
Package ‘yum’
March 13, 2019

Title Utilities to Extract and Process 'YAML' Fragments

Version 0.0.1

Description Provides a number of functions to facilitate
extracting information in 'YAML' fragments from one or
multiple files, optionally structuring the information
in a 'data.tree'. 'YAML' (recursive acronym for ``YAML ain't
Markup Language'') is a convention for specifying structured
data in a format that is both machine- and human-readable.
'YAML' therefore lends itself well for embedding (meta)data
in plain text files, such as Markdown files. This principle
is implemented in 'yum' with minimal dependencies (i.e. only
the 'yaml' packages, and the 'data.tree' package can be
used to enable additional functionality).

License GPL-3

Encoding UTF-8

URL https://r-packages.gitlab.io/yum

BugReports https://gitlab.com/r-packages/yum/issues

LazyData true

RoxygenNote 6.1.1

Depends R (>= 3.0.0)

Imports yaml (>= 2.2)

Suggests covr, data.tree (>= 0.7), here, testthat

NeedsCompilation no

Author Gjalt-Jorn Peters [aut, cre]

Maintainer Gjalt-Jorn Peters <gjalt-jorn@userfriendlyscience.com>

Repository CRAN

Date/Publication 2019-03-13 12:30:03 UTC

1

https://r-packages.gitlab.io/yum
https://gitlab.com/r-packages/yum/issues

2 build_tree

R topics documented:
build_tree . 2
delete_yaml_fragments . 3
extract_yaml_dir . 4
extract_yaml_fragments . 5
flatten_list_of_lists . 6
is.odd . 7
load_and_simplify . 7
load_yaml_dir . 9
load_yaml_fragments . 10
load_yaml_list . 12
simplify_by_flattening . 13
vecTxt . 14

Index 16

build_tree Convert the objects loaded from YAML fragments into a tree

Description

If the data.tree::data.tree package is installed, this function can be used to convert a list of objects,
as loaded from extracted YAML fragments, into a data.tree::Node().

Usage

build_tree(x, idName = "id", parentIdName = "parentId",
childrenName = "children", autofill = c(label = "id"),
rankdir = "LR", directed = "false", silent = TRUE)

Arguments

x Either a list of YAML fragments loaded from a file with load_yaml_fragments(),
or a list of such lists loaded from all files in a directory with load_yaml_dir().

idName The name of the field containing each elements’ identifier, used to build the data
tree when there are references to a parent from a child element.

parentIdName The name of the field containing references to an element’s parent element (i.e.
the field containing the identifier of the corresponding parent element).

childrenName The name of the field containing an element’s children, either as a list of ele-
ments, or using the ’shorthand’ notation, in which case a vector is supplied with
the identifiers of the children.

autofill A named vector where the names represent fields to fill with the values of the
fields specified in the vector values. Note that autofill replacements are only
applied if the fields to be autofilled (i.e. the names of the vector specified in
autofill) do not already have a value.

delete_yaml_fragments 3

rankdir How to plot the plot when it’s plotted: the default "LR" plots from left to right.
Specify e.g. "TB" to plot from top to bottom.

directed Whether the edges should have arrows ("forward" or "backward") or not ("false").

silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

Value

a data.tree::Node() object.

Examples

loadedYum <- yum::load_yaml_fragments(text=c(
"---",
"-",
" id: firstFragment",
"---",
"Outside of YAML",
"---",
"-",
" id: secondFragment",
" parentId: firstFragment",
"---",
"Also outside of YAML"));
yum::build_tree(loadedYum);

delete_yaml_fragments Delete all YAML fragments from a file

Description

These function deletes all YAML fragments from a file, returning a character vector without the
lines that specified the YAML fragments.

Usage

delete_yaml_fragments(file, text, delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, silent = TRUE)

Arguments

file The path to a file to scan; if provided, takes precedence over text.

text A character vector to scan, where every element should represent one line in the
file; can be specified instead of file.

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

silent Whether to be silent (TRUE) or informative (FALSE).

4 extract_yaml_dir

Value

A list of character vectors.

Examples

yum::delete_yaml_fragments(text=c("---", "First YAML fragment", "---",
"Outside of YAML",
"---", "Second fragment", "---",
"Also outside of YAML"));

extract_yaml_dir Extract all YAML fragments from all files in a directory

Description

These function extracts all YAML fragments from all files in a directory returning a list of character
vectors containing the extracted fragments.

Usage

extract_yaml_dir(path, recursive = TRUE,
fileRegexes = c("^[^\\.]+.*$"), delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, encoding = "UTF-8", silent = TRUE)

Arguments

path The path containing the files.

recursive Whether to also process subdirectories (TRUE) or not (FALSE).

fileRegexes A vector of regular expressions to match the files against: only files matching
one or more regular expressions in this vector are processed. The default regex
(^[^\.]+.*$) matches all files except those that start with a period (.).

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

Value

A list of character vectors.

extract_yaml_fragments 5

Examples

First get the directory where 'yum' is installed
yumDir <- system.file(package="yum");
Specify the path of some example files
examplePath <- file.path(yumDir, "extdata");
Show files (should be three .dct files)
list.files(examplePath);
Load these files
yum::extract_yaml_dir(path=examplePath);

extract_yaml_fragments

Extract all YAML fragments from a file

Description

These function extracts all YAML fragments from a file, returning a list of character vectors con-
taining the extracted fragments.

Usage

extract_yaml_fragments(text, file, delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, encoding = "UTF-8", silent = TRUE)

Arguments

text, file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

6 flatten_list_of_lists

Value

A list of character vectors, where each vector corresponds to one YAML fragment in the source file
or text.

Examples

extract_yaml_fragments(text="

First: YAML fragment

id: firstFragment

Outside of YAML

Second: YAML fragment

id: secondFragment
parentId: firstFragment

Also outside of YAML
");

flatten_list_of_lists Flatten a list of lists to a list of atomic vectors

Description

This function takes a hierarchical structure of lists and extracts all atomic vectors, returning one flat
list of all those vectors.

Usage

flatten_list_of_lists(x)

Arguments

x The list of lists.

Value

A list of atomic vectors.

Examples

First create a list of lists
listOfLists <-

list(list(list(1:3, 8:5), 7:7), list(1:4, 8:2));
yum::flatten_list_of_lists(listOfLists);

is.odd 7

is.odd Checking whether numbers are odd or even

Description

Checking whether numbers are odd or even

Usage

is.odd(vector)

is.even(vector)

Arguments

vector The vector to process

Value

A logical vector.

Examples

is.odd(4);

load_and_simplify Load YAML fragments in one or multiple files and simplify them

Description

These function extracts all YAML fragments from a file or text (load_and_simplify) or from all
files in a directory (load_and_simplify_dir) and loads them by calling load_yaml_fragments(),
and then calls simplify_by_flattening(), on the result, returning the resulting list.

Usage

load_and_simplify(text, file, yamlFragments = NULL, select = ".*",
simplify = ".*", delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, encoding = "UTF-8", silent = TRUE)

load_and_simplify_dir(path, recursive = TRUE,
fileRegexes = c("^[^\\.]+.*$"), select = ".*", simplify = ".*",
delimiterRegEx = "^---$", ignoreOddDelimiters = FALSE,
encoding = "UTF-8", silent = TRUE)

8 load_and_simplify

Arguments

text As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

yamlFragments A character vector of class yamlFragment where every element corresponds to
one line of the YAML fragments, or a list of multiple such character vectors
(of class yamlFragments). Specify either yamlFragments (which, if specified,
takes precedence over file and text), file, or text (file takes precedence
over text).

select A vector of regular expressions specifying object names to retain. The default
(.*) matches everything, so by default, all objects are retained.

simplify A regular expression specifying which elements to simplify (default is every-
thing)

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).
path The path containing the files.
recursive Whether to also process subdirectories (TRUE) or not (FALSE).
fileRegexes A vector of regular expressions to match the files against: only files matching

one or more regular expressions in this vector are processed. The default regex
(^[^\.]+.*$) matches all files except those that start with a period (.).

load_yaml_dir 9

Value

A list of objects, where each object corresponds to one item specified in the read YAML fragment(s)
from the source file or text. If the convention of the rock, dct and justifier packages is followed,
each object in this list contains one or more named objects (lists), where the name indicates the type
of information contained. Each of those objects (lists) then contains one or more objects of that
type, such as metadata or codes for rock, a decentralized construct taxonomy element for dct, and
a justification, decision, assertion, or source for justifier.

Examples

yum::load_and_simplify(text="

firstObject:

id: firstFragment

Outside of YAML

otherObjectType:

-
id: secondFragment
parentId: firstFragment

-
id: thirdFragment
parentId: firstFragment

Also outside of YAML");

load_yaml_dir Load all YAML fragments from all files in a directory

Description

These function extracts all YAML fragments from all files in a directory returning a list of character
vectors containing the extracted fragments.

Usage

load_yaml_dir(path, recursive = TRUE, fileRegexes = c("^[^\\.]+.*$"),
select = ".*", delimiterRegEx = "^---$",
ignoreOddDelimiters = FALSE, encoding = "UTF-8", silent = TRUE)

Arguments

path The path containing the files.

recursive Whether to also process subdirectories (TRUE) or not (FALSE).

10 load_yaml_fragments

fileRegexes A vector of regular expressions to match the files against: only files matching
one or more regular expressions in this vector are processed. The default regex
(^[^\.]+.*$) matches all files except those that start with a period (.).

select A vector of regular expressions specifying object names to retain. The default
(.*) matches everything, so by default, all objects are retained.

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

Details

These function extracts all YAML fragments from all files in a directory and then calls yaml::yaml.load()
to parse them. It then returns a list where each element is a list with the parsed fragments in a file.

Value

A list of lists of objects.

Examples

First get the directory where 'yum' is installed
yumDir <- system.file(package="yum");
Specify the path of some example files
examplePath <- file.path(yumDir, "extdata");
Show files (should be three .dct files)
list.files(examplePath);
Load these files
yum::load_yaml_dir(path=examplePath);

load_yaml_fragments Load all YAML fragments from a file

Description

These function extracts all YAML fragments from a file and then calls yaml::yaml.load() to parse
them. It then returns a list of the parsed fragments.

Usage

load_yaml_fragments(text, file, yamlFragments = NULL, select = ".*",
delimiterRegEx = "^---$", ignoreOddDelimiters = FALSE,
encoding = "UTF-8", silent = TRUE)

load_yaml_fragments 11

Arguments

text As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base::readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base::readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

yamlFragments A character vector of class yamlFragment where every element corresponds to
one line of the YAML fragments, or a list of multiple such character vectors
(of class yamlFragments). Specify either yamlFragments (which, if specified,
takes precedence over file and text), file, or text (file takes precedence
over text).

select A vector of regular expressions specifying object names to retain. The default
(.*) matches everything, so by default, all objects are retained.

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

Value

A list of objects, where each object corresponds to one YAML fragment from the source file or
text. If the convention of the rock, dct and justifier packages is followed, each object in this
list contains one or more named objects (lists), where the name indicated the type of information
contained. Each of those objects (lists) then contains one or more objects of that type, such as

12 load_yaml_list

metadata or codes for rock, a decentralized construct taxonomy element for dct, and a justification
for justifier.

Examples

yum::load_yaml_fragments(text="

-

id: firstFragment

Outside of YAML

-

id: secondFragment
parentId: firstFragment

Also outside of YAML");

load_yaml_list Load all YAML fragments from all character vectors in a list

Description

These function extracts all YAML fragments from character vectors in a list, returning a list of
character vectors containing the extracted fragments.

Usage

load_yaml_list(x, recursive = TRUE, select = ".*",
delimiterRegEx = "^---$", ignoreOddDelimiters = FALSE,
encoding = "UTF-8", silent = TRUE)

Arguments

x The list containing the character vectors.

recursive Whether to first unlist the list (TRUE) or not (FALSE).

select A vector of regular expressions specifying object names to retain. The default
(.*) matches everything, so by default, all objects are retained.

delimiterRegEx The regular expression used to locate YAML fragments.
ignoreOddDelimiters

Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines(). Set to NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

simplify_by_flattening 13

Details

This function calls yaml::yaml.load() on all character vectors in a list. It then returns a list where
each element is a list with the parsed fragments in a file.

Value

A list of lists of objects.

Examples

yamlList <- list(c(
"---",
"-",
" id: firstFragment",
"---"), c(
"---",
"-",
" id: secondFragment",
" parentId: firstFragment",
"---"));
yum::load_yaml_list(yamlList);

simplify_by_flattening

Simplify the structure of extracted YAML fragments

Description

This function does some cleaning and simplifying to allow efficient specification of elements in the
YAML fragments.

Usage

simplify_by_flattening(x, simplify = ".*", .level = 1)

Arguments

x Extracted (and loaded) YAML fragments

simplify A regular expression specifying which elements to simplify (default is every-
thing)

.level Internal argument to enable slightly-less-than-elegant ’recursion’.

Value

A simplified list (but still a list)

14 vecTxt

Examples

yamlFragmentExample <- '

source:

-
id: src_1
label: "Label 1"

-
id: src_2
label: "Label 2"

assertion:
-
id: assertion_1
label: "Assertion 1"

-
id: assertion_2
label: "Assertion 2"

';
loadedExampleFragments <-

load_yaml_fragments(yamlFragmentExample);
simplified <-

simplify_by_flattening(loadedExampleFragments);

Pre simmplification:
str(loadedExampleFragments);

Post simmplification:
str(simplified);

vecTxt Easily parse a vector into a character value

Description

Easily parse a vector into a character value

Usage

vecTxt(vector, delimiter = ", ", useQuote = "",
firstDelimiter = NULL, lastDelimiter = " & ", firstElements = 0,
lastElements = 1, lastHasPrecedence = TRUE)

vecTxtQ(vector, useQuote = "'", ...)

vecTxt 15

Arguments

vector The vector to process.
delimiter, firstDelimiter, lastDelimiter

The delimiters to use for respectively the middle, first firstElements, and last
lastElements elements.

useQuote This character string is pre- and appended to all elements; so use this to quote
all elements (useQuote="'"), doublequote all elements (useQuote='"'), or
anything else (e.g. useQuote='|'). The only difference between vecTxt and
vecTxtQ is that the latter by default quotes the elements.

firstElements, lastElements

The number of elements for which to use the first respective last delimiters
lastHasPrecedence

If the vector is very short, it’s possible that the sum of firstElements and lastEle-
ments is larger than the vector length. In that case, downwardly adjust the num-
ber of elements to separate with the first delimiter (TRUE) or the number of ele-
ments to separate with the last delimiter (FALSE)?

... Any addition arguments to vecTxtQ are passed on to vecTxt.

Value

A character vector of length 1.

Examples

vecTxtQ(names(mtcars));

Index

base::readLines(), 5, 8, 11
base::strsplit(), 5, 8, 11
build_tree, 2

data.tree::data.tree, 2
data.tree::Node(), 2, 3
delete_yaml_fragments, 3

extract_yaml_dir, 4
extract_yaml_fragments, 5

flatten_list_of_lists, 6

is.even (is.odd), 7
is.odd, 7

load_and_simplify, 7
load_and_simplify_dir

(load_and_simplify), 7
load_yaml_dir, 9
load_yaml_dir(), 2
load_yaml_fragments, 10
load_yaml_fragments(), 2, 7
load_yaml_list, 12

readLines(), 4, 5, 8, 10–12

simplify_by_flattening, 13
simplify_by_flattening(), 7

vecTxt, 14
vecTxtQ (vecTxt), 14

yaml::yaml.load(), 10, 13

16

	build_tree
	delete_yaml_fragments
	extract_yaml_dir
	extract_yaml_fragments
	flatten_list_of_lists
	is.odd
	load_and_simplify
	load_yaml_dir
	load_yaml_fragments
	load_yaml_list
	simplify_by_flattening
	vecTxt
	Index

