
Package ‘yardstick’
July 13, 2020

Type Package

Title Tidy Characterizations of Model Performance

Version 0.0.7

Description Tidy tools for quantifying how well model fits to a
data set such as confusion matrices, class probability curve
summaries, and regression metrics (e.g., RMSE).

License GPL-2

URL https://github.com/tidymodels/yardstick,

https://yardstick.tidymodels.org

BugReports https://github.com/tidymodels/yardstick/issues

Depends R (>= 2.10)

Imports dplyr (>= 0.8.5), generics, pROC (>= 1.15.0), rlang (>=
0.4.0), tidyselect, utils

Suggests covr, crayon, ggplot2, kableExtra, knitr, purrr, rmarkdown,
testthat, tidyr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation yes

Author Max Kuhn [aut],
Davis Vaughan [aut, cre],
RStudio [cph]

Maintainer Davis Vaughan <davis@rstudio.com>

Repository CRAN

Date/Publication 2020-07-13 16:10:02 UTC

1

https://github.com/tidymodels/yardstick
https://yardstick.tidymodels.org
https://github.com/tidymodels/yardstick/issues

2 R topics documented:

R topics documented:
accuracy . 3
average_precision . 4
bal_accuracy . 7
ccc . 10
conf_mat . 12
detection_prevalence . 14
f_meas . 17
gain_capture . 20
gain_curve . 23
get_weights . 26
hpc_cv . 28
huber_loss . 29
huber_loss_pseudo . 31
iic . 33
j_index . 35
kap . 38
lift_curve . 39
mae . 42
mape . 44
mase . 45
mcc . 48
metrics . 49
metric_set . 51
metric_summarizer . 53
metric_vec_template . 55
mn_log_loss . 56
mpe . 58
new-metric . 60
npv . 61
pathology . 64
ppv . 65
precision . 68
pr_auc . 72
pr_curve . 75
recall . 77
rmse . 80
roc_auc . 82
roc_aunp . 86
roc_aunu . 89
roc_curve . 91
rpd . 94
rpiq . 96
rsq . 98
rsq_trad . 100
sens . 102
smape . 106

accuracy 3

solubility_test . 107
spec . 108
summary.conf_mat . 112
two_class_example . 113

Index 115

accuracy Accuracy

Description

Accuracy is the proportion of the data that are predicted correctly.

Usage

accuracy(data, ...)

S3 method for class 'data.frame'
accuracy(data, truth, estimate, na_rm = TRUE, ...)

accuracy_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.
truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For accuracy_vec(), a single numeric value (or NA).

Multiclass

Accuracy extends naturally to multiclass scenarios. Because of this, macro and micro averaging are
not implemented.

4 average_precision

Author(s)

Max Kuhn

See Also

Other class metrics: bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(),
mcc(), npv(), ppv(), precision(), recall(), sens(), spec()

Examples

library(dplyr)
data("two_class_example")
data("hpc_cv")

Two class
accuracy(two_class_example, truth, predicted)

Multiclass
accuracy() has a natural multiclass extension
hpc_cv %>%

filter(Resample == "Fold01") %>%
accuracy(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
accuracy(obs, pred)

average_precision Area under the precision recall curve

Description

average_precision() is an alternative to pr_auc() that avoids any ambiguity about what the
value of precision should be when recall == 0 and there are not yet any false positive values
(some say it should be 0, others say 1, others say undefined).

It computes a weighted average of the precision values returned from pr_curve(), where the
weights are the increase in recall from the previous threshold. See pr_curve() for the full curve.

Usage

average_precision(data, ...)

S3 method for class 'data.frame'
average_precision(
data,
truth,
...,

average_precision 5

estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level()

)

average_precision_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimator One of "binary", "macro", or "macro_weighted" to specify the type of aver-
aging to be done. "binary" is only relevant for the two class case. The other
two are general methods for calculating multiclass metrics. The default will
automatically choose "binary" or "macro" based on truth.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

The computation for average precision is a weighted average of the precision values. Assuming you
have n rows returned from pr_curve(), it is a sum from 2 to n, multiplying the precision value p_i
by the increase in recall over the previous threshold, r_i -r_(i-1).

AP =
∑

(ri − ri−1) ∗ pi

6 average_precision

By summing from 2 to n, the precision value p_1 is never used. While pr_curve() returns a value
for p_1, it is technically undefined as tp / (tp + fp) with tp = 0 and fp = 0. A common convention
is to use 1 for p_1, but this metric has the nice property of avoiding the ambiguity. On the other
hand, r_1 is well defined as long as there are some events (p), and it is tp / p with tp = 0, so r_1 =
0.

When p_1 is defined as 1, the average_precision() and roc_auc() values are often very close
to one another.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For average_precision_vec(), a single numeric value (or NA).

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro
averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

See Also

pr_curve() for computing the full precision recall curve.

pr_auc() for computing the area under the precision recall curve using the trapezoidal rule.

Other class probability metrics: gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunp(),
roc_aunu()

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of

bal_accuracy 7

`"truth"`, it is the event of interest and we pass in probabilities for it.
average_precision(two_class_example, truth, Class1)

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
average_precision(obs, VF:L)

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%

filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
average_precision(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
average_precision(obs, VF:L)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
average_precision(obs, VF:L, estimator = "macro_weighted")

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

average_precision_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

bal_accuracy Balanced accuracy

8 bal_accuracy

Description

Balanced accuracy is computed here as the average of sens() and spec().

Usage

bal_accuracy(data, ...)

S3 method for class 'data.frame'
bal_accuracy(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

bal_accuracy_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =

bal_accuracy 9

"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For bal_accuracy_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Author(s)

Max Kuhn

See Also

Other class metrics: accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(),
npv(), ppv(), precision(), recall(), sens(), spec()

Examples

Two class
data("two_class_example")
bal_accuracy(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
bal_accuracy(obs, pred)

Groups are respected
hpc_cv %>%

10 ccc

group_by(Resample) %>%
bal_accuracy(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
bal_accuracy(obs, pred, estimator = "macro_weighted")

Vector version
bal_accuracy_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
bal_accuracy_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

ccc Concordance correlation coefficient

Description

Calculate the concordance correlation coefficient.

Usage

ccc(data, ...)

S3 method for class 'data.frame'
ccc(data, truth, estimate, bias = FALSE, na_rm = TRUE, ...)

ccc_vec(truth, estimate, bias = FALSE, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

ccc 11

bias A logical; should the biased estimate of variance be used (as is Lin (1989))?

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

ccc() is a metric of both consistency/correlation and accuracy, while metrics such as rmse() are
strictly for accuracy and metrics such as rsq() are strictly for consistency/correlation

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For ccc_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

References

Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45
(1), 255-268.

Nickerson, C. (1997). A note on "A concordance correlation coefficient to evaluate reproducibility".
Biometrics, 53(4), 1503-1507.

See Also

Other numeric metrics: huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(),
mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other consistency metrics: rpd(), rpiq(), rsq_trad(), rsq()

Other accuracy metrics: huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(),
mpe(), rmse(), smape()

Examples

Supply truth and predictions as bare column names
ccc(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,

12 conf_mat

expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
ccc(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

conf_mat Confusion Matrix for Categorical Data

Description

Calculates a cross-tabulation of observed and predicted classes.

Usage

conf_mat(data, ...)

S3 method for class 'data.frame'
conf_mat(data, truth, estimate, dnn = c("Prediction", "Truth"), ...)

S3 method for class 'conf_mat'
tidy(x, ...)

autoplot.conf_mat(object, type = "mosaic", ...)

Arguments

data A data frame or a base::table().

... Options to pass to base::table() (not including dnn). This argument is not
currently used for the tidy method.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

conf_mat 13

dnn A character vector of dimnames for the table.

x A conf_mat object.

object The conf_mat data frame returned from conf_mat().

type Type of plot desired, must be "mosaic" or "heatmap", defaults to "mosaic".

Details

For conf_mat() objects, a broom tidy() method has been created that collapses the cell counts by
cell into a data frame for easy manipulation.

There is also a summary() method that computes various classification metrics at once. See summary.conf_mat()

There is a ggplot2::autoplot() method for quickly visualizing the matrix. Both a heatmap and
mosaic type is implemented.

The function requires that the factors have exactly the same levels.

Value

conf_mat() produces an object with class conf_mat. This contains the table and other objects.
tidy.conf_mat() generates a tibble with columns name (the cell identifier) and value (the cell
count).

When used on a grouped data frame, conf_mat() returns a tibble containing columns for the groups
along with conf_mat, a list-column where each element is a conf_mat object.

See Also

summary.conf_mat() for computing a large number of metrics from one confusion matrix.

Examples

library(dplyr)
data("hpc_cv")

The confusion matrix from a single assessment set (i.e. fold)
cm <- hpc_cv %>%

filter(Resample == "Fold01") %>%
conf_mat(obs, pred)

cm

Now compute the average confusion matrix across all folds in
terms of the proportion of the data contained in each cell.
First get the raw cell counts per fold using the `tidy` method
library(purrr)
library(tidyr)

cells_per_resample <- hpc_cv %>%
group_by(Resample) %>%
conf_mat(obs, pred) %>%
mutate(tidied = map(conf_mat, tidy)) %>%
unnest(tidied)

14 detection_prevalence

Get the totals per resample
counts_per_resample <- hpc_cv %>%

group_by(Resample) %>%
summarize(total = n()) %>%
left_join(cells_per_resample, by = "Resample") %>%
Compute the proportions
mutate(prop = value/total) %>%
group_by(name) %>%
Average
summarize(prop = mean(prop))

counts_per_resample

Now reshape these into a matrix
mean_cmat <- matrix(counts_per_resample$prop, byrow = TRUE, ncol = 4)
rownames(mean_cmat) <- levels(hpc_cv$obs)
colnames(mean_cmat) <- levels(hpc_cv$obs)

round(mean_cmat, 3)

The confusion matrix can quickly be visualized using autoplot()
library(ggplot2)

autoplot(cm, type = "mosaic")
autoplot(cm, type = "heatmap")

detection_prevalence Detection prevalence

Description

Detection prevalence is defined as the number of predicted positive events (both true positive and
false positive) divided by the total number of predictions.

Usage

detection_prevalence(data, ...)

S3 method for class 'data.frame'
detection_prevalence(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

detection_prevalence 15

detection_prevalence_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.
truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For detection_prevalence_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

16 detection_prevalence

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Author(s)

Max Kuhn

See Also

Other class metrics: accuracy(), bal_accuracy(), f_meas(), j_index(), kap(), mcc(), npv(),
ppv(), precision(), recall(), sens(), spec()

Examples

Two class
data("two_class_example")
detection_prevalence(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
detection_prevalence(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
detection_prevalence(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
detection_prevalence(obs, pred, estimator = "macro_weighted")

Vector version
detection_prevalence_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
detection_prevalence_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

f_meas 17

f_meas F Measure

Description

These functions calculate the f_meas() of a measurement system for finding relevant documents
compared to reference results (the truth regarding relevance). Highly related functions are recall()
and precision().

Usage

f_meas(data, ...)

S3 method for class 'data.frame'
f_meas(
data,
truth,
estimate,
beta = 1,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

f_meas_vec(
truth,
estimate,
beta = 1,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.
truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

18 f_meas

beta A numeric value used to weight precision and recall. A value of 1 is traditionally
used and corresponds to the harmonic mean of the two values but other values
weight recall beta times more important than precision.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The measure "F" is a combination of precision and recall (see below).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For f_meas_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Relevant Irrelevant
Relevant A B

Irrelevant C D

f_meas 19

The formulas used here are:

recall = A/(A+ C)

precision = A/(A+B)

Fmeas = (1 + β2) ∗ precision ∗ recall/((β2 ∗ precision) + recall)

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. Journal of the
American Society for Information Science, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness,
Markedness and Correlation. Technical Report SIE-07-001, Flinders University

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), j_index(), kap(),
mcc(), npv(), ppv(), precision(), recall(), sens(), spec()

Other relevance metrics: precision(), recall()

Examples

Two class
data("two_class_example")
f_meas(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
f_meas(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
f_meas(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
f_meas(obs, pred, estimator = "macro_weighted")

20 gain_capture

Vector version
f_meas_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
f_meas_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

gain_capture Gain capture

Description

gain_capture() is a measure of performance similar to an AUC calculation, but applied to a gain
curve.

Usage

gain_capture(data, ...)

S3 method for class 'data.frame'
gain_capture(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level()

)

gain_capture_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data A data.frame containing the truth and estimate columns.

gain_capture 21

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimator One of "binary", "macro", or "macro_weighted" to specify the type of aver-
aging to be done. "binary" is only relevant for the two class case. The other
two are general methods for calculating multiclass metrics. The default will
automatically choose "binary" or "macro" based on truth.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

gain_capture() calculates the area under the gain curve, but above the baseline, and then divides
that by the area under a perfect gain curve, but above the baseline. It is meant to represent the
amount of potential gain "captured" by the model.

The gain_capture() metric is identical to the accuracy ratio (AR), which is also sometimes called
the gini coefficient. These two are generally calculated on a cumulative accuracy profile curve, but
this is the same as a gain curve. See the Engelmann reference for more information.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For gain_capture_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

22 gain_capture

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro
averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Author(s)

Max Kuhn

References

Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk (2003). "Measuring the Discriminative Power
of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche
Bundesbank.

See Also

gain_curve() to compute the full gain curve.

Other class probability metrics: average_precision(), mn_log_loss(), pr_auc(), roc_auc(),
roc_aunp(), roc_aunu()

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
gain_capture(two_class_example, truth, Class1)

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
gain_capture(obs, VF:L)

gain_curve 23

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%

filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
gain_capture(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
gain_capture(obs, VF:L)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
gain_capture(obs, VF:L, estimator = "macro_weighted")

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

gain_capture_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

Visualize gain_capture()

Visually, this represents the area under the black curve, but above the
45 degree line, divided by the area of the shaded triangle.
library(ggplot2)
autoplot(gain_curve(two_class_example, truth, Class1))

gain_curve Gain curve

Description

gain_curve() constructs the full gain curve and returns a tibble. See gain_capture() for the
relevant area under the gain curve. Also see lift_curve() for a closely related concept.

24 gain_curve

Usage

gain_curve(data, ...)

S3 method for class 'data.frame'
gain_curve(
data,
truth,
...,
na_rm = TRUE,
event_level = yardstick_event_level()

)

autoplot.gain_df(object, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

object The gain_df data frame returned from gain_curve().

Details

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary
and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

The greater the area between the gain curve and the baseline, the better the model.

Gain curves are identical to CAP curves (cumulative accuracy profile). See the Engelmann reference
for more information on CAP curves.

Value

A tibble with class gain_df or gain_grouped_df having columns:

• .n - The index of the current sample.

gain_curve 25

• .n_events - The index of the current unique sample. Values with repeated estimate values
are given identical indices in this column.

• .percent_tested - The cumulative percentage of values tested.

• .percent_found - The cumulative percentage of true results relative to the total number of
true results.

Gain and Lift Curves

The motivation behind cumulative gain and lift charts is as a visual method to determine the effec-
tiveness of a model when compared to the results one might expect without a model. As an example,
without a model, if you were to advertise to a random 10\ to capture 10\ advertised to your entire
customer base. Given a model that predicts which customers are more likely to respond, the hope
is that you can more accurately target 10\ \>10\

The calculation to construct gain curves is as follows:

1. truth and estimate are placed in descending order by the estimate values (estimate here
is a single column supplied in ...).

2. The cumulative number of samples with true results relative to the entire number of true results
are found. This is the y-axis in a gain chart.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple
curves, one per level. In this case, there will be an additional column, .level, identifying the "one"
column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Author(s)

Max Kuhn

References

Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk (2003). "Measuring the Discriminative Power
of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche
Bundesbank.

See Also

Compute the relevant area under the gain curve with gain_capture().

Other curve metrics: lift_curve(), pr_curve(), roc_curve()

26 get_weights

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
gain_curve(two_class_example, truth, Class1)

`autoplot()`

library(ggplot2)
library(dplyr)

Use autoplot to visualize
The top left hand corner of the grey triangle is a "perfect" gain curve
autoplot(gain_curve(two_class_example, truth, Class1))

Multiclass one-vs-all approach
One curve per level
hpc_cv %>%

filter(Resample == "Fold01") %>%
gain_curve(obs, VF:L) %>%
autoplot()

Same as above, but will all of the resamples
The resample with the minimum (farthest to the left) "perfect" value is
used to draw the shaded region
hpc_cv %>%

group_by(Resample) %>%
gain_curve(obs, VF:L) %>%
autoplot()

get_weights Developer helpers

Description

Helpers to be used alongside metric_vec_template() and metric_summarizer() when creating
new metrics. See vignette("custom-metrics","yardstick") for more information.

get_weights 27

Usage

get_weights(data, estimator)

finalize_estimator(x, estimator = NULL, metric_class = "default")

finalize_estimator_internal(metric_dispatcher, x, estimator)

dots_to_estimate(data, ...)

validate_estimator(estimator, estimator_override = NULL)

Arguments

data A table with truth values as columns and predicted values as rows.

estimator Either NULL for auto-selection, or a single character for the type of estimator to
use.

x The column used to autoselect the estimator. This is generally the truth col-
umn, but can also be a table if your metric has table methods.

metric_class A single character of the name of the metric to autoselect the estimator for. This
should match the method name created for finalize_estimator_internal().

metric_dispatcher

A simple dummy object with the class provided to metric_class. This is cre-
ated and passed along for you.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

estimator_override

A character vector overriding the default allowed estimator list of c("binary","macro","micro","macro_weighted").
Set this if your classification estimator does not support all of these methods.

Weight Calculation

get_weights() accepts a confusion matrix and an estimator of type "macro", "micro", or
"macro_weighted" and returns the correct weights. It is useful when creating multiclass metrics.

Estimator Selection

finalize_estimator() is the engine for auto-selection of estimator based on the type of x.
Generally x is the truth column. This function is called from the vector method of your metric.

finalize_estimator_internal() is an S3 generic that you should extend for your metric if
it does not implement only the following estimator types: "binary", "macro", "micro", and
"macro_weighted". If your metric does support all of these, the default version of finalize_estimator_internal()
will autoselect estimator appropriately. If you need to create a method, it should take the form:
finalize_estimator_internal.metric_name. Your method for finalize_estimator_internal()
should do two things:

28 hpc_cv

1. If estimator is NULL, autoselect the estimator based on the type of x and return a single
character for the estimator.

2. If estimator is not NULL, validate that it is an allowed estimator for your metric and return
it.

If you are using the default for finalize_estimator_internal(), the estimator is selected us-
ing the following heuristics:

1. If estimator is not NULL, it is validated and returned immediately as no auto-selection is
needed.

2. If x is a:

• factor - Then "binary" is returned if it has 2 levels, otherwise "macro" is returned.
• numeric - Then "binary" is returned.
• table - Then "binary" is returned if it has 2 columns, otherwise "macro" is returned.

This is useful if you have table methods.
• matrix - Then "macro" is returned.

Dots -> Estimate

dots_to_estimate() is useful with class probability metrics that take ... rather than estimate
as an argument. It constructs either a single name if 1 input is provided to ... or it constructs a
quosure where the expression constructs a matrix of as many columns as are provided to These
are eventually evaluated in the summarise() call in metric_summarizer() and evaluate to either
a vector or a matrix for further use in the underlying vector functions.

Estimator Validation

validate_estimator() is called from your metric specific method of finalize_estimator_internal()
and ensures that a user provided estimator is of the right format and is one of the allowed values.

See Also

metric_summarizer() metric_vec_template()

hpc_cv Multiclass Probability Predictions

Description

Multiclass Probability Predictions

Details

This data frame contains the predicted classes and class probabilities for a linear discriminant analy-
sis model fit to the HPC data set from Kuhn and Johnson (2013). These data are the assessment sets
from a 10-fold cross-validation scheme. The data column columns for the true class (obs), the class
prediction (pred) and columns for each class probability (columns VF, F, M, and L). Additionally, a
column for the resample indicator is included.

huber_loss 29

Value

hpc_cv a data frame

Source

Kuhn, M., Johnson, K. (2013) Applied Predictive Modeling, Springer

Examples

data(hpc_cv)
str(hpc_cv)

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section in any classification function (such as `?pr_auc`) to see how
to change this.
levels(hpc_cv$obs)

huber_loss Huber loss

Description

Calculate the Huber loss, a loss function used in robust regression. This loss function is less sensitive
to outliers than rmse(). This function is quadratic for small residual values and linear for large
residual values.

Usage

huber_loss(data, ...)

S3 method for class 'data.frame'
huber_loss(data, truth, estimate, delta = 1, na_rm = TRUE, ...)

huber_loss_vec(truth, estimate, delta = 1, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

30 huber_loss

delta A single numeric value. Defines the boundary where the loss function transi-
tions from quadratic to linear. Defaults to 1.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For huber_loss_vec(), a single numeric value (or NA).

Author(s)

James Blair

References

Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), iic(), mae(), mape(), mase(), mpe(),
rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), iic(), mae(), mape(), mase(), mpe(),
rmse(), smape()

Examples

Supply truth and predictions as bare column names
huber_loss(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%

huber_loss_pseudo 31

huber_loss(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

huber_loss_pseudo Psuedo-Huber Loss

Description

Calculate the Pseudo-Huber Loss, a smooth approximation of huber_loss(). Like huber_loss(),
this is less sensitive to outliers than rmse().

Usage

huber_loss_pseudo(data, ...)

S3 method for class 'data.frame'
huber_loss_pseudo(data, truth, estimate, delta = 1, na_rm = TRUE, ...)

huber_loss_pseudo_vec(truth, estimate, delta = 1, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

delta A single numeric value. Defines the boundary where the loss function transi-
tions from quadratic to linear. Defaults to 1.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For huber_loss_pseudo_vec(), a single numeric value (or NA).

32 huber_loss_pseudo

Author(s)

James Blair

References

Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.

Hartley, Richard (2004). Multiple View Geometry in Computer Vision. (Second Edition). Page
619.

See Also

Other numeric metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), rmse(),
rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), rmse(),
smape()

Examples

Supply truth and predictions as bare column names
huber_loss_pseudo(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
huber_loss_pseudo(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

iic 33

iic Index of ideality of correlation

Description

Calculate the index of ideality of correlation. This metric has been studied in QSPR/QSAR mod-
els as a good criterion for the predictive potential of these models. It is highly dependent on the
correlation coefficient as well as the mean absolute error.

Note the application of IIC is useless under two conditions:

• When the negative mean absolute error and positive mean absolute error are both zero.

• When the outliers are symmetric. Since outliers are context dependent, please use your own
checks to validate whether this restriction holds and whether the resulting IIC has interpreta-
tive value.

The IIC is seen as an alternative to the traditional correlation coefficient and is in the same units as
the original data.

Usage

iic(data, ...)

S3 method for class 'data.frame'
iic(data, truth, estimate, na_rm = TRUE, ...)

iic_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For iic_vec(), a single numeric value (or NA).

34 iic

Author(s)

Joyce Cahoon

References

Toropova, A. and Toropov, A. (2017). "The index of ideality of correlation. A criterion of pre-
dictability of QSAR models for skin permeability?" Science of the Total Environment. 586: 466-
472.

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), mae(), mape(), mase(),
mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), mae(), mape(), mase(),
mpe(), rmse(), smape()

Examples

Supply truth and predictions as bare column names
iic(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
iic(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

j_index 35

j_index J-index

Description

Youden’s J statistic is defined as:

sens() + spec() - 1

A related metric is Informedness, see the Details section for the relationship.

Usage

j_index(data, ...)

S3 method for class 'data.frame'
j_index(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

j_index_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

36 j_index

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The value of the J-index ranges from [0, 1] and is 1 when there are no false positives and no false
negatives.

The binary version of J-index is equivalent to the binary concept of Informedness. Macro-weighted
J-index is equivalent to multiclass informedness as defined in Powers, David M W (2011), equation
(42).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For j_index_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Author(s)

Max Kuhn

j_index 37

References

Youden, W.J. (1950). "Index for rating diagnostic tests". Cancer. 3: 32-35.

Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to ROC, Informed-
ness, Markedness and Correlation". Journal of Machine Learning Technologies. 2 (1): 37-63.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), kap(),
mcc(), npv(), ppv(), precision(), recall(), sens(), spec()

Examples

Two class
data("two_class_example")
j_index(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
j_index(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
j_index(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
j_index(obs, pred, estimator = "macro_weighted")

Vector version
j_index_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
j_index_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

38 kap

kap Kappa

Description

Kappa is a similar measure to accuracy(), but is normalized by the accuracy that would be ex-
pected by chance alone and is very useful when one or more classes have large frequency distribu-
tions.

Usage

kap(data, ...)

S3 method for class 'data.frame'
kap(data, truth, estimate, na_rm = TRUE, ...)

kap_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For kap_vec(), a single numeric value (or NA).

Multiclass

Kappa extends naturally to multiclass scenarios. Because of this, macro and micro averaging are
not implemented.

lift_curve 39

Author(s)

Max Kuhn

References

Cohen, J. (1960). "A coefficient of agreement for nominal scales". Educational and Psychological
Measurement. 20 (1): 37-46.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
mcc(), npv(), ppv(), precision(), recall(), sens(), spec()

Examples

library(dplyr)
data("two_class_example")
data("hpc_cv")

Two class
kap(two_class_example, truth, predicted)

Multiclass
kap() has a natural multiclass extension
hpc_cv %>%

filter(Resample == "Fold01") %>%
kap(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
kap(obs, pred)

lift_curve Lift curve

Description

lift_curve() constructs the full lift curve and returns a tibble. See gain_curve() for a closely
related concept.

Usage

lift_curve(data, ...)

S3 method for class 'data.frame'
lift_curve(
data,

40 lift_curve

truth,
...,
na_rm = TRUE,
event_level = yardstick_event_level()

)

autoplot.lift_df(object, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

object The lift_df data frame returned from lift_curve().

Details

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary
and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class lift_df or lift_grouped_df having columns:

• .n - The index of the current sample.

• .n_events - The index of the current unique sample. Values with repeated estimate values
are given identical indices in this column.

• .percent_tested - The cumulative percentage of values tested.

• .lift - First calculate the cumulative percentage of true results relative to the total number of
true results. Then divide that by .percent_tested.

lift_curve 41

Gain and Lift Curves

The motivation behind cumulative gain and lift charts is as a visual method to determine the effec-
tiveness of a model when compared to the results one might expect without a model. As an example,
without a model, if you were to advertise to a random 10\ to capture 10\ advertised to your entire
customer base. Given a model that predicts which customers are more likely to respond, the hope
is that you can more accurately target 10\ \>10\

The calculation to construct lift curves is as follows:

1. truth and estimate are placed in descending order by the estimate values (estimate here
is a single column supplied in ...).

2. The cumulative number of samples with true results relative to the entire number of true results
are found.

3. The cumulative \ to construct the lift value. This ratio represents the factor of improvement
over an uninformed model. Values >1 represent a valuable model. This is the y-axis of the lift
chart.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple
curves, one per level. In this case, there will be an additional column, .level, identifying the "one"
column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Author(s)

Max Kuhn

See Also

Other curve metrics: gain_curve(), pr_curve(), roc_curve()

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

42 mae

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
lift_curve(two_class_example, truth, Class1)

`autoplot()`

library(ggplot2)
library(dplyr)

Use autoplot to visualize
autoplot(lift_curve(two_class_example, truth, Class1))

Multiclass one-vs-all approach
One curve per level
hpc_cv %>%

filter(Resample == "Fold01") %>%
lift_curve(obs, VF:L) %>%
autoplot()

Same as above, but will all of the resamples
hpc_cv %>%

group_by(Resample) %>%
lift_curve(obs, VF:L) %>%
autoplot()

mae Mean absolute error

Description

Calculate the mean absolute error. This metric is in the same units as the original data.

Usage

mae(data, ...)

S3 method for class 'data.frame'
mae(data, truth, estimate, na_rm = TRUE, ...)

mae_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

mae 43

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mae_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mape(), mase(),
mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mape(), mase(),
mpe(), rmse(), smape()

Examples

Supply truth and predictions as bare column names
mae(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

44 mape

group_by(resample) %>%
mae(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

mape Mean absolute percent error

Description

Calculate the mean absolute percentage error. This metric is in relative units.

Usage

mape(data, ...)

S3 method for class 'data.frame'
mape(data, truth, estimate, na_rm = TRUE, ...)

mape_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.
... Not currently used.
truth The column identifier for the true results (that is numeric). This should be

an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

Note that a value of Inf is returned for mape() when the observed value is negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mape_vec(), a single numeric value (or NA).

mase 45

Author(s)

Max Kuhn

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mase(),
mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mase(),
mpe(), rmse(), smape()

Examples

Supply truth and predictions as bare column names
mape(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
mape(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

mase Mean absolute scaled error

Description

Calculate the mean absolute scaled error. This metric is scale independent and symmetric. It is
generally used for comparing forecast error in time series settings. Due to the time series nature of
this metric, it is neccesary to order observations in ascending order by time.

46 mase

Usage

mase(data, ...)

S3 method for class 'data.frame'
mase(data, truth, estimate, m = 1L, mae_train = NULL, na_rm = TRUE, ...)

mase_vec(truth, estimate, m = 1L, mae_train = NULL, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.
... Not currently used.
truth The column identifier for the true results (that is numeric). This should be

an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

m An integer value of the number of lags used to calculate the in-sample seasonal
naive error. The default is used for non-seasonal time series. If each observation
was at the daily level and the data showed weekly seasonality, then m = 7L would
be a reasonable choice for a 7-day seasonal naive calculation.

mae_train A numeric value which allows the user to provide the in-sample seasonal naive
mean absolute error. If this value is not provided, then the out-of-sample sea-
sonal naive mean absolute error will be calculated from truth and will be used
instead.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

mase() is different from most numeric metrics. The original implementation of mase() calls for
using the in-sample naive mean absolute error to compute scaled errors with. It uses this instead
of the out-of-sample error because there is a chance that the out-of-sample error cannot be com-
puted when forecasting a very short horizon (i.e. the out of sample size is only 1 or 2). However,
yardstick only knows about the out-of-sample truth and estimate values. Because of this, the
out-of-sample error is used in the computation by default. If the in-sample naive mean absolute er-
ror is required and known, it can be passed through in the mae_train argument and it will be used
instead. If the in-sample data is available, the naive mean absolute error can easily be computed
with mae(data,truth,lagged_truth).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mase_vec(), a single numeric value (or NA).

mase 47

Author(s)

Alex Hallam

References

Rob J. Hyndman (2006). ANOTHER LOOK AT FORECAST-ACCURACY METRICS FOR IN-
TERMITTENT DEMAND. Foresight, 4, 46.

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mpe(), rmse(), smape()

Examples

Supply truth and predictions as bare column names
mase(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
mase(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

48 mcc

mcc Matthews correlation coefficient

Description

Matthews correlation coefficient

Usage

mcc(data, ...)

S3 method for class 'data.frame'
mcc(data, truth, estimate, na_rm = TRUE, ...)

mcc_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mcc_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

metrics 49

Multiclass

mcc() has a known multiclass generalization and that is computed automatically if a factor with
more than 2 levels is provided. Because of this, no averaging methods are provided.

Author(s)

Max Kuhn

References

Giuseppe, J. (2012). "A Comparison of MCC and CEN Error Measures in Multi-Class Prediction".
PLOS ONE. Vol 7, Iss 8, e41882.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), npv(), ppv(), precision(), recall(), sens(), spec()

Examples

library(dplyr)
data("two_class_example")
data("hpc_cv")

Two class
mcc(two_class_example, truth, predicted)

Multiclass
mcc() has a natural multiclass extension
hpc_cv %>%

filter(Resample == "Fold01") %>%
mcc(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
mcc(obs, pred)

metrics General Function to Estimate Performance

Description

This function estimates one or more common performance estimates depending on the class of
truth (see Value below) and returns them in a three column tibble.

50 metrics

Usage

metrics(data, ...)

S3 method for class 'data.frame'
metrics(data, truth, estimate, ..., options = list(), na_rm = TRUE)

Arguments

data A data.frame containing the truth and estimate columns and any columns
specified by

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true results (that is numeric or factor). This
should be an unquoted column name although this argument is passed by ex-
pression and support quasiquotation (you can unquote column names).

estimate The column identifier for the predicted results (that is also numeric or factor).
As with truth this can be specified different ways but the primary method is to
use an unquoted variable name.

options A list of named options to pass to pROC::roc() such as smooth. These options
should not include response, predictor, levels, quiet, or direction.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A three column tibble.

• When truth is a factor, there are rows for accuracy() and the Kappa statistic (kap()).

• When truth has two levels and 1 column of class probabilities is passed to ..., there are
rows for the two class versions of mn_log_loss() and roc_auc().

• When truth has more than two levels and a full set of class probabilities are passed to ...,
there are rows for the multiclass version of mn_log_loss() and the Hand Till generalization
of roc_auc().

• When truth is numeric, there are rows for rmse(), rsq(), and mae().

See Also

metric_set()

Examples

Accuracy and kappa
metrics(two_class_example, truth, predicted)

metric_set 51

Add on multinomal log loss and ROC AUC by specifying class prob columns
metrics(two_class_example, truth, predicted, Class1)

Regression metrics
metrics(solubility_test, truth = solubility, estimate = prediction)

Multiclass metrics work, but you cannot specify any averaging
for roc_auc() besides the default, hand_till. Use the specific function
if you need more customization
library(dplyr)

hpc_cv %>%
group_by(Resample) %>%
metrics(obs, pred, VF:L) %>%
print(n = 40)

metric_set Combine metric functions

Description

metric_set() allows you to combine multiple metric functions together into a new function that
calculates all of them at once.

Usage

metric_set(...)

Arguments

... The bare names of the functions to be included in the metric set.

Details

All functions must be either:

• Only numeric metrics

• A mix of class metrics or class prob metrics

For instance, rmse() can be used with mae() because they are numeric metrics, but not with
accuracy() because it is a classification metric. But accuracy() can be used with roc_auc().

The returned metric function will have a different argument list depending on whether numeric
metrics or a mix of class/prob metrics were passed in.

Numeric metric set signature:
fn(
data,
truth,

52 metric_set

estimate,
na_rm = TRUE,
...

)

Class / prob metric set signature:
fn(
data,
truth,
...,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level()

)

When mixing class and class prob metrics, pass in the hard predictions (the factor column) as the
named argument estimate, and the soft predictions (the class probability columns) as bare column
names or tidyselect selectors to

See Also

metrics()

Examples

library(dplyr)

Multiple regression metrics
multi_metric <- metric_set(rmse, rsq, ccc)

The returned function has arguments:
fn(data, truth, estimate, na_rm = TRUE, ...)
multi_metric(solubility_test, truth = solubility, estimate = prediction)

Groups are respected on the new metric function
class_metrics <- metric_set(accuracy, kap)

hpc_cv %>%
group_by(Resample) %>%
class_metrics(obs, estimate = pred)

If you need to set options for certain metrics,
do so by wrapping the metric and setting the options inside the wrapper,
passing along truth and estimate as quoted arguments.
Then add on the function class of the underlying wrapped function,
and the direction of optimization.
ccc_with_bias <- function(data, truth, estimate, na_rm = TRUE, ...) {

ccc(

metric_summarizer 53

data = data,
truth = !! rlang::enquo(truth),
estimate = !! rlang::enquo(estimate),
set bias = TRUE
bias = TRUE,
na_rm = na_rm,
...

)
}

Use `new_numeric_metric()` to formalize this new metric function
ccc_with_bias <- new_numeric_metric(ccc_with_bias, "maximize")

multi_metric2 <- metric_set(rmse, rsq, ccc_with_bias)

multi_metric2(solubility_test, truth = solubility, estimate = prediction)

A class probability example:

Note that, when given class or class prob functions,
metric_set() returns a function with signature:
fn(data, truth, ..., estimate)
to be able to mix class and class prob metrics.

You must provide the `estimate` column by explicitly naming
the argument

class_and_probs_metrics <- metric_set(roc_auc, pr_auc, accuracy)

hpc_cv %>%
group_by(Resample) %>%
class_and_probs_metrics(obs, VF:L, estimate = pred)

metric_summarizer Developer function for summarizing new metrics

Description

metric_summarizer() is useful alongside metric_vec_template() for implementing new cus-
tom metrics. metric_summarizer() calls the metric function inside dplyr::summarise(). metric_vec_template()
is a generalized function that calls the core implementation of a metric function, and includes a num-
ber of checks on the types, lengths, and argument inputs. See vignette("custom-metrics","yardstick")
for more information.

Usage

metric_summarizer(
metric_nm,

54 metric_summarizer

metric_fn,
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = NULL,
...,
metric_fn_options = list()

)

Arguments

metric_nm A single character representing the name of the metric to use in the tibble
output. This will be modified to include the type of averaging if appropriate.

metric_fn The vector version of your custom metric function. It generally takes truth,
estimate, na_rm, and any other extra arguments needed to calculate the metric.

data The data frame with truth and estimate columns passed in from the data frame
version of your metric function that called metric_summarizer().

truth The unquoted column name corresponding to the truth column.

estimate Generally, the unquoted column name corresponding to the estimate column.
For metrics that take multiple columns through ... like class probability met-
rics, this is a result of dots_to_estimate().

estimator For numeric metrics, this is left as NULL so averaging is not passed on to the
metric function implementation. For classification metrics, this can either be
NULL for the default auto-selection of averaging ("binary" or "macro"), or a
single character to pass along to the metric implementation describing the kind
of averaging to use.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds. The removal is executed in metric_vec_template().

event_level For numeric metrics, this is left as NULL to prevent it from being passed on to
the metric function implementation. For classification metrics, this can either be
NULL to use the default event_level value of the metric_fn or a single string
of either "first" or "second" to pass along describing which level should be
considered the "event".

... Currently not used. Metric specific options are passed in through metric_fn_options.
metric_fn_options

A named list of metric specific options. These are spliced into the metric func-
tion call using !!! from rlang. The default results in nothing being spliced into
the call.

Details

metric_summarizer() is generally called from the data frame version of your metric function. It
knows how to call your metric over grouped data frames and returns a tibble consistent with other
metrics.

metric_vec_template 55

See Also

metric_vec_template() finalize_estimator() dots_to_estimate()

metric_vec_template Developer function for calling new metrics

Description

metric_vec_template() is useful alongside metric_summarizer() for implementing new cus-
tom metrics. metric_summarizer() calls the metric function inside dplyr::summarise(). metric_vec_template()
is a generalized function that calls the core implementation of a metric function, and includes a
number of checks on the types, lengths, and argument inputs.

Usage

metric_vec_template(
metric_impl,
truth,
estimate,
na_rm = TRUE,
cls = "numeric",
estimator = NULL,
...

)

Arguments

metric_impl The core implementation function of your custom metric. This core implemen-
tation function is generally defined inside the vector method of your metric func-
tion.

truth The realized vector of truth. This is either a factor or a numeric.
estimate The realized estimate result. This is either a numeric vector, a factor vector, or

a numeric matrix (in the case of multiple class probability columns) depending
on your metric function.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds. NA values are removed before getting to your core im-
plementation function so you do not have to worry about handling them yourself.
If na_rm=FALSE and any NA values exist, then NA is automatically returned.

cls A character vector of length 1 or 2 corresponding to the class that truth and
estimate should be, respectively. If truth and estimate are of the same class,
just supply a vector of length 1. If they are different, supply a vector of length
2. For matrices, it is best to supply "numeric" as the class to check here.

estimator The type of averaging to use. By this point, the averaging type should be fi-
nalized, so this should be a character vector of length 1\. By default, this
character value is required to be one of: "binary", "macro", "micro", or
"macro_weighted". If your metric allows more or less averaging methods,
override this with averaging_override.

56 mn_log_loss

... Extra arguments to your core metric function, metric_impl, can technically be
passed here, but generally the extra args are added through R’s scoping rules
because the core metric function is created on the fly when the vector method is
called.

Details

metric_vec_template() is called from the vector implementation of your metric. Also defined
inside your vector implementation is a separate function performing the core implementation of the
metric function. This core function is passed along to metric_vec_template() as metric_impl.

See Also

metric_summarizer() finalize_estimator() dots_to_estimate()

mn_log_loss Mean log loss

Description

Compute the logarithmic loss of a classification model.

Usage

mn_log_loss(data, ...)

S3 method for class 'data.frame'
mn_log_loss(
data,
truth,
...,
na_rm = TRUE,
sum = FALSE,
event_level = yardstick_event_level()

)

mn_log_loss_vec(
truth,
estimate,
na_rm = TRUE,
sum = FALSE,
event_level = yardstick_event_level(),
...

)

mn_log_loss 57

Arguments

data A data.frame containing the truth and estimate columns.
... A set of unquoted column names or one or more dplyr selector functions to

choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

sum A logical. Should the sum of the likelihood contributions be returned (instead
of the mean value)?

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

Log loss is a measure of the performance of a classification model. A perfect model has a log loss
of 0.

Compared with accuracy(), log loss takes into account the uncertainty in the prediction and gives
a more detailed view into the actual performance. For example, given two input probabilities of
.6 and .9 where both are classified as predicting a positive value, say, "Yes", the accuracy metric
would interpret them as having the same value. If the true output is "Yes", log loss penalizes .6
because it is "less sure" of it’s result compared to the probability of .9.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mn_log_loss_vec(), a single numeric value (or NA).

Multiclass

Log loss has a known multiclass extension, and is simply the sum of the log loss values for each
class prediction. Because of this, no averaging types are supported.

Author(s)

Max Kuhn

58 mpe

See Also

Other class probability metrics: average_precision(), gain_capture(), pr_auc(), roc_auc(),
roc_aunp(), roc_aunu()

Examples

Two class
data("two_class_example")
mn_log_loss(two_class_example, truth, Class1)

Multiclass
library(dplyr)
data(hpc_cv)

You can use the col1:colN tidyselect syntax
hpc_cv %>%

filter(Resample == "Fold01") %>%
mn_log_loss(obs, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
mn_log_loss(obs, VF:L)

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

mn_log_loss_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

Supply `...` with quasiquotation
prob_cols <- levels(two_class_example$truth)
mn_log_loss(two_class_example, truth, Class1)
mn_log_loss(two_class_example, truth, !! prob_cols[1])

mpe Mean percentage error

mpe 59

Description

Calculate the mean percentage error. This metric is in relative units. It can be used as a measure of
the estimate’s bias.

Note that if any truth values are 0, a value of: -Inf (estimate > 0), Inf (estimate < 0), or NaN
(estimate == 0) is returned for mpe().

Usage

mpe(data, ...)

S3 method for class 'data.frame'
mpe(data, truth, estimate, na_rm = TRUE, ...)

mpe_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mpe_vec(), a single numeric value (or NA).

Author(s)

Thomas Bierhance

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), rmse(), smape()

60 new-metric

Examples

`solubility_test$solubility` has zero values with corresponding
`$prediction` values that are negative. By definition, this causes `Inf`
to be returned from `mpe()`.
solubility_test[solubility_test$solubility == 0,]

mpe(solubility_test, solubility, prediction)

We'll remove the zero values for demonstration
solubility_test <- solubility_test[solubility_test$solubility != 0,]

Supply truth and predictions as bare column names
mpe(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
mpe(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

new-metric Construct a new metric function

Description

These functions provide convenient wrappers to create the three types of metric functions in yard-
stick: numeric metrics, class metrics, and class probability metrics. They add a metric-specific class
to fn and attach a direction attribute. These features are used by metric_set() and by tune when
model tuning.

https://tune.tidymodels.org/

npv 61

See vignette("custom-metrics") for more information about creating custom metrics.

Usage

new_class_metric(fn, direction)

new_prob_metric(fn, direction)

new_numeric_metric(fn, direction)

Arguments

fn A function. The metric function to attach a metric-specific class and direction
attribute to.

direction A string. One of:

• "maximize"

• "minimize"

• "zero"

npv Negative predictive value

Description

These functions calculate the npv() (negative predictive value) of a measurement system compared
to a reference result (the "truth" or gold standard). Highly related functions are spec(), sens(),
and ppv().

Usage

npv(data, ...)

S3 method for class 'data.frame'
npv(
data,
truth,
estimate,
prevalence = NULL,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

npv_vec(
truth,

62 npv

estimate,
prevalence = NULL,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

prevalence A numeric value for the rate of the "positive" class of the data.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The positive predictive value (ppv()) is defined as the percent of predicted positives that are actually
positive while the negative predictive value (npv()) is defined as the percent of negative positives
that are actually negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For npv_vec(), a single numeric value (or NA).

npv 63

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Positive Negative

Positive A B
Negative C D

The formulas used here are:

Sensitivity = A/(A+ C)

Specificity = D/(B +D)

Prevalence = (A+ C)/(A+B + C +D)

PPV = (Sensitivity∗Prevalence)/((Sensitivity∗Prevalence)+((1−Specificity)∗(1−Prevalence)))
NPV = (Specificity∗(1−Prevalence))/(((1−Sensitivity)∗Prevalence)+((Specificity)∗(1−Prevalence)))

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 2: predictive values,” British Medical Journal,
vol 309, 102.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), ppv(), precision(), recall(), sens(), spec()

Other sensitivity metrics: ppv(), sens(), spec()

64 pathology

Examples

Two class
data("two_class_example")
npv(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
npv(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
npv(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
npv(obs, pred, estimator = "macro_weighted")

Vector version
npv_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
npv_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

pathology Liver Pathology Data

Description

Liver Pathology Data

Details

These data have the results of a x-ray examination to determine whether liver is abnormal or not
(in the scan column) versus the more extensive pathology results that approximate the truth (in
pathology).

ppv 65

Value

pathology a data frame

Source

Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 1: sensitivity and specificity,” British Medical
Journal, vol 308, 1552.

Examples

data(pathology)
str(pathology)

ppv Positive predictive value

Description

These functions calculate the ppv() (positive predictive value) of a measurement system compared
to a reference result (the "truth" or gold standard). Highly related functions are spec(), sens(),
and npv().

Usage

ppv(data, ...)

S3 method for class 'data.frame'
ppv(
data,
truth,
estimate,
prevalence = NULL,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

ppv_vec(
truth,
estimate,
prevalence = NULL,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

66 ppv

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

prevalence A numeric value for the rate of the "positive" class of the data.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The positive predictive value (ppv()) is defined as the percent of predicted positives that are actually
positive while the negative predictive value (npv()) is defined as the percent of negative positives
that are actually negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For ppv_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

ppv 67

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Positive Negative

Positive A B
Negative C D

The formulas used here are:

Sensitivity = A/(A+ C)

Specificity = D/(B +D)

Prevalence = (A+ C)/(A+B + C +D)

PPV = (Sensitivity∗Prevalence)/((Sensitivity∗Prevalence)+((1−Specificity)∗(1−Prevalence)))

NPV = (Specificity∗(1−Prevalence))/(((1−Sensitivity)∗Prevalence)+((Specificity)∗(1−Prevalence)))

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 2: predictive values,” British Medical Journal,
vol 309, 102.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), npv(), precision(), recall(), sens(), spec()

Other sensitivity metrics: npv(), sens(), spec()

68 precision

Examples

Two class
data("two_class_example")
ppv(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
ppv(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
ppv(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
ppv(obs, pred, estimator = "macro_weighted")

Vector version
ppv_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
ppv_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)
But what if we think that Class 1 only occurs 40% of the time?
ppv(two_class_example, truth, predicted, prevalence = 0.40)

precision Precision

Description

These functions calculate the precision() of a measurement system for finding relevant docu-
ments compared to reference results (the truth regarding relevance). Highly related functions are
recall() and f_meas().

precision 69

Usage

precision(data, ...)

S3 method for class 'data.frame'
precision(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

precision_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

70 precision

Details

The precision is the percentage of predicted truly relevant results of the total number of predicted
relevant results and characterizes the "purity in retrieval performance" (Buckland and Gey, 1994).

When the denominator of the calculation is 0, precision is undefined. This happens when both
true_positive = 0 and # false_positive = 0 are true, which mean that there were no predicted
events. When computing binary precision, a NA value will be returned with a warning. When
computing multiclass precision, the individual NA values will be removed, and the computation will
procede, with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For precision_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Relevant Irrelevant
Relevant A B

Irrelevant C D

The formulas used here are:

recall = A/(A+ C)

precision = A/(A+B)

Fmeas = (1 + β2) ∗ precision ∗ recall/((β2 ∗ precision) + recall)

See the references for discussions of the statistics.

precision 71

Author(s)

Max Kuhn

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. Journal of the
American Society for Information Science, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness,
Markedness and Correlation. Technical Report SIE-07-001, Flinders University

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), npv(), ppv(), recall(), sens(), spec()

Other relevance metrics: f_meas(), recall()

Examples

Two class
data("two_class_example")
precision(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
precision(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
precision(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
precision(obs, pred, estimator = "macro_weighted")

Vector version
precision_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
precision_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

72 pr_auc

)

pr_auc Area under the precision recall curve

Description

pr_auc() is a metric that computes the area under the precision recall curve. See pr_curve() for
the full curve.

Usage

pr_auc(data, ...)

S3 method for class 'data.frame'
pr_auc(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level()

)

pr_auc_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

pr_auc 73

estimator One of "binary", "macro", or "macro_weighted" to specify the type of aver-
aging to be done. "binary" is only relevant for the two class case. The other
two are general methods for calculating multiclass metrics. The default will
automatically choose "binary" or "macro" based on truth.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For pr_auc_vec(), a single numeric value (or NA).

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro
averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Author(s)

Max Kuhn

See Also

pr_curve() for computing the full precision recall curve.

Other class probability metrics: average_precision(), gain_capture(), mn_log_loss(), roc_auc(),
roc_aunp(), roc_aunu()

74 pr_auc

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
pr_auc(two_class_example, truth, Class1)

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
pr_auc(obs, VF:L)

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%

filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
pr_auc(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
pr_auc(obs, VF:L)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
pr_auc(obs, VF:L, estimator = "macro_weighted")

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

pr_curve 75

pr_auc_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

pr_curve Precision recall curve

Description

pr_curve() constructs the full precision recall curve and returns a tibble. See pr_auc() for the
area under the precision recall curve.

Usage

pr_curve(data, ...)

S3 method for class 'data.frame'
pr_curve(data, truth, ..., na_rm = TRUE, event_level = yardstick_event_level())

autoplot.pr_df(object, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

object The pr_df data frame returned from pr_curve().

76 pr_curve

Details

pr_curve() computes the precision at every unique value of the probability column (in addition to
infinity).

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary
and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class pr_df or pr_grouped_df having columns .threshold, recall, and precision.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple
curves, one per level. In this case, there will be an additional column, .level, identifying the "one"
column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Author(s)

Max Kuhn

See Also

Compute the area under the precision recall curve with pr_auc().

Other curve metrics: gain_curve(), lift_curve(), roc_curve()

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
pr_curve(two_class_example, truth, Class1)

recall 77

`autoplot()`

Visualize the curve using ggplot2 manually
library(ggplot2)
library(dplyr)
pr_curve(two_class_example, truth, Class1) %>%

ggplot(aes(x = recall, y = precision)) +
geom_path() +
coord_equal() +
theme_bw()

Or use autoplot
autoplot(pr_curve(two_class_example, truth, Class1))

Multiclass one-vs-all approach
One curve per level
hpc_cv %>%

filter(Resample == "Fold01") %>%
pr_curve(obs, VF:L) %>%
autoplot()

Same as above, but will all of the resamples
hpc_cv %>%

group_by(Resample) %>%
pr_curve(obs, VF:L) %>%
autoplot()

recall Recall

Description

These functions calculate the recall() of a measurement system for finding relevant documents
compared to reference results (the truth regarding relevance). Highly related functions are precision()
and f_meas().

Usage

recall(data, ...)

S3 method for class 'data.frame'
recall(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,

78 recall

event_level = yardstick_event_level(),
...

)

recall_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The recall (aka sensitivity) is defined as the proportion of relevant results out of the number of
samples which were actually relevant. When there are no relevant results, recall is not defined and
a value of NA is returned.

When the denominator of the calculation is 0, recall is undefined. This happens when both # true_positive = 0
and # false_negative = 0 are true, which mean that there were no true events. When computing bi-
nary recall, a NA value will be returned with a warning. When computing multiclass recall, the
individual NA values will be removed, and the computation will procede, with a warning.

recall 79

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For recall_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Relevant Irrelevant
Relevant A B

Irrelevant C D

The formulas used here are:

recall = A/(A+ C)

precision = A/(A+B)

Fmeas = (1 + β2) ∗ precision ∗ recall/((β2 ∗ precision) + recall)

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. Journal of the
American Society for Information Science, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness,
Markedness and Correlation. Technical Report SIE-07-001, Flinders University

80 rmse

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), npv(), ppv(), precision(), sens(), spec()

Other relevance metrics: f_meas(), precision()

Examples

Two class
data("two_class_example")
recall(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
recall(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
recall(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
recall(obs, pred, estimator = "macro_weighted")

Vector version
recall_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
recall_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

rmse Root mean squared error

Description

Calculate the root mean squared error. rmse() is a metric that is in the same units as the original
data.

rmse 81

Usage

rmse(data, ...)

S3 method for class 'data.frame'
rmse(data, truth, estimate, na_rm = TRUE, ...)

rmse_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rmse_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), smape()

Examples

Supply truth and predictions as bare column names
rmse(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)

82 roc_auc

size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
rmse(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

roc_auc Area under the receiver operator curve

Description

roc_auc() is a metric that computes the area under the ROC curve. See roc_curve() for the full
curve.

Usage

roc_auc(data, ...)

S3 method for class 'data.frame'
roc_auc(
data,
truth,
...,
options = list(),
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level()

)

roc_auc_vec(
truth,

roc_auc 83

estimate,
options = list(),
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

options A list of named options to pass to pROC::roc() such as smooth. These options
should not include response, predictor, levels, quiet, or direction.

estimator One of "binary", "hand_till", "macro", or "macro_weighted" to specify
the type of averaging to be done. "binary" is only relevant for the two class
case. The others are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "hand_till" based on truth.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

The underlying direction option in pROC::roc() is forced to direction = "<". This computes
the ROC curve assuming that the estimate values are the probability that the "event" occurred,
which is what they are always assumed to be in yardstick.

Generally, an ROC AUC value is between 0.5 and 1, with 1 being a perfect prediction model. If
your value is between 0 and 0.5, then this implies that you have meaningful information in your
model, but it is being applied incorrectly because doing the opposite of what the model predicts
would result in an AUC >0.5.

84 roc_auc

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_auc_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

The default multiclass method for computing roc_auc() is to use the method from Hand, Till,
(2001). Unlike macro-averaging, this method is insensitive to class distributions like the binary
ROC AUC case. Additionally, while other multiclass techniques will return NA if any levels in
truth occur zero times in the actual data, the Hand-Till method will simply ignore those levels in
the averaging calculation, with a warning.

Macro and macro-weighted averaging are still provided, even though they are not the default. In
fact, macro-weighted averaging corresponds to the same definition of multiclass AUC given by
Provost and Domingos (2001).

Author(s)

Max Kuhn

References

Hand, Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class
Classification Problems". Machine Learning. Vol 45, Iss 2, pp 171-186.

Fawcett (2005). "An introduction to ROC analysis". Pattern Recognition Letters. 27 (2006), pp
861-874.

Provost, F., Domingos, P., 2001. "Well-trained PETs: Improving probability estimation trees",
CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.

See Also

roc_curve() for computing the full ROC curve.

Other class probability metrics: average_precision(), gain_capture(), mn_log_loss(), pr_auc(),
roc_aunp(), roc_aunu()

roc_auc 85

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
roc_auc(two_class_example, truth, Class1)

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
roc_auc(obs, VF:L)

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%

filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
roc_auc(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
roc_auc(obs, VF:L)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
roc_auc(obs, VF:L, estimator = "macro_weighted")

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

86 roc_aunp

roc_auc_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

Options for `pROC::roc()`

Pass options via a named list and not through `...`!
roc_auc(

two_class_example,
truth = truth,
Class1,
options = list(smooth = TRUE)

)

roc_aunp Area under the ROC curve of each class against the rest, using the a
priori class distribution

Description

roc_aunp() is a multiclass metric that computes the area under the ROC curve of each class
against the rest, using the a priori class distribution. This is equivalent to roc_auc(estimator
= "macro_weighted").

Usage

roc_aunp(data, ...)

S3 method for class 'data.frame'
roc_aunp(data, truth, ..., options = list(), na_rm = TRUE)

roc_aunp_vec(truth, estimate, options = list(), na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. There should be as many
columns as factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

roc_aunp 87

options A list of named options to pass to pROC::roc() such as smooth. These options
should not include response, predictor, levels, quiet, or direction.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

estimate A matrix with as many columns as factor levels of truth. It is assumed that
these are in the same order as the levels of truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_aunp_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

This multiclass method for computing the area under the ROC curve uses the a priori class distri-
bution and is equivalent to roc_auc(estimator = "macro_weighted").

Author(s)

Julia Silge

References

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). "An experimental comparison of perfor-
mance measures for classification". Pattern Recognition Letters. 30 (1), pp 27-38.

See Also

roc_aunu() for computing the area under the ROC curve of each class against the rest, using the
uniform class distribution.

Other class probability metrics: average_precision(), gain_capture(), mn_log_loss(), pr_auc(),
roc_auc(), roc_aunu()

88 roc_aunp

Examples

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
roc_aunp(obs, VF:L)

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%

filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
roc_aunp(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
roc_aunp(obs, VF:L)

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

roc_aunp_vec(
truth = fold1$obs,
matrix(
c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

Options for `pROC::roc()`

Pass options via a named list and not through `...`!
roc_aunp(

hpc_cv,
obs,
VF:L,
options = list(smooth = TRUE)

)

roc_aunu 89

roc_aunu Area under the ROC curve of each class against the rest, using the
uniform class distribution

Description

roc_aunu() is a multiclass metric that computes the area under the ROC curve of each class
against the rest, using the uniform class distribution. This is equivalent to roc_auc(estimator
= "macro").

Usage

roc_aunu(data, ...)

S3 method for class 'data.frame'
roc_aunu(data, truth, ..., options = list(), na_rm = TRUE)

roc_aunu_vec(truth, estimate, options = list(), na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. There should be as many
columns as factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

options A list of named options to pass to pROC::roc() such as smooth. These options
should not include response, predictor, levels, quiet, or direction.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

estimate A matrix with as many columns as factor levels of truth. It is assumed that
these are in the same order as the levels of truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_aunu_vec(), a single numeric value (or NA).

90 roc_aunu

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

This multiclass method for computing the area under the ROC curve uses the uniform class distri-
bution and is equivalent to roc_auc(estimator = "macro").

Author(s)

Julia Silge

References

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). "An experimental comparison of perfor-
mance measures for classification". Pattern Recognition Letters. 30 (1), pp 27-38.

See Also

roc_aunp() for computing the area under the ROC curve of each class against the rest, using the a
priori class distribution.

Other class probability metrics: average_precision(), gain_capture(), mn_log_loss(), pr_auc(),
roc_auc(), roc_aunp()

Examples

Multiclass example

`obs` is a 4 level factor. The first level is `"VF"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(hpc_cv)

You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%

filter(Resample == "Fold01") %>%
roc_aunu(obs, VF:L)

Change the first level of `obs` from `"VF"` to `"M"` to alter the
event of interest. The class probability columns should be supplied
in the same order as the levels.
hpc_cv %>%
filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%

roc_curve 91

roc_aunu(obs, M, VF:L)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
roc_aunu(obs, VF:L)

Vector version
Supply a matrix of class probabilities
fold1 <- hpc_cv %>%

filter(Resample == "Fold01")

roc_aunu_vec(
truth = fold1$obs,
matrix(

c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4

)
)

Options for `pROC::roc()`

Pass options via a named list and not through `...`!
roc_aunu(

hpc_cv,
obs,
VF:L,
options = list(smooth = TRUE)

)

roc_curve Receiver operator curve

Description

roc_curve() constructs the full ROC curve and returns a tibble. See roc_auc() for the area under
the ROC curve.

Usage

roc_curve(data, ...)

S3 method for class 'data.frame'
roc_curve(
data,
truth,
...,
options = list(),

92 roc_curve

na_rm = TRUE,
event_level = yardstick_event_level()

)

autoplot.roc_df(object, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only
1 column should be selected. Otherwise, there should be as many columns as
factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

options A list of named options to pass to pROC::roc() such as smooth. These options
should not include response, predictor, levels, quiet, or direction.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

object The roc_df data frame returned from roc_curve().

Details

roc_curve() computes the sensitivity at every unique value of the probability column (in addition
to infinity and minus infinity). If a smooth ROC curve was produced, the unique observed values of
the specificity are used to create the curve points. In either case, this may not be efficient for large
data sets.

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary
and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class roc_df or roc_grouped_df having columns specificity and sensitivity.

If an ordinary (i.e. non-smoothed) curve is used, there is also a column for .threshold.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple
curves, one per level. In this case, there will be an additional column, .level, identifying the "one"
column in the one-vs-all calculation.

roc_curve 93

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Author(s)

Max Kuhn

See Also

Compute the area under the ROC curve with roc_auc().

Other curve metrics: gain_curve(), lift_curve(), pr_curve()

Examples

Two class example

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section above.
data(two_class_example)

Binary metrics using class probabilities take a factor `truth` column,
and a single class probability column containing the probabilities of
the event of interest. Here, since `"Class1"` is the first level of
`"truth"`, it is the event of interest and we pass in probabilities for it.
roc_curve(two_class_example, truth, Class1)

`autoplot()`

Visualize the curve using ggplot2 manually
library(ggplot2)
library(dplyr)
roc_curve(two_class_example, truth, Class1) %>%

ggplot(aes(x = 1 - specificity, y = sensitivity)) +
geom_path() +
geom_abline(lty = 3) +
coord_equal() +
theme_bw()

Or use autoplot
autoplot(roc_curve(two_class_example, truth, Class1))

Not run:

94 rpd

Multiclass one-vs-all approach
One curve per level
hpc_cv %>%

filter(Resample == "Fold01") %>%
roc_curve(obs, VF:L) %>%
autoplot()

Same as above, but will all of the resamples
hpc_cv %>%

group_by(Resample) %>%
roc_curve(obs, VF:L) %>%
autoplot()

End(Not run)

rpd Ratio of performance to deviation

Description

These functions are appropriate for cases where the model outcome is a numeric. The ratio of
performance to deviation (rpd()) and the ratio of performance to inter-quartile (rpiq()) are both
measures of consistency/correlation between observed and predicted values (and not of accuracy).

Usage

rpd(data, ...)

S3 method for class 'data.frame'
rpd(data, truth, estimate, na_rm = TRUE, ...)

rpd_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

rpd 95

Details

In the field of spectroscopy in particular, the ratio of performance to deviation (RPD) has been used
as the standard way to report the quality of a model. It is the ratio between the standard deviation
of a variable and the standard error of prediction of that variable by a given model. However, its
systematic use has been criticized by several authors, since using the standard deviation to represent
the spread of a variable can be misleading on skewed dataset. The ratio of performance to inter-
quartile has been introduced by Bellon-Maurel et al. (2010) to address some of these issues, and
generalise the RPD to non-normally distributed variables.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rpd_vec(), a single numeric value (or NA).

Author(s)

Pierre Roudier

References

Williams, P.C. (1987) Variables affecting near-infrared reflectance spectroscopic analysis. In: Near
Infrared Technology in the Agriculture and Food Industries. 1st Ed. P.Williams and K.Norris, Eds.
Am. Cereal Assoc. Cereal Chem., St. Paul, MN.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M. and McBratney, A., (2010).
Critical review of chemometric indicators commonly used for assessing the quality of the prediction
of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), pp.1073-1081.

See Also

The closely related inter-quartile metric: rpiq()

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse(), rpiq(), rsq_trad(), rsq(), smape()

Other consistency metrics: ccc(), rpiq(), rsq_trad(), rsq()

Examples

Supply truth and predictions as bare column names
rpd(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

96 rpiq

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
rpd(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

rpiq Ratio of performance to inter-quartile

Description

These functions are appropriate for cases where the model outcome is a numeric. The ratio of
performance to deviation (rpd()) and the ratio of performance to inter-quartile (rpiq()) are both
measures of consistency/correlation between observed and predicted values (and not of accuracy).

Usage

rpiq(data, ...)

S3 method for class 'data.frame'
rpiq(data, truth, estimate, na_rm = TRUE, ...)

rpiq_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

rpiq 97

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

In the field of spectroscopy in particular, the ratio of performance to deviation (RPD) has been used
as the standard way to report the quality of a model. It is the ratio between the standard deviation
of a variable and the standard error of prediction of that variable by a given model. However, its
systematic use has been criticized by several authors, since using the standard deviation to represent
the spread of a variable can be misleading on skewed dataset. The ratio of performance to inter-
quartile has been introduced by Bellon-Maurel et al. (2010) to address some of these issues, and
generalise the RPD to non-normally distributed variables.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rpd_vec(), a single numeric value (or NA).

Author(s)

Pierre Roudier

References

Williams, P.C. (1987) Variables affecting near-infrared reflectance spectroscopic analysis. In: Near
Infrared Technology in the Agriculture and Food Industries. 1st Ed. P.Williams and K.Norris, Eds.
Am. Cereal Assoc. Cereal Chem., St. Paul, MN.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M. and McBratney, A., (2010).
Critical review of chemometric indicators commonly used for assessing the quality of the prediction
of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), pp.1073-1081.

See Also

The closely related deviation metric: rpd()

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse(), rpd(), rsq_trad(), rsq(), smape()

Other consistency metrics: ccc(), rpd(), rsq_trad(), rsq()

Examples

Supply truth and predictions as bare column names
rpd(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

98 rsq

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
rpd(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

rsq R squared

Description

Calculate the coefficient of determination using correlation. For the traditional measure of R
squared, see rsq_trad().

Usage

rsq(data, ...)

S3 method for class 'data.frame'
rsq(data, truth, estimate, na_rm = TRUE, ...)

rsq_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

rsq 99

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

The two estimates for the coefficient of determination, rsq() and rsq_trad(), differ by their for-
mula. The former guarantees a value on (0, 1) while the latter can generate inaccurate values when
the model is non-informative (see the examples). Both are measures of consistency/correlation and
not of accuracy.

rsq() is simply the squared correlation between truth and estimate.

Because rsq() internally computes a correlation, if either truth or estimate are constant it can
result in a divide by zero error. In these cases, a warning is thrown and NA is returned. This can
occur when a model predicts a single value for all samples. For example, a regularized model that
eliminates all predictors except for the intercept would do this. Another example would be a CART
model that contains no splits.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rsq_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

References

Kvalseth. Cautionary note about R2. American Statistician (1985) vol. 39 (4) pp. 279-285.

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse(), rpd(), rpiq(), rsq_trad(), smape()

Other consistency metrics: ccc(), rpd(), rpiq(), rsq_trad()

Examples

Supply truth and predictions as bare column names
rsq(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

100 rsq_trad

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
rsq(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))
With uninformitive data, the traditional version of R^2 can return
negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)
rsq(solubility_test, solubility, randomized)
rsq_trad(solubility_test, solubility, randomized)

A constant `truth` or `estimate` vector results in a warning from
a divide by zero error in the correlation calculation.
`NA` will be returned in these cases.
truth <- c(1, 2)
estimate <- c(1, 1)
rsq_vec(truth, estimate)

rsq_trad R squared - traditional

Description

Calculate the coefficient of determination using the traditional definition of R squared using sum of
squares. For a measure of R squared that is strictly between (0, 1), see rsq().

Usage

rsq_trad(data, ...)

S3 method for class 'data.frame'
rsq_trad(data, truth, estimate, na_rm = TRUE, ...)

rsq_trad_vec(truth, estimate, na_rm = TRUE, ...)

rsq_trad 101

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

The two estimates for the coefficient of determination, rsq() and rsq_trad(), differ by their for-
mula. The former guarantees a value on (0, 1) while the latter can generate inaccurate values when
the model is non-informative (see the examples). Both are measures of consistency/correlation and
not of accuracy.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rsq_trad_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

References

Kvalseth. Cautionary note about R2. American Statistician (1985) vol. 39 (4) pp. 279-285.

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse(), rpd(), rpiq(), rsq(), smape()

Other consistency metrics: ccc(), rpd(), rpiq(), rsq()

Examples

Supply truth and predictions as bare column names
rsq_trad(solubility_test, solubility, prediction)

library(dplyr)

102 sens

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
rsq_trad(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))
With uninformitive data, the traditional version of R^2 can return
negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)
rsq(solubility_test, solubility, randomized)
rsq_trad(solubility_test, solubility, randomized)

sens Sensitivity

Description

These functions calculate the sens() (sensitivity) of a measurement system compared to a reference
result (the "truth" or gold standard). Highly related functions are spec(), ppv(), and npv().

Usage

sens(data, ...)

S3 method for class 'data.frame'
sens(
data,
truth,
estimate,

sens 103

estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

sensitivity(data, ...)

sens_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

sensitivity_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",

104 sens

however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The sensitivity (sens()) is defined as the proportion of positive results out of the number of samples
which were actually positive.

When the denominator of the calculation is 0, sensitivity is undefined. This happens when both
true_positive = 0 and # false_negative = 0 are true, which mean that there were no true events.
When computing binary sensitivity, a NA value will be returned with a warning. When computing
multiclass sensitivity, the individual NA values will be removed, and the computation will procede,
with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For sens_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Positive Negative

Positive A B
Negative C D

The formulas used here are:

Sensitivity = A/(A+ C)

Specificity = D/(B +D)

sens 105

Prevalence = (A+ C)/(A+B + C +D)

PPV = (Sensitivity∗Prevalence)/((Sensitivity∗Prevalence)+((1−Specificity)∗(1−Prevalence)))

NPV = (Specificity∗(1−Prevalence))/(((1−Sensitivity)∗Prevalence)+((Specificity)∗(1−Prevalence)))

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 1: sensitivity and specificity,” British Medical
Journal, vol 308, 1552.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), npv(), ppv(), precision(), recall(), spec()

Other sensitivity metrics: npv(), ppv(), spec()

Examples

Two class
data("two_class_example")
sens(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
sens(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
sens(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
sens(obs, pred, estimator = "macro_weighted")

Vector version
sens_vec(

two_class_example$truth,
two_class_example$predicted

)

106 smape

Making Class2 the "relevant" level
sens_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

smape Symmetric mean absolute percentage error

Description

Calculate the symmetric mean absolute percentage error. This metric is in relative units.

Usage

smape(data, ...)

S3 method for class 'data.frame'
smape(data, truth, estimate, na_rm = TRUE, ...)

smape_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the truth and estimate columns.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

This implementation of smape() is the "usual definition" where the denominator is divided by two.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For smape_vec(), a single numeric value (or NA).

solubility_test 107

Author(s)

Max Kuhn, Riaz Hedayati

See Also

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse(), rpd(), rpiq(), rsq_trad(), rsq()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(),
mase(), mpe(), rmse()

Examples

Supply truth and predictions as bare column names
smape(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

create 10 resamples
solubility_resampled <- bind_rows(

replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE

),
.id = "resample"

)

Compute the metric by group
metric_results <- solubility_resampled %>%

group_by(resample) %>%
smape(solubility, prediction)

metric_results

Resampled mean estimate
metric_results %>%

summarise(avg_estimate = mean(.estimate))

solubility_test Solubility Predictions from MARS Model

Description

Solubility Predictions from MARS Model

108 spec

Details

For the solubility data in Kuhn and Johnson (2013), these data are the test set results for the MARS
model. The observed solubility (in column solubility) and the model results (prediction) are
contained in the data.

Value
solubility_test

a data frame

Source

Kuhn, M., Johnson, K. (2013) Applied Predictive Modeling, Springer

Examples

data(solubility_test)
str(solubility_test)

spec Specificity

Description

These functions calculate the spec() (specificity) of a measurement system compared to a reference
result (the "truth" or gold standard). Highly related functions are sens(), ppv(), and npv().

Usage

spec(data, ...)

S3 method for class 'data.frame'
spec(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

specificity(data, ...)

spec_vec(
truth,
estimate,

spec 109

estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

specificity_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
...

)

Arguments

data Either a data.frame containing the truth and estimate columns, or a table/matrix
where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As
with truth this can be specified different ways but the primary method is to use
an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

Details

The specificity measures the proportion of negatives that are correctly identified as negatives.

When the denominator of the calculation is 0, specificity is undefined. This happens when both
true_negative = 0 and # false_positive = 0 are true, which mean that there were no true negatives.
When computing binary specificity, a NA value will be returned with a warning. When computing
multiclass specificity, the individual NA values will be removed, and the computation will procede,
with a warning.

110 spec

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For spec_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider
the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select
macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary
calculation is done. See vignette("multiclass","yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference
Predicted Positive Negative

Positive A B
Negative C D

The formulas used here are:

Sensitivity = A/(A+ C)

Specificity = D/(B +D)

Prevalence = (A+ C)/(A+B + C +D)

PPV = (Sensitivity∗Prevalence)/((Sensitivity∗Prevalence)+((1−Specificity)∗(1−Prevalence)))

NPV = (Specificity∗(1−Prevalence))/(((1−Sensitivity)∗Prevalence)+((Specificity)∗(1−Prevalence)))

See the references for discussions of the statistics.

Author(s)

Max Kuhn

spec 111

References

Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 1: sensitivity and specificity,” British Medical
Journal, vol 308, 1552.

See Also

Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(),
kap(), mcc(), npv(), ppv(), precision(), recall(), sens()

Other sensitivity metrics: npv(), ppv(), sens()

Examples

Two class
data("two_class_example")
spec(two_class_example, truth, predicted)

Multiclass
library(dplyr)
data(hpc_cv)

hpc_cv %>%
filter(Resample == "Fold01") %>%
spec(obs, pred)

Groups are respected
hpc_cv %>%

group_by(Resample) %>%
spec(obs, pred)

Weighted macro averaging
hpc_cv %>%

group_by(Resample) %>%
spec(obs, pred, estimator = "macro_weighted")

Vector version
spec_vec(

two_class_example$truth,
two_class_example$predicted

)

Making Class2 the "relevant" level
spec_vec(

two_class_example$truth,
two_class_example$predicted,
event_level = "second"

)

112 summary.conf_mat

summary.conf_mat Summary Statistics for Confusion Matrices

Description

Various statistical summaries of confusion matrices are produced and returned in a tibble. These
include those shown in the help pages for sens(), recall(), and accuracy(), among others.

Usage

S3 method for class 'conf_mat'
summary(
object,
prevalence = NULL,
beta = 1,
estimator = NULL,
event_level = yardstick_event_level(),
...

)

Arguments

object An object of class conf_mat().

prevalence A number in (0, 1) for the prevalence (i.e. prior) of the event. If left to the
default, the data are used to derive this value.

beta A numeric value used to weight precision and recall for f_meas().

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the
type of averaging to be done. "binary" is only relevant for the two class case.
The other three are general methods for calculating multiclass metrics. The
default will automatically choose "binary" or "macro" based on estimate.

event_level A single string. Either "first" or "second" to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first",
however, if the deprecated global option yardstick.event_first is set, that
will be used instead with a warning.

... Not currently used.

Value

A tibble containing various classification metrics.

Relevant Level

There is no common convention on which factor level should automatically be considered the
"event" or "positive" result when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument event_level to "second" to consider

two_class_example 113

the last level of the factor the level of interest. For multiclass extensions involving one-vs-all com-
parisons (such as macro averaging), this option is ignored and the "one" level is always the relevant
result.

See Also

conf_mat()

Examples

data("two_class_example")

cmat <- conf_mat(two_class_example, truth = "truth", estimate = "predicted")
summary(cmat)
summary(cmat, prevalence = 0.70)

library(dplyr)
library(purrr)
library(tidyr)
data("hpc_cv")

Compute statistics per resample then summarize
all_metrics <- hpc_cv %>%

group_by(Resample) %>%
conf_mat(obs, pred) %>%
mutate(summary_tbl = map(conf_mat, summary)) %>%
unnest(summary_tbl)

all_metrics %>%
group_by(.metric) %>%
summarise(
mean = mean(.estimate, na.rm = TRUE),
sd = sd(.estimate, na.rm = TRUE)

)

two_class_example Two Class Predictions

Description

Two Class Predictions

Details

These data are a test set form a model built for two classes ("Class1" and "Class2"). There are
columns for the true and predicted classes and column for the probabilities for each class.

114 two_class_example

Value
two_class_example

a data frame

Examples

data(two_class_example)
str(two_class_example)

`truth` is a 2 level factor. The first level is `"Class1"`, which is the
"event of interest" by default in yardstick. See the Relevant Level
section in any classification function (such as `?pr_auc`) to see how
to change this.
levels(hpc_cv$obs)

Index

∗ accuracy metrics
ccc, 10
huber_loss, 29
huber_loss_pseudo, 31
iic, 33
mae, 42
mape, 44
mase, 45
mpe, 58
rmse, 80
smape, 106

∗ class metrics
accuracy, 3
bal_accuracy, 7
detection_prevalence, 14
f_meas, 17
j_index, 35
kap, 38
mcc, 48
npv, 61
ppv, 65
precision, 68
recall, 77
sens, 102
spec, 108

∗ class probability metrics
average_precision, 4
gain_capture, 20
mn_log_loss, 56
pr_auc, 72
roc_auc, 82
roc_aunp, 86
roc_aunu, 89

∗ consistency metrics
ccc, 10
rpd, 94
rpiq, 96
rsq, 98
rsq_trad, 100

∗ curve metrics
gain_curve, 23
lift_curve, 39
pr_curve, 75
roc_curve, 91

∗ datasets
hpc_cv, 28
pathology, 64
solubility_test, 107
two_class_example, 113

∗ numeric metrics
ccc, 10
huber_loss, 29
huber_loss_pseudo, 31
iic, 33
mae, 42
mape, 44
mase, 45
mpe, 58
rmse, 80
rpd, 94
rpiq, 96
rsq, 98
rsq_trad, 100
smape, 106

∗ relevance metrics
f_meas, 17
precision, 68
recall, 77

∗ sensitivity metrics
npv, 61
ppv, 65
sens, 102
spec, 108

accuracy, 3, 9, 16, 19, 37, 39, 49, 63, 67, 71,
80, 105, 111

accuracy(), 38, 50, 57, 112
accuracy_vec (accuracy), 3
autoplot.conf_mat (conf_mat), 12

115

116 INDEX

autoplot.gain_df (gain_curve), 23
autoplot.lift_df (lift_curve), 39
autoplot.pr_df (pr_curve), 75
autoplot.roc_df (roc_curve), 91
average_precision, 4, 22, 58, 73, 84, 87, 90
average_precision_vec

(average_precision), 4

bal_accuracy, 4, 7, 16, 19, 37, 39, 49, 63, 67,
71, 80, 105, 111

bal_accuracy_vec (bal_accuracy), 7
base::table(), 12

ccc, 10, 30, 32, 34, 43, 45, 47, 59, 81, 95, 97,
99, 101, 107

ccc(), 11
ccc_vec (ccc), 10
conf_mat, 12
conf_mat(), 13, 112, 113

detection_prevalence, 4, 9, 14, 19, 37, 39,
49, 63, 67, 71, 80, 105, 111

detection_prevalence_vec
(detection_prevalence), 14

developer-helpers (get_weights), 26
dots_to_estimate (get_weights), 26
dots_to_estimate(), 54–56

f_meas, 4, 9, 16, 17, 37, 39, 49, 63, 67, 71, 80,
105, 111

f_meas(), 17, 68, 77, 112
f_meas_vec (f_meas), 17
finalize_estimator (get_weights), 26
finalize_estimator(), 55, 56
finalize_estimator_internal

(get_weights), 26

gain_capture, 6, 20, 58, 73, 84, 87, 90
gain_capture(), 23, 25
gain_capture_vec (gain_capture), 20
gain_curve, 23, 41, 76, 93
gain_curve(), 22, 39
get_weights, 26
ggplot2::autoplot(), 13, 24, 40, 76, 92

hpc_cv, 28
huber_loss, 11, 29, 32, 34, 43, 45, 47, 59, 81,

95, 97, 99, 101, 107
huber_loss(), 31

huber_loss_pseudo, 11, 30, 31, 34, 43, 45,
47, 59, 81, 95, 97, 99, 101, 107

huber_loss_pseudo_vec
(huber_loss_pseudo), 31

huber_loss_vec (huber_loss), 29

iic, 11, 30, 32, 33, 43, 45, 47, 59, 81, 95, 97,
99, 101, 107

iic_vec (iic), 33

j_index, 4, 9, 16, 19, 35, 39, 49, 63, 67, 71,
80, 105, 111

j_index_vec (j_index), 35

kap, 4, 9, 16, 19, 37, 38, 49, 63, 67, 71, 80,
105, 111

kap(), 50
kap_vec (kap), 38

lift_curve, 25, 39, 76, 93
lift_curve(), 23

mae, 11, 30, 32, 34, 42, 45, 47, 59, 81, 95, 97,
99, 101, 107

mae(), 50
mae_vec (mae), 42
mape, 11, 30, 32, 34, 43, 44, 47, 59, 81, 95, 97,

99, 101, 107
mape_vec (mape), 44
mase, 11, 30, 32, 34, 43, 45, 45, 59, 81, 95, 97,

99, 101, 107
mase_vec (mase), 45
mcc, 4, 9, 16, 19, 37, 39, 48, 63, 67, 71, 80,

105, 111
mcc_vec (mcc), 48
metric_set, 51
metric_set(), 50, 60
metric_summarizer, 53
metric_summarizer(), 26, 28, 55, 56
metric_vec_template, 55
metric_vec_template(), 26, 28, 53, 55
metrics, 49
metrics(), 52
mn_log_loss, 6, 22, 56, 73, 84, 87, 90
mn_log_loss(), 50
mn_log_loss_vec (mn_log_loss), 56
mpe, 11, 30, 32, 34, 43, 45, 47, 58, 81, 95, 97,

99, 101, 107
mpe_vec (mpe), 58

INDEX 117

new-metric, 60
new_class_metric (new-metric), 60
new_numeric_metric (new-metric), 60
new_prob_metric (new-metric), 60
npv, 4, 9, 16, 19, 37, 39, 49, 61, 67, 71, 80,

105, 111
npv(), 61, 62, 65, 66, 102, 108
npv_vec (npv), 61

pathology, 64
ppv, 4, 9, 16, 19, 37, 39, 49, 63, 65, 71, 80,

105, 111
ppv(), 61, 62, 65, 66, 102, 108
ppv_vec (ppv), 65
pr_auc, 6, 22, 58, 72, 84, 87, 90
pr_auc(), 6, 75, 76
pr_auc_vec (pr_auc), 72
pr_curve, 25, 41, 75, 93
pr_curve(), 4–6, 72, 73
precision, 4, 9, 16, 19, 37, 39, 49, 63, 67, 68,

80, 105, 111
precision(), 17, 68, 77
precision_vec (precision), 68
pROC::roc(), 50, 83, 87, 89, 92

quasiquotation, 3, 5, 8, 10, 12, 15, 17, 21,
24, 29, 31, 33, 35, 38, 40, 43, 44, 46,
48, 50, 57, 59, 62, 66, 69, 72, 75, 78,
81, 83, 86, 89, 92, 94, 96, 98, 101,
103, 106, 109

recall, 4, 9, 16, 19, 37, 39, 49, 63, 67, 71, 77,
105, 111

recall(), 17, 68, 77, 112
recall_vec (recall), 77
rmse, 11, 30, 32, 34, 43, 45, 47, 59, 80, 95, 97,

99, 101, 107
rmse(), 11, 29, 31, 50
rmse_vec (rmse), 80
roc_auc, 6, 22, 58, 73, 82, 87, 90
roc_auc(), 50, 91, 93
roc_auc_vec (roc_auc), 82
roc_aunp, 6, 22, 58, 73, 84, 86, 90
roc_aunp(), 90
roc_aunp_vec (roc_aunp), 86
roc_aunu, 6, 22, 58, 73, 84, 87, 89
roc_aunu(), 87
roc_aunu_vec (roc_aunu), 89
roc_curve, 25, 41, 76, 91

roc_curve(), 82, 84
rpd, 11, 30, 32, 34, 43, 45, 47, 59, 81, 94, 97,

99, 101, 107
rpd(), 94, 96, 97
rpd_vec (rpd), 94
rpiq, 11, 30, 32, 34, 43, 45, 47, 59, 81, 95, 96,

99, 101, 107
rpiq(), 94–96
rpiq_vec (rpiq), 96
rsq, 11, 30, 32, 34, 43, 45, 47, 59, 81, 95, 97,

98, 101, 107
rsq(), 11, 50, 99–101
rsq_trad, 11, 30, 32, 34, 43, 45, 47, 59, 81,

95, 97, 99, 100, 107
rsq_trad(), 98, 99, 101
rsq_trad_vec (rsq_trad), 100
rsq_vec (rsq), 98

sens, 4, 9, 16, 19, 37, 39, 49, 63, 67, 71, 80,
102, 111

sens(), 8, 35, 61, 65, 102, 108, 112
sens_vec (sens), 102
sensitivity (sens), 102
sensitivity_vec (sens), 102
smape, 11, 30, 32, 34, 43, 45, 47, 59, 81, 95,

97, 99, 101, 106
smape_vec (smape), 106
solubility_test, 107
spec, 4, 9, 16, 19, 37, 39, 49, 63, 67, 71, 80,

105, 108
spec(), 8, 35, 61, 65, 102, 108
spec_vec (spec), 108
specificity (spec), 108
specificity_vec (spec), 108
summary.conf_mat, 112
summary.conf_mat(), 13

tidy.conf_mat (conf_mat), 12
two_class_example, 113

validate_estimator (get_weights), 26

	accuracy
	average_precision
	bal_accuracy
	ccc
	conf_mat
	detection_prevalence
	f_meas
	gain_capture
	gain_curve
	get_weights
	hpc_cv
	huber_loss
	huber_loss_pseudo
	iic
	j_index
	kap
	lift_curve
	mae
	mape
	mase
	mcc
	metrics
	metric_set
	metric_summarizer
	metric_vec_template
	mn_log_loss
	mpe
	new-metric
	npv
	pathology
	ppv
	precision
	pr_auc
	pr_curve
	recall
	rmse
	roc_auc
	roc_aunp
	roc_aunu
	roc_curve
	rpd
	rpiq
	rsq
	rsq_trad
	sens
	smape
	solubility_test
	spec
	summary.conf_mat
	two_class_example
	Index

