
Package ‘zip’
September 1, 2019

Title Cross-Platform 'zip' Compression

Version 2.0.4

Author Gábor Csárdi, Kuba Podgórski, Rich Geldreich

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Description Cross-Platform 'zip' Compression Library. A replacement
for the 'zip' function, that does not require any additional
external tools on any platform.

License CC0

LazyData true

URL https://github.com/r-lib/zip#readme

BugReports https://github.com/r-lib/zip/issues

RoxygenNote 6.1.1

Suggests covr, processx, R6, testthat, withr

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-09-01 08:50:02 UTC

R topics documented:

unzip . 2
unzip_process . 3
zip . 4
zip_list . 6
zip_process . 7

Index 8

1

https://github.com/r-lib/zip#readme
https://github.com/r-lib/zip/issues

2 unzip

unzip Uncompress ’zip’ Archives

Description

unzip() always restores modification times of the extracted files and directories.

Usage

unzip(zipfile, files = NULL, overwrite = TRUE, junkpaths = FALSE,
exdir = ".")

Arguments

zipfile Path to the zip file to uncompress.

files Character vector of files to extract from the archive. Files within directories can
be specified, but they must use a forward slash as path separator, as this is what
zip files use internally. If NULL, all files will be extracted.

overwrite Whether to overwrite existing files. If FALSE and a file already exists, then an
error is thrown.

junkpaths Whether to ignore all directory paths when creating files. If TRUE, all files will
be created in exdir.

exdir Directory to uncompress the archive to. If it does not exist, it will be created.

Permissions

If the zip archive stores permissions and was created on Unix, the permissions will be restored.

Examples

Some files to zip up
dir.create(tmp <- tempfile())
cat("first file", file = file.path(tmp, "file1"))
cat("second file", file = file.path(tmp, "file2"))

zipfile <- tempfile(fileext = ".zip")
zipr(zipfile, tmp)

List contents
zip_list(zipfile)

Extract
tmp2 <- tempfile()
unzip(zipfile, exdir = tmp2)

unzip_process 3

unzip_process Class for an external unzip process

Description

unzip_process() returns an R6 class that represents an unzip process. It is implemented as a
subclass of processx::process.

Usage

unzip_process()

Value

An unzip_process R6 class object, a subclass of processx::process.

Using the unzip_process class

up <- unzip_process()$new(zipfile, exdir = ".", poll_connection = TRUE,
stderr = tempfile(), ...)

See processx::process for the class methods.

Arguments:

• zipfile: Path to the zip file to uncompress.

• exdir: Directory to uncompress the archive to. If it does not exist, it will be created.

• poll_connection: passed to the initialize method of processx::process, it allows using
processx::poll() or the poll_io() method to poll for the completion of the process.

• stderr: passed to the initialize method of processx::process, by default the standard error
is written to a temporary file. This file can be used to diagnose errors if the process failed.

• ... passed to the initialize method of processx::process.

Examples

ex <- system.file("example.zip", package = "zip")
tmp <- tempfile()
up <- unzip_process()$new(ex, exdir = tmp)
up$wait()
up$get_exit_status()
dir(tmp)

4 zip

zip Compress Files into ’zip’ Archives

Description

zipr and zip both create a new zip archive file.

Usage

zip(zipfile, files, recurse = TRUE, compression_level = 9,
include_directories = TRUE)

zipr(zipfile, files, recurse = TRUE, compression_level = 9,
include_directories = TRUE)

zip_append(zipfile, files, recurse = TRUE, compression_level = 9,
include_directories = TRUE)

zipr_append(zipfile, files, recurse = TRUE, compression_level = 9,
include_directories = TRUE)

Arguments

zipfile The zip file to create. If the file exists, zip overwrites it, but zip_append ap-
pends to it.

files List of file to add to the archive. See details below about absolute and relative
path names.

recurse Whether to add the contents of directories recursively.

compression_level

A number between 1 and 9. 9 compresses best, but it also takes the longest.

include_directories

Whether to explicitly include directories in the archive. Including directories
might confuse MS Office when reading docx files, so set this to FALSE for cre-
ating them.

Details

zipr_append and zip_append append compressed files to an existing ’zip’ file.

Value

The name of the created zip file, invisibly.

zip 5

Permissions

zipr() (and zip(), zipr_append(), etc.) add the permissions of the archived files and directories
to the ZIP archive, on Unix systems. Most zip and unzip implementations support these, so they
will be recovered after extracting the archive.

Note, however that the owner and group (uid and gid) are currently omitted, even on Unix.

Relative paths

The different between zipr and zip is how they handle the relative paths of the input files.

For zip (and zip_append), the root of the archive is supposed to be the current working directory.
The paths of the files are fully kept in the archive. Absolute paths are also kept. Note that this
might result non-portable archives: some zip tools do not handle zip archives that contain absolute
file names, or file names that start with ..// or ./. This behavior is kept for compatibility, and we
suggest that you use zipr and zipr_append for new code.

E.g. for the following directory structure:

foo
bar
file1

bar2
file2

foo2
file3

Assuming the current working directory is foo, the following zip entries are created by zip:

zip("x.zip", c("bar/file1", "bar2", "../foo2"))
zip_list("x.zip")$filename
#> bar/file1
#> bar2
#> bar2/file2
#> ../foo2
#> ../foo2/file3

For zipr (and zipr_append), each specified file or directory in files is created as a top-level
entry in the zip archive. We suggest that you use zipr and zipr_append for new code, as they
don’t create non-portable archives. For the same directory structure, these zip entries are created:

zipr("x.zip", c("bar/file1", "bar2", "../foo2"))
zip_list("x.zip")$filename
#> file1
#> bar2
#> bar2/file2
#> foo2
#> foo2/file3

Because of the potential issues with zip() and zip_append(), they are now soft-deprecated, and
their first use in the R session will trigger a reminder message. To suppress this message, you can
use something like this:

6 zip_list

withCallingHandlers(
zip::zip(...),
deprecated = function(e) NULL)

Examples

Some files to zip up
dir.create(tmp <- tempfile())
cat("first file", file = file.path(tmp, "file1"))
cat("second file", file = file.path(tmp, "file2"))

zipfile <- tempfile(fileext = ".zip")
zipr(zipfile, tmp)

List contents
zip_list(zipfile)

Add another file
cat("third file", file = file.path(tmp, "file3"))
zipr_append(zipfile, file.path(tmp, "file3"))
zip_list(zipfile)

zip_list List Files in a ’zip’ Archive

Description

List Files in a ’zip’ Archive

Usage

zip_list(zipfile)

Arguments

zipfile Path to an existing ZIP file.

Value

A data frame with columns: filename, compressed_size, uncompressed_size, timestamp,
permissions.

zip_process 7

zip_process Class for an external zip process

Description

zip_process() returns an R6 class that represents a zip process. It is implemented as a subclass of
processx::process.

Usage

zip_process()

Value

A zip_process R6 class object, a subclass of processx::process.

Using the zip_process class

zp <- zip_process()$new(zipfile, files, recurse = TRUE,
poll_connection = TRUE,
stderr = tempfile(), ...)

See processx::process for the class methods.

Arguments:

• zipfile: Path to the zip file to create.

• files: List of file to add to the archive. Each specified file or directory in is created as a
top-level entry in the zip archive.

• recurse: Whether to add the contents of directories recursively.

• include_directories: Whether to explicitly include directories in the archive. Including
directories might confuse MS Office when reading docx files, so set this to FALSE for creating
them.

• poll_connection: passed to the initialize method of processx::process, it allows using
processx::poll() or the poll_io() method to poll for the completion of the process.

• stderr: passed to the initialize method of processx::process, by default the standard error
is written to a temporary file. This file can be used to diagnose errors if the process failed.

• ... passed to the initialize method of processx::process.

Examples

dir.create(tmp <- tempfile())
write.table(iris, file = file.path(tmp, "iris.ssv"))
zipfile <- tempfile(fileext = ".zip")
zp <- zip_process()$new(zipfile, tmp)
zp$wait()
zp$get_exit_status()
zip_list(zipfile)

Index

processx::poll(), 3, 7
processx::process, 3, 7

unzip, 2
unzip_process, 3

zip, 4
zip_append (zip), 4
zip_list, 6
zip_process, 7
zipr (zip), 4
zipr_append (zip), 4

8

	unzip
	unzip_process
	zip
	zip_list
	zip_process
	Index

