. By specifying add.m=1, we ask for V1 to be plotted as well (it appears as
a thinner line below V).

> plot(ItaRi.emp.vgc, add.m=1)

0 200000 400000 600000 800000 1000000 1200000

0
20

0
40

0
60

0
80

0
10

00

Vocabulary Growth

N

V
(N

)
V

1(N
)

More information about plotting VGCs is available on the plot.vgc help page.

6

3.3 Interpolation

An empirical growth curve such as the one we just plotted is typically not very
smooth, as it reflects all the quirks due to the non-random distribution of words
and texts in a corpus. A smoother curve can be obtained with the technique of
binomial interpolation (Baayen, 2001, ch. 2). Given a frequency spectrum, binomial
interpolation produces the expected values of vocabulary size (and number of types
in specific frequency classes – e.g., number of hapax legomena) for arbitrary sample
sizes (smaller or equal to the sample size at which the spectrum has been computed).
These expected values can be thought of as the average of vocabulary size (or other
measures) computed over a large number of randomizations of the order of tokens in
the corpus. Notice that expected values, unlike observed counts, are not necessarily
integers.

We can obtain an interpolated vocabulary growth curve even when we only have
a spectrum or frequency list. For example, we can compute an interpolated growth
curve from the ri- spectrum as follows:

> ItaRi.bin.vgc <- vgc.interp(ItaRi.spc, N(ItaRi.emp.vgc), m.max=1)

> head(ItaRi.bin.vgc)

N V V1

1 1000 143.1817 55.61382

2 2000 182.3696 56.88638

3 3000 205.4531 57.01421

4 4000 221.8945 57.32988

5 5000 234.7345 57.79447

6 6000 245.3238 58.41108

Besides the spectrum, vgc.interp requires as argument a vector of sample sizes
at which the interpolated V values should be computed. In this case, we use the
same sample sizes that are contained in our empirical VGC object. Moreover, we
use m.max=1 to request V1 estimates as well (see the vgc.interp documentation for
more information).

You can plot the expected V and V1 growth curves exactly as shown above for
the empirical curves (try it). Here, we illustrate how to use the plot function to
compare multiple V growth curves – specifically, the empirical and expected ri-
VGCs (but the same method can be used to compare VGCs of different processes):1

> plot(ItaRi.emp.vgc, ItaRi.bin.vgc,

+ legend=c("observed", "interpolated"))

1Note that the + sign at the start of the second line indicates that the full command does not fit
into a single line and has spilled over to the following line (+ is the prompt that R uses when you
have entered an incomplete command). Simply type the entire command (with all continuation
lines) on a single line when you run these examples.

7

0 200000 400000 600000 800000 1000000 1200000

0
20

0
40

0
60

0
80

0
10

00

Vocabulary Growth

N

V
(N

)
E

[V
(N

)]

observed
interpolated

This command produces a plot with colors. For a black and white version, simply
add the option bw=TRUE.

Interpolated curves look smoother, abstract away from fluctuations in the original
development profile, and they can be computed directly from frequency spectra.
However, if the relevant data are available, it is a good idea to always take a look
at the empirical curves as well, as they might reveal the presence of strong non-
randomness patterns in the data, which invalidate the assumptions at the basis
of statistical model estimation. Indeed, the different shapes of the empirical and
expected curves for the ri- data should be the source of some mild concern about
the validity of randomness assumptions even in this case.

Similarly to spectrum objects, VGCs are also typed as regular R data frames,
so that their contents can be accessed with standard R syntax if finer control over
plotting and analysis parameters is needed.

3.4 Estimating V and other quantities at arbitrary sample
sizes

The VGC for ri- shows that, had we sampled a smaller amount of ri- tokens, our
dataset would have contained a smaller number of types. For example, according to
the empirical VGC data, V amounts to 761 after the first 500,000 tokens, vs. 1,098
for the whole dataset:2

> V(ItaRi.emp.vgc)[N(ItaRi.emp.vgc) == 50000]

[1] 400

> V(ItaRi.spc)

[1] 1098

The shape of the VGC also strongly suggests that, if we were to keep sampling
ri- words, we would keep encountering new types, and the vocabulary size would
increase further. Thus, it is clear that the vocabulary size V is not a stable quantity,

2Note that this command only works because the vocabulary growth curve for ri- happens to
contain a data point for N = 50000.

8

but that it increases as sample size increases. Consequently, the V in our sample
cannot be taken as a reliable estimate of the overall V in the population we are
sampling from (in our case, the population of all possible ri- prefixed verbs in Italian),
nor of V s in smaller and larger samples.

We already saw how binomial interpolation can be used to estimate V for sample
sizes smaller than N , the sample size at which the frequency spectrum was com-
puted. In order to extrapolate V to larger samples (up to the whole population),
we need to resort to parametric statistical models for the distribution of frequencies
in the population (see Evert and Baroni, 2007; Evert, 2004; and see Baayen, 2001,
ch. 2, on why non-parametric extrapolation from the observed frequency spectrum
is problematic). Parametric models appropriate for word frequency distributions
(and distributions of other linguistic types) belong to the family of Large-Number-
of-Rare-Events (LNRE) models. These are implemented in zipfR as LNRE model
objects. Currently, the toolkit supports 3 classes of LNRE models: Generalized In-
verse Gauss Poisson (lnre.gigp; Baayen, 2001, ch. 4), Zipf-Mandelbrot (lnre.zm;
Evert, 2004) and finite Zipf-Mandelbrot (lnre.fzm; Evert, 2004). Mathematical
details are provided in the relevant references, whereas more information about the
zipfR implementations is available in the lnre and lnre.* documentation entries.
In future releases we might add support for the other LNRE models introduced
by Baayen (2001), although the tests of Baroni and Evert (2005) suggest that the
models currently implemented in the package clearly outperform the others.

Coming back to our ri- data, we will now use them to estimate a fZM model.
We call the lnre function with the string "fzm" and the ri- spectrum as arguments
(the same syntax can be used with the other models, substituting "fzm" with "zm"

or "gigp", respectively). The function automatically determines suitable values for
the 3 parameters of a fZM model by fitting the expected frequency spectrum of the
model to the observed spectrum for ri-. Technically, this is achieved by non-linear
minimization of a cost function that quantifies the “distance” between observed and
expected spectrum, but you don’t have to worry about such details right now. The
command you need to enter is:

> ItaRi.fzm <- lnre("fzm", ItaRi.spc, exact=FALSE)

We specified the name of the model we want to employ (here, fZM), the spectrum
to be used to estimate parameters and, by setting exact=FALSE, we allowed ap-
proximations in the calculation of expected values (which improves performance
and numerical stability, but may lead to inaccurate results under certain conditions;
see the documentation of the lnre function for details). You might try now to
re-estimate the model without the exact=FALSE option (noting that the estimation
procedure takes considerably longer to complete).

As usual, summary provides you with a sketch of the object you just created (you
can also simply type the LNRE object name):

> summary(ItaRi.fzm)

finite Zipf-Mandelbrot LNRE model.

Parameters:

Shape: alpha = 0.3175772

Lower cutoff: A = 2.678383e-09

Upper cutoff: B = 0.1159775

9

[Normalization: C = 2.968582]

Population size: S = 4913.341

Sampling method: Poisson, approximations are allowed.

Parameters estimated from sample of size N = 1399898:

V V1 V2 V3 V4 V5

Observed: 1098.00 346.00 105.00 74.00 43.00 39.00 ...

Expected: 1101.49 343.95 120.28 67.46 45.24 33.32 ...

Goodness-of-fit (multivariate chi-squared test):

X2 df p

20.62562 13 0.08067106

The summary function applied to a LNRE model returns the parameters of the model
and other useful information. In the case of a fZM model, this includes the number
of types in the population (S) and a comparison of observed and expected values for
the vocabulary size and the first five spectrum elements. Next, the summary reports
the results of a multivariate chi-squared test used to measure goodness of fit (see
Baayen, 2001, section 3.3). The lower the chi-squared statistic (and the higher the
p-value), the better the fit. Based on our experience (see, e.g., Evert, 2004), the
goodness of fit reported in this case is relatively good (although, in absolute terms,
we would of course like to see lower chi-squared values and higher p’s). The fit to the
observed spectrum can also be visualized with a comparative spectrum plot. First,
we produce the spectrum of expected frequencies predicted by the fZM model at the
sample size we used to compute the model (i.e., the whole-dataset sample size):

> ItaRi.fzm.spc <- lnre.spc(ItaRi.fzm, N(ItaRi.fzm))

Now, we plot the observed and expected spectra:

> plot(ItaRi.spc, ItaRi.fzm.spc, legend=c("observed", "fZM"))

1 2 3 4 5 6 7 8 9 10 12 14

observed
fZM

Frequency Spectrum

m

V
m

E
[V

m
]

0
50

10
0

15
0

20
0

25
0

30
0

35
0

The fZM model can now be used to obtain estimates of V and Vm (the spectrum
elements) at arbitrary sample sizes. For example, we can generate a VGC of expected
V s up to a N of 2.8 million (about twice the size of the ri- sample) with the following
command (notice the trick we use to request 100 equally spaced estimates of V up
to a sample size of 2.8 million):

10

> ItaRi.fzm.vgc <- lnre.vgc(ItaRi.fzm, (1:100) * 28e3)

It is worth mentioning that the function lnre.vgc can also provide variance es-
timates for the vocabulary size (and the spectrum elements, when relevant), via
the variances=TRUE option. These could then be used to plot confidence intervals
around the growth curves. However, in our experience, for many real-life datasets
these intervals will be so narrow as to be visually indiscernible from the curves
(though not in the case of ri-). We do not discuss these quantities here, but see the
package documentation (lnre.vgc, plot.vgc, etc.) as well as Baayen (2001, ch. 3).

We now plot the extrapolated VGC together with the empirical VGC as follows:

> plot(ItaRi.emp.vgc, ItaRi.fzm.vgc, N0=N(ItaRi.fzm),

+ legend=c("observed", "fZM"))

0 500000 1000000 1500000 2000000 2500000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Vocabulary Growth

N

V
(N

)
E

[V
(N

)]

observed
fZM

Notice the use of the argument N0 to highlight the position of N0 (the estimation
size) with a vertical line (see the plot.vgc documentation).

As an exercise, you should now use the ri- data to estimate ZM and GIGP models
and look at the model summaries (it is instructive to compare the predictions of the
three models for the population vocabulary size S). Then add the expected values
of the ZM and GIGP models to the comparative spectrum and VGC plots.

Parameter estimation is one of the most difficult aspects of LNRE modeling. We
have made great efforts to implement a robust and efficient estimation procedure for
each LNRE model, so in most cases you can conveniently rely on the default settings.
Sometimes parameter estimation will fail, however, or produce an unsatisfactory fit
to the observed frequency spectrum (as you will be able to tell from the summary or
comparative spectrum plot). In these cases, you can use three optional arguments of
the lnre function to fine-tune the estimation procedure. The cost option allows you
to choose from a range of cost functions, while m.max determines how many spectrum
elements are included in the calculation of the selected cost function. The method

option offers several different algorithms for minimization of the cost function. It can
be interesting to look at summaries, comparative spectrum plots and comparative
vocabulary growth curves of different LNRE models as well as the same model with
different settings for the parameter estimation procedure (and, of course, to test
parameter estimation for other data sets included in the zipfR package). See the
lnre help page for detailed information about available options and a long list of
examples. (Technical information for developers can be found on the lnre.details

and estimate.model help pages.)

11

3.5 Evaluating extrapolation quality

Although comparison with the empirical curve allows a visual assessment of the
goodness of fit of the interpolated values (the expected V s up to the observed sample
size N), we have no way to visually assess the quality of extrapolation beyond N ,
since we do not have observed values at sample sizes larger than N . However, if we
estimate the parameters of a LNRE model from a subset of the data we have (i.e.,
using only N0 tokens, where N0 < N), we can then compare extrapolation of this
model up to our maximum observed sample size N to the empirical or interpolated
growth curve up to N (this idea is explored in detail by Baroni and Evert, 2005 and
Baroni and Evert, 2007).

If we have access to the original data, we can of course collect a spectrum or type
frequency list from the first N0 tokens (outside R), and import these data. How-
ever, here we will generate a spectrum from a random subsample of the ItaRi.spc

spectrum at N . This allows us to illustrate another functionality of zipfR, i.e., the
possibility of building the frequency spectrum of a random (sub)sample from an
available frequency spectrum. In particular, with the following function we create a
subspectrum from a random sample of N0 = 700, 000 tokens, about half the observed
size.3

> set.seed(42)

> ItaRi.sub.spc <- sample.spc(ItaRi.spc, N=700000)

We can now estimate a LNRE model from this subspectrum:4

> ItaRi.sub.fzm <- lnre("fzm", ItaRi.sub.spc, exact=FALSE)

> ItaRi.sub.fzm

finite Zipf-Mandelbrot LNRE model.

Parameters:

Shape: alpha = 0.3019857

Lower cutoff: A = 1.76666e-21

Upper cutoff: B = 0.09954106

[Normalization: C = 3.493599]

Population size: S = 21396862

Sampling method: Poisson, approximations are allowed.

Parameters estimated from sample of size N = 7e+05:

V V1 V2 V3 V4 V5

Observed: 885.00 280.0 95.00 44.00 37.00 30.00 ...

Expected: 876.54 264.7 92.38 52.29 35.27 26.09 ...

Goodness-of-fit (multivariate chi-squared test):

X2 df p

43.37356 13 3.895709e-05

3Note that we set the random number seed in order to obtain reproducible results. If you omit
the set.seed command, or set the seed to a different value, your subsample and the resulting
LNRE model will be slightly different.

4If parameter estimation fails (as has been observed in one of our test runs), try omitting the
exact=FALSE option, specify method="NLM", or use a different cost function.

12

In this case, the parameters of the model are similar, but not very close to those
we obtained when using all the available data, and the estimated population size
has increased considerably, illustrating an undesirable dependency of LNRE model
estimation on sample size. Moreover, goodness of fit is lower than for the model
estimated from all the available data.

We generate a VGC up to the original N from the ItaRi.sub.fzm model:

> ItaRi.sub.fzm.vgc <- lnre.vgc(ItaRi.sub.fzm, N=N(ItaRi.emp.vgc))

Given that we took a random subsample, it is more appropriate to compare the
resulting VGC to one that is binomially interpolated from N rather than to the
empirical VGC (we generated ItaRi.bin.vgc in Sec. 3.3 above):

> plot(ItaRi.bin.vgc, ItaRi.sub.fzm.vgc, N0=N(ItaRi.sub.fzm),

+ legend=c("interpolated", "fZM"))

0 200000 400000 600000 800000 1000000 1200000

0
20

0
40

0
60

0
80

0
10

00

Vocabulary Growth

N

E
[V

(N
)]

interpolated
fZM

The plot indicates that, despite the problems we mentioned above, the fZM model
provides a very reasonable match to the interpolated V curve (it is hard to tell the
two curves apart).

Of course, the issue of evaluating the quality of LNRE models is more complex
than what we illustrated here. At the very least, one should also look at models
estimated from the first N0 tokens, on top of those obtained from a random subsam-
ple, and at averages of models estimated from multiple random subsamples. The
latter requires basic R programming skills, to automatize the iterative estimation,
VGC generation and plotting procedure. We hope that future versions of the zipfR
toolkit will feature batch estimation and plotting functions, to facilitate the process
of running multiple randomization experiments.

3.6 Comparing vocabulary growth curves of different cate-
gories

For expository purposes, we focused here on the frequency distribution of a single
class (ri- prefixed verbs in Italian). Of course, it is typically more interesting to
look at multiple frequency distributions, e.g., by comparing their VGCs in order
to determine which of the classes under analysis is more productive. The zipfR

13

plotting functions make such comparisons easy, by accepting multiple vgc (or spc)
data structures as input, and automatically determining the best graphic parameters
to plot them together.

As an example, we can compare the ri- data with the data for another Italian
prefix, adjectival ultra- (also extracted from the la Repubblica corpus with similar
methods, and available under the name ItaUltra.spc).

At first sight, one might think that ultra- is less productive than ri-, given that
its sample vocabulary size V is half that of ri-:

> V(ItaUltra.spc)

[1] 523

> V(ItaRi.spc)

[1] 1098

However, the ultra- sample is much smaller, making a direct comparison meaningless:

> N(ItaUltra.spc)

[1] 3467

> N(ItaRi.spc)

[1] 1399898

In order to compare the two word formation processes, we can compute a LNRE
model from the ultra- data and then use it to extrapolate the ultra- growth curve
up to the size of ri-:

> ItaUltra.fzm <- lnre("fzm", ItaUltra.spc, exact=FALSE)

> ItaUltra.ext.vgc <- lnre.vgc(ItaUltra.fzm, N(ItaRi.emp.vgc))

> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc, legend=c("ultra-", "ri-"))

0 200000 400000 600000 800000 1000000 1200000

0
50

0
10

00
15

00
20

00
25

00
30

00

Vocabulary Growth

N

E
[V

(N
)]

ultra−
ri−

14

Interestingly, the extrapolation suggests that ultra-, while occurring more rarely, has
the potential to generate many more words than the already productive ri- process.

You should now try to apply some of the functions illustrated here to your own
datasets (all you need is a frequency list or a frequency spectrum for the process/class
you are interested in), or to some of the other example datasets that come with the
zipfR package. You can find out about the available datasets by typing:

> data(package="zipfR")

You can then obtain more information about a specific dataset by typing its name
preceded by a question mark, e.g.:

> ?ItaRi.spc

As we mentioned at the beginning of this case study, while word formation has been
a classic area of application of word frequency distribution modeling, techniques to
estimate vocabulary size and related quantities can find applications in any area of
linguistics where it makes sense to speak of a vocabulary of types, and the overall
size of this vocabulary is much larger than the size of the observed vocabulary in
our sample. For example, we could compare verbs and adjectives (to assess whether
verb formation is more productive than adjective formation – incidentally, you can
try this with the Brown corpus verb and adjective datasets available in the zipfR
package), or word pairs that occur in two different constructions (to assess which
construction is more productive), and so on and so forth. With a bit of creativity in
the definition of the target type classes, vocabulary statistics modeling techniques
can be applied to a very wide range of linguistic problems.

4 Case study 2: Estimating lexical coverage

The first case study showed how to apply frequency distribution analysis to a prob-
lem of (theoretical) linguistic interest, i.e., measuring the productivity/vocabulary
size of a word formation process. In this second case study we discuss a potential ap-
plication of the same tools to a practical problem in language engineering. This case
study is slightly more involved and it requires (just a little bit) more R skills. If you
feel that you’ve already learned enough about zipfR to run your own experiments,
feel free to skip to the last section.

Many NLP algorithms heavily rely on specialized lexical resources. Thus, per-
formance on Out-Of-Vocabulary (OOV) types is lower than when the input contains
words/types that are stored in the application lexicon. Among the language-related
technologies that crucially rely on a lexicon resource, we might mention part-of-
speech tagging and lexicalized probabilistic context-free grammars (see, e.g., Juraf-
sky and Martin, 2000).

It is therefore important to be able to estimate the proportion of OOV words/types
that we will encounter, given a lexicon of a certain size, or, from a different angle,
to determine how large our lexicon should be in order to keep the OOV proportion
below a certain threshold.

15

4.1 Estimating the proportion of OOV types and tokens
given a fixed size lexicon

Consider the case in which we are developing an application that will rely on a
lexicon, and we are using the first 100k lemma tokens from the Brown corpus (Kučera
and Francis, 1967) as our development resource. The frequency spectrum of this
subset of the Brown is part of the zipfR exampl data sets and, if the zipfR library
is loaded, it can be accessed under the name Brown100k.spc. The vocabulary size
of this data set is:

> V(Brown100k.spc)

[1] 12780

We decide that we can afford to write lexical entries of the kind required by our
application for all the lemmas that occur at least two times in our dataset, i.e., our
lexicon of seen types will have the following size (obtained by subtracting the hapax
type count from the overall vocabulary size):

> Vseen <- V(Brown100k.spc) - Vm(Brown100k.spc, 1)

> Vseen

[1] 6477

In this way, we will cover about 50% of the types in our development set, whereas
the other 50% will count as OOV types:

> Vseen / V(Brown100k.spc)

[1] 0.5068075

However, given that the OOV lemmas are hapax legomena, they actually account
for a much lower proportion of the overall tokens :

> Vm(Brown100k.spc, 1) / N(Brown100k.spc)

[1] 0.06303

I.e., given our choice to insert in the lexicon all lemmas that occur at least twice in
the development set, we cover about 94% of the tokens in the development set itself,
while the remaining 6% of the tokens belong to OOV types.

However, what will happen when we use our application on a larger input? What
proportion of OOV types and tokens should we expect? To answer this question, we
estimate a LNRE model from the available spectrum, we extrapolate to larger Ns via
the model, and we check what proportion of the types and tokens will be maximally
covered by our Vseen entries at these larger Ns. Of course, we have to make the
very delicate assumption that the input that our application will see is very similar
to the 100k Brown fragment we used as our development set; i.e., that larger texts
fed to the application are larger random samples of the population we sampled our
development set from (indeed, here we also assume that the development fragment
itself is always part of the larger input). The assumption might be reasonable if,
e.g., our application is targeted at automatically annotating the remaining 900k

16

tokens from the Brown, and for some reason we do not have access to them during
development (this sounds silly in the case of the Brown, but it might be a realistic
scenario when the corpus we are working on is still in the construction phase);
or if the application will be used to parse a certain specialized language, and the
development set is made of texts from that language.

In this case study, we estimate a ZM model from our data:

> Brown100k.zm <- lnre("zm", Brown100k.spc)

> Brown100k.zm

Zipf-Mandelbrot LNRE model.

Parameters:

Shape: alpha = 0.5925796

Upper cutoff: B = 0.003426494

[Normalization: C = 4.115241]

Population size: S = Inf

Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 100000:

V V1 V2 V3 V4 V5

Observed: 12780.00 6303.00 2041.00 1067.00 648.00 472.00 ...

Expected: 13678.75 8224.65 1675.45 786.02 473.07 322.39 ...

Goodness-of-fit (multivariate chi-squared test):

X2 df p

2011.628 14 0

Notice that S (the population vocabulary size) is infinite, since the ZM model,
unlike fZM, does not assume a finite population. Notice also that the multivariate
chi-squared test suggests a very poor fit. This seems to be a general property of ZM
(Evert, 2004) and one that, interestingly, does not always imply poor extrapolation
quality (Baroni and Evert, 2005, 2007).

We can use the model we just estimated to generate expected V s at arbitrary Ns,
in order to calculate the proportion of OOV types we are likely to encounter. For
example, we can see what this proportion will be if the input contains 1, 10, or 100
million tokens (notice the function EV that, given a model, produces the expected
V values for a vector of Ns):

> EV(Brown100k.zm, c(1e6, 10e6, 100e6))

[1] 54118.18 212383.07 831773.02

Thus, the proportions of in-lexicon types for inputs of 1, 10, or 100 million tokens
are as follows (assuming that our development set is a subset of the input, so that
all the types in our lexicon occur in the input).

> Vseen / EV(Brown100k.zm, c(1e6, 10e6, 100e6))

[1] 0.11968252 0.03049678 0.00778698

Equivalently, the proportions of OOV types are:

17

> 1 - (Vseen / EV(Brown100k.zm, c(1e6, 10e6, 100e6)))

[1] 0.8803175 0.9695032 0.9922130

We can get a sense of how good the estimates are by looking at the frequency
spectrum for the whole Brown corpus (Brown.spc), and comparing the number
of types in the whole corpus to the expected number of types at this sample size
according to the model. The observed N and V are:

> N(Brown.spc)

[1] 1006770

> V(Brown.spc)

[1] 45215

The model-based estimate of V at the same N is:

> EV(Brown100k.zm, N(Brown.spc))

[1] 54335.79

This is reasonably close to the observed value (although it overestimates the true
vocabulary growth), and consequently the empirical and estimated OOV ratios are
quite close:

> 1 - (Vseen / V(Brown.spc))

[1] 0.8567511

> 1 - (Vseen / EV(Brown100k.zm, N(Brown.spc)))

[1] 0.8807968

Let us now move on to the probably more interesting question of estimating the
proportion of OOV tokens in larger samples, given our lexicon of 6,477 types. First,
we generate a model-derived spectrum at the desired N . From this, we obtain the
expected V estimate and, by subtracting Vseen from V , an estimate of the number
of OOV types (VOOV). At this point, we make the best-case scenario (but not com-
pletely unreasonable) assumption that the OOV types will always be less frequent
than the types that are already in our lexicon. Thus, we first look at the number of
hapax legomena in the estimated spectrum. If this value is below VOOV , we also add
the number of types occurring twice, three times, etc., until we reach a value close
to VOOV . Once we determined (roughly) up to what frequency class the OOV types
extend, we can calculate their overall token frequency by multiplying the number of
types in each of the OOV classes by the corresponding frequency and summing up
(to get the number of hapax legomenon tokens, we multiply the number of hapax
types by 1, to get the number of tokens of types that occur twice, we multiply the
number of twice-occurring types by 2, and so on – finally, to get the overall token
frequency of the classes involved, we sum all these values).

We estimate the spectrum from our ZM model at N = 1,006,770, so that the
result will be directly comparable to the observed spectrum from the whole Brown:

18

> Brown.zm.spc <- lnre.spc(Brown100k.zm, N(Brown.spc))

By default, lnre.spc generates the first 100 spectrum elements (ideally, we would
like to generate a full frequency spectrum: however, certain LNRE models – in par-
ticular GIGP – tend to run into numerical problems with higher spectrum elements;
hence the conservative default). The estimate of VOOV is obtained with:5

> EV(Brown100k.zm, N(Brown.spc)) - Vseen

[1] 47858.79

Starting from the lowest expected frequency class, let us sum types until we reach
a value close to 50,293:

> sum(Vm(Brown.zm.spc, 1))

[1] 32317.19

> sum(Vm(Brown.zm.spc, 1:2))

[1] 38900.53

and so on, until

> sum(Vm(Brown.zm.spc, 1:6))

[1] 46045.17

Given that we are working with rough estimates anyway, we take the sum of the
types in the lowest 6 frequency classes to be close enough to the estimated VOOV .
Thus, to calculate the number of OOV tokens we multiply the types in each of these
classes by the corresponding frequencies and sum:

> Noov.zm <- sum(Vm(Brown.zm.spc, 1:6) * (1:6))

> Noov.zm

[1] 74101.74

In proportion:

> Noov.zm / N(Brown.spc)

[1] 0.07360344

I.e., about 7.5% of the overall tokens belong to OOV types. Let us compare this to
the same quantity computed from the full observed frequency data (the spectrum
of frequencies in the whole Brown).

First, we need to determine VOOV for the full Brown corpus:

> V(Brown.spc) - Vseen

5Notice that we cannot extract the expected V from the estimated spectrum, since the latter
does not contain all frequency classes

19

[1] 38738

Approximating this value from the low end of the spectrum leads to:

> sum(Vm(Brown.spc, 1:13))

[1] 38756

Thus, the NOOV estimate from the observed frequency spectrum is:

> Noov.emp <- sum(Vm(Brown.spc, 1:13) * (1:13))

> Noov.emp

[1] 108120

> Noov.emp / N(Brown.spc)

[1] 0.1073929

The model-derived estimate of the proportion of OOV tokens is considerably lower
than the one derived from the observed spectrum (in accordance with the general
tendency of LNRE models to underestimate type-related quantities in extrapolation
– see Baroni and Evert, 2005). However, the model-based proportion still seems
reasonable as a ballpark estimate.

4.2 Determining lexicon size

Suppose that, in a certain project, we will have to develop a lexical resource, and we
are in the phase in which we need to decide how large it should be. One approach
to this task is to estimate how many types we should enter in the lexicon to achieve
a certain coverage on input of various sizes, and use this estimate as a guide in
deciding the size of the target lexicon.

For example, suppose that we want to try to reach 95% coverage, i.e., no more
than about 5% OOV tokens, given an expected input of 10 million words. With our
usual ZM model, we estimate the spectrum at N = 10 millions:

> Brown10M.zm.spc <- lnre.spc(Brown100k.zm, 10e6)

5% of 10 million is 500,000, thus we must sum up the lowest frequency spectrum
elements multiplied by the corresponding frequencies until we reach a value close
to 500,000. By trial and error, we find that we can get a reasonably close value by
summing up the token frequencies of the first 18 frequency classes (trial and error
can be made less typing-intensive by using the R function cumsum instead of sum, in
order to obtain a vector of cumulative sums):

> sum(Vm(Brown10M.zm.spc, 1:18) * (1:18))

[1] 458053.3

This corresponds to a VOOV of:

> sum(Vm(Brown10M.zm.spc, 1:18))

20

[1] 195087.7

Thus, the number of types we should insert in our lexicon to have hopes to cover
95% of the tokens in a 10 million token input is:

> EV(Brown100k.zm, 10e6) - sum(Vm(Brown10M.zm.spc, 1:18))

[1] 17295.38

Now, as an exercise, find out how many types we need in the lexicon in order to
cover 95% of the tokens in a 100 million token input. Is this quantity much higher
than the one needed for the 10 million token input? Notice that you will need to
use the m.max argument of lnre.spc in order to obtain more than 100 spectrum
elements.

5 Directions for further exploration

The case studies in this tutorial illustrate many functionalities of the zipfR package.
You can find out more about the package by exploring its documentation.

To practice, you can repeat the procedures above, experimenting with different
LNRE models and exploring other zipfR datasets. Of course, it is probably more
interesting for you to work with your own data. As long as you can convert them
to a plain frequency list format, you will be able to import them into zipfR using
read.tfl. On the zipfR website (http:/zipfR.r-forge.r-project.org/) you
can also find a script to compute empirical vocabulary growth curves from plain
tokenized corpus data.

Finally, we would like to remind you that zipfR, like R, is an open source, GPL-
licensed project. We invite you to contribute to its further development with bug
reports, encouragement, suggestions, and code!

References

Harald Baayen (1992). Quantitative aspects of morphological productivity. Yearbook
of Morphology 1991, 109-150.

Harald Baayen (2001). Word frequency distributions. Dordrecht: Kluwer.

Marco Baroni, Silvia Bernardini, Federica Comastri, Lorenzo Piccioni, Alessandra
Volpi, Guy Aston and Marco Mazzoleni (2004). Introducing the “la Repubblica”
corpus: A large, annotated, TEI(XML)-compliant corpus of newspaper Italian.
Proceedings of LREC 2004, 771-1774.

Baroni, Marco and Evert, Stefan (2005). Testing the extrapolation quality of word
frequency models. In P. Danielsson and M. Wagenmakers, editors, Proceedings of
Corpus Linguistics 2005, volume 1 of The Corpus Linguistics Conference Series.
ISSN 1747-9398.

Baroni, Marco and Evert, Stefan (2007). Words and echoes: Assessing and mit-
igating the non-randomness problem in word frequency distribution modeling.
In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, pages 904–911, Prague, Czech Republic.

21

Stefan Evert (2004). A simple LNRE model for random character sequences. Pro-
ceedings of JADT 2004, 411-422.

Evert, Stefan and Baroni, Marco (2007). zipfR: Word frequency distributions in R.
In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, Posters and Demonstrations Sessions, pages 29–32, Prague, Czech
Republic.

Daniel Jurafsky and James Martin. 2000. Speech and language processing. Upper
Saddle River: Prentice Hall.

Henry Kučera and Nelson Francis (1967). Computational analysis of present-day
American English. Providence: Brown University Press.

22

