Package ‘xfun’

July 24, 2020
Type Package

Title Miscellaneous Functions by 'Yihui Xie'

Version 0.16

Description Miscellaneous functions commonly used in other packages maintained by "Yihui Xie'.
Imports stats, tools

Suggests testit, parallel, codetools, rstudioapi, tinytex, mime,
markdown, knitr, htmltools, remotes, rmarkdown

License MIT + file LICENSE
URL https://github.com/yihui/xfun

BugReports https://github.com/yihui/xfun/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation yes

Author Yihui Xie [aut, cre, cph] (<https://orcid.org/0000-0003-0645-5666>),
‘Wush Wu [ctb],
Daijiang Li [ctb],
Xianying Tan [ctb],
Salim Briiggemann [ctb] (<https://orcid.org/0000-0002-5329-5987>)

Maintainer Yihui Xie <xie@yihui.name>
Repository CRAN
Date/Publication 2020-07-24 10:00:02 UTC

R topics documented:

base6d_encode e
basebd_Url

https://github.com/yihui/xfun
https://github.com/yihui/xfun/issues

2 attr
cache_rdS e 4
download_file e 6
embed file. L e 7
file_eXt e e 8
file_string 9
gsub_file L 10
install_dir e e e e e e e 11
install_github L 11
IN_dIr . . 12
ISFALSE e e e e 12
IS_ASCIL + v v v v e e e e e e 13
IS WINAOWS . . . o o o e e 13
native_encode L e e e e 14
normalize_path 14
numbers_to_wWords e 15
OPLIPNZ o e e 16
parse_only e e e e 16
pkg attach 17
prose_index e e e 18
protect_math e e e 19
TAW_SIIING o o e e e e 20
read_utf8 L s 20
TENAME_SEQ .« « « v« v v v e 21
rev_check L e 22
Rscript o o e 24
Rscript_call e 25
ISTUAIO_LYPE .« . o o o e e e e e e e e e e 25
same_path 26
session_INfO L e e 27
split_lines e e 28
StriCt LISt e 28
StringsASSIIINGS 29
TOJSOM . v v v vt e e e e e e e e e e 30
tICC . v o o e e e e e e e 31
try_silent oL 31
upload_ftp e 32

Index 33

attr Obtain an attribute of an object without partial matching

Description

An abbreviation of base: :attr(exact = TRUE).

base64_encode 3

Usage

attr(...)

Arguments

Passed to base: :attr() (without the exact argument).

Examples

z = structure(list(a = 1), foo = 2)
base::attr(z, "f") # 2
xfun::attr(z, "f") # NULL
xfun::attr(z, "foo") # 2

base64_encode Encode/decode data into/from base64 encoding.

Description

The function base64_encode() encodes a file or a raw vector into the base64 encoding. The
function base64_decode () decodes data from the base64 encoding.

Usage

base64_encode(x)

base64_decode(x, from = NA)

Arguments
X For base64_encode(), a raw vector. If not raw, it is assumed to be a file or a
connection to be read via readBin(). For base64_decode(), a string.
from If provided (and x is not provided), a connection or file to be read via readChar (),
and the result will be passed to the argument x.
Value

base64_encode () returns a character string. base64_decode () returns a raw vector.

Examples

xfun: :base64_encode(as.raw(1:10))

logo = xfun:::R_logo()

xfun: :base64_encode(logo)

xfun: :base64_decode ("AQIDBAUGBwgJCg==")

4 cache_rds

base64_uri Generate the Data URI for a file

Description

Encode the file in the base64 encoding, and add the media type. The data URI can be used to embed
data in HTML documents, e.g., in the src attribute of the tag.

Usage

base64_uri(x)

Arguments

X A file path.

Value

A string of the form data:<media type>;base64,<data>.

Examples

logo = xfun:::R_logo()
img = htmltools::img(src = xfun::base64_uri(logo), alt = "R logo")
if (interactive()) htmltools::browsable(img)

cache_rds Cache the value of an R expression to an RDS file

Description

Save the value of an expression to a cache file (of the RDS format). Next time the value is loaded
from the file if it exists.

Usage
cache_rds(
expr = { },
rerun = FALSE,
file = "cache.rds"”,
dir = "cache/",
hash = NULL,

clean = getOption("xfun.cache_rds.clean”, TRUE),

cache_rds 5

Arguments
expr An R expression.
rerun Whether to delete the RDS file, rerun the expression, and save the result again
(i.e., invalidate the cache if it exists).
file The base (see Details) cache filename under the directory specified by the dir

argument. If not specified and this function is called inside a code chunk of
a knitr document (e.g., an R Markdown document), the default is the current
chunk label plus the extension ‘. rds’.

dir The path of the RDS file is partially determined by paste@(dir,file). If not
specified and the knitr package is available, the default value of dir is the knitr
chunk option cache. path (so if you are compiling a knitr document, you do not
need to provide this dir argument explicitly), otherwise the default is ‘cache/’.
If you do not want to provide a dir but simply a valid path to the file argument,

nn

you may use dir ="".

hash A list object that contributes to the MDS5 hash of the cache filename (see De-
tails). It can also take a special character value "auto"”. Other types of objects
are ignored.

clean Whether to clean up the old cache files automatically when expr has changed.

Other arguments to be passed to saveRDS().

Details

Note that the file argument does not provide the full cache filename. The actual name of the
cache file is of the form ‘BASENAME_HASH.rds’, where ‘BASENAME’ is the base name provided via
the ‘file’ argument (e.g., if file = 'foo.rds', BASENAME would be ‘foo’), and ‘HASH’ is the MD5
hash (also called the ‘checksum’) calculated from the R code provided to the expr argument and
the value of the hash argument, which means when the code or the hash argument changes, the
‘HASH’ string may also change, and the old cache will be invalidated (if it exists). If you want to find
the cache file, look for ‘. rds’ files that contain 32 hexadecimal digits (consisting of 0-9 and a-z) at
the end of the filename.

The possible ways to invalidate the cache are: 1) change the code in expr argument; 2) delete the
cache file manually or automatically through the argument rerun = TRUE; and 3) change the value
of the hash argument. The first two ways should be obvious. For the third way, it makes it possible
to automatically invalidate the cache based on changes in certain R objects. For example, when
you run cache_rds({ x +y }), you may want to invalidate the cache to rerun { x +y } when the
value of x or y has been changed, and you can tell cache_rds() to do so by cache_rds({ x +y
},hash = 1ist(x,y)). The value of the argument hash is expected to be a list, but it can also take
a special value, "auto”, which means cache_rds(expr) will try to automatically figure out the
global variables in expr, return a list of their values, and use this list as the actual value of hash.
This behavior is most likely to be what you really want: if the code in expr uses an external global
variable, you may want to invalidate the cache if the value of the global variable has changed. Here
a “global variable” means a variable not created locally in expr, e.g., for cache_rds({ x <-1; x
+y }), x is a local variable, and y is (most likely to be) a global variable, so changes in y should
invalidate the cache. However, you know your own code the best. If you want to be completely sure
when to invalidate the cache, you can always provide a list of objects explicitly rather than relying
on hash = "auto”.

6 download_file

By default (the argument clean = TRUE), old cache files will be automatically cleaned up. Some-
times you may want to use clean = FALSE (set the R global option options(xfun.cache_rds.clean
= FALSE) if you want FALSE to be the default). For example, you may not have decided which ver-
sion of code to use, and you can keep the cache of both versions with clean = FALSE, so when you
switch between the two versions of code, it will still be fast to run the code.

Value

If the cache file does not exist, run the expression and save the result to the file, otherwise read the
cache file and return the value.

Note

Changes in the code in the expr argument do not necessarily always invalidate the cache, if the
changed code is parsed to the same expression as the previous version of the code. For example, if
you have run cache_rds({Sys.sleep(5);1+1}) before, running cache_rds({ Sys.sleep(5) ;
1+ 1 }) will use the cache, because the two expressions are essentially the same (they only differ in
white spaces). Usually you can add/delete white spaces or comments to your code in expr without
invalidating the cache. See the package vignette vignette('xfun',package = 'xfun') for more
examples.

When this function is called in a code chunk of a knitr document, you may not want to provide the
filename or directory of the cache file, because they have reasonable defaults.

Side-effects (such as plots or printed output) will not be cached. The cache only stores the last value
of the expression in expr.

Examples

f = tempfile() # the cache file
compute = function(...) {
res = xfun::cache_rds({
Sys.sleep(1)
1:10
}, file = f, dir = "", ...)
res
3
compute() # takes one second
compute() # returns 1:10 immediately
compute() # fast again
compute(rerun = TRUE) # one second to rerun
compute()
file.remove(f)

download_file Try various methods to download a file

embed._file 7

Description

Try all possible methods in download.file() (e.g., libcurl, curl, wget, and wininet) and see if
any method can succeed. The reason to enumerate all methods is that sometimes the default method
does not work, e.g., https://stat.ethz.ch/pipermail/r-devel/2016-June/@72852.html.

Usage
download_file(url, output = basename(url), ...)
Arguments
url The URL of the file.
output Path to the output file. If not provided, the base name of the URL will be used
(query parameters and hash in the URL will be removed).
Other arguments to be passed to download.file() (except method).
Value

The integer code @ for success, or an error if none of the methods work.

embed_file Embed a file, multiple files, or directory on an HTML page

Description

For a file, first encode it into base64 data (a character string). Then generate a hyperlink of the
form ‘Download filename’. The file can
be downloaded when the link is clicked in modern web browsers. For a directory, it will be com-
pressed as a zip archive first, and the zip file is passed to embed_file (). For multiple files, they are
also compressed to a zip file first.

Usage
embed_file(path, name = basename(path), text = paste("Download”, name), ...)
embed_dir(path, name = paste@(normalize_path(path), ".zip"), ...)
embed_files(path, name = with_ext(basename(path[11), ".zip"), ...)

Arguments
path Path to the file(s) or directory.
name The default filename to use when downloading the file. Note that for embed_dir (),

only the base name (of the zip filename) will be used.

text The text for the hyperlink.

For embed_file(), additional arguments to be passed to htmltools: :a() (e.g.,
class = 'foo'). For embed_dir() and embed_files(), arguments passed to
embed_file().

https://stat.ethz.ch/pipermail/r-devel/2016-June/072852.html

8 file_ext

Details

These functions can be called in R code chunks in R Markdown documents with HTML output
formats. You may embed an arbitrary file or directory in the HTML output file, so that readers of
the HTML page can download it from the browser. A common use case is to embed data files for
readers to download.

Value

An HTML tag ‘<a>’ with the appropriate attributes.

Note

Windows users may need to install Rtools to obtain the zip command to use embed_dir() and
embed_files().

These functions require R packages mime and htmltools. If you have installed the rmarkdown
package, these packages should be available, otherwise you need to install them separately.

Currently Internet Explorer does not support downloading embedded files (https://caniuse.
com/#feat=download). Chrome has a 2MB limit on the file size.

Examples

logo = xfun:::R_logo()

link = xfun::embed_file(logo, text = "Download R logo")
link

if (interactive()) htmltools::browsable(link)

file_ext Manipulate filename extensions

Description

Functions to obtain (file_ext()), remove (sans_ext()), and change (with_ext()) extensions in
filenames.

Usage
file_ext(x)
sans_ext(x)
with_ext(x, ext)

Arguments

X A character of file paths.

ext A vector of new extensions.

https://caniuse.com/#feat=download
https://caniuse.com/#feat=download

file_string 9

Details

file_ext() is a wrapper of tools::file_ext(). sans_ext() is a wrapper of tools: :file_path_sans_ext().

Value

A character vector of the same length as x.

Examples

library(xfun)

p = c("abc.doc”, "def123.tex", "path/to/foo.Rmd")
file_ext(p)

sans_ext(p)

with_ext(p, ".txt")

with_ext(p, c(".ppt”, ".sty”, ".Rnw"))
with_ext(p, "html")
file_string Read a text file and concatenate the lines by ’\n’

Description

The source code of this function should be self-explanatory.

Usage

file_string(file)

Arguments

file Path to a text file (should be encoded in UTE-8).

Value

A character string of text lines concatenated by '\n'.

Examples

xfun::file_string(system.file("DESCRIPTION", package = "xfun"))

10 gsub_file

gsub_file Search and replace strings in files

Description
These functions provide the "file" version of gsub(), i.e., they perform searching and replacement
in files via gsub ().

Usage

gsub_file(file, ..., rw_error = TRUE)

gsub_files(files, ...)

n o n

gsub_dir(..., dir = , recursive = TRUE, ext = NULL, mimetype = ".%")

gsub_ext(ext, ..., dir = ".", recursive = TRUE)
Arguments
file Path of a single file.

For gsub_file(), arguments passed to gsub(). For other functions, arguments
passed to gsub_file(). Note that the argument x of gsub() is the content of

the file.

rw_error Whether to signal an error if the file cannot be read or written. If FALSE, the file
will be ignored (with a warning).

files A vector of file paths.

dir Path to a directory (all files under this directory will be replaced).

recursive Whether to find files recursively under a directory.

ext A vector of filename extensions (without the leading periods).

mimetype A regular expression to filter files based on their MIME types, e.g., '“text/'

for plain text files. This requires the mime package.

Note

These functions perform in-place replacement, i.e., the files will be overwritten. Make sure you
backup your files in advance, or use version control!

Examples

library(xfun)

f = tempfile()

writeLines(c("hello”, "world"), f)
gsub_file(f, "world”, "woRld", fixed = TRUE)
readLines(f)

install dir 11

install_dir Install a source package from a directory

Description

Run R CMD build to build a tarball from a source directory, and run R CMD INSTALL to install it.

Usage

install_dir(src, build = TRUE, build_opts = NULL, install_opts = NULL)

Arguments
src The package source directory.
build Whether to build a tarball from the source directory. If FALSE, run R CMD INSTALL
on the directory directly (note that vignettes will not be automatically built).
build_opts The options for R CMD build.

install_opts The options for R CMD INSTALL.

Value

Invisible status from R CMD INSTALL.

install_github An alias of remotes::install_github()

Description

This alias is to make autocomplete faster via xfun: : install_github, because most remotes: :install_x
functions are never what I want. I only use install_github and it is inconvenient to autocomplete

it, e.g. install_git always comes before install_github, but I never use it. In RStudio, I only

need to type xfun::ig to get xfun::install_github.

Usage
install_github(...)

Arguments

Arguments to be passed to remotes: :install_github().

12 isFALSE

in_dir Evaluate an expression under a specified working directory

Description

Change the working directory, evaluate the expression, and restore the working directory.

Usage

in_dir(dir, expr)

Arguments

dir Path to a directory.

expr An R expression.

Examples

library(xfun)

in_dir(tempdir(), {
print(getwd())
list.files()

1))

isFALSE Test if an object is identical to FALSE

Description

A simple abbreviation of identical(x,FALSE).

Usage
isFALSE(x)

Arguments

X An R object.

Examples

library(xfun)

isFALSE(TRUE) # false
isFALSE(FALSE) # true
isFALSE(c(FALSE, FALSE)) # false

is_ascii 13

is_ascii Check if a character vector consists of entirely ASCII characters

Description

Converts the encoding of a character vector to 'ascii', and check if the result is NA.

Usage

is_ascii(x)

Arguments

X A character vector.

Value

A logical vector indicating whether each element of the character vector is ASCIIL.

Examples

library(xfun)
is_ascii(letters) # yes
is_ascii(intToUtf8(8212)) # no

is_windows Test for types of operating systems

Description

Functions based on .Platform$0S. type and Sys.info() to test if the current operating system is
Windows, macOS, Unix, or Linux.

Usage
is_windows()
is_unix()
is_macos()

is_linux()

14 normalize_path

Examples

library(xfun)

only one of the following statements should be true
is_windows()

is_unix() && is_macos()

is_linux()

native_encode Try to use the system native encoding to represent a character vector

Description
Apply enc2native() to the character vector, and check if enc2utf8() can convert it back without
a loss. If it does, return enc2native(x), otherwise return the original vector with a warning.
Usage

native_encode(x, windows_only = is_windows())

Arguments

X A character vector.

windows_only Whether to make the attempt on Windows only. On Unix, characters are typ-
ically encoded in the native encoding (UTF-8), so there is no need to do the

conversion.
Examples
library(xfun)
s = intToUtf8(c(20320, 22909))
Encoding(s)

s2 = native_encode(s)
Encoding(s2)

normalize_path Normalize paths

Description

A wrapper function of normalizePath() with different defaults.

Usage

normalize_path(path, winslash = "/", must_work = FALSE)

numbers_to_words 15

Arguments

path, winslash, must_work
Arguments passed to normalizePath().

Examples

library(xfun)
normalize_path("~")

numbers_to_words Convert numbers to English words

Description

This can be helpful when writing reports with knitr/rmarkdown if we want to print numbers as
English words in the output. The function n2w() is an alias of numbers_to_words().

Usage

numbers_to_words(x, cap = FALSE, hyphen = TRUE, and = FALSE)

n2w(x, cap = FALSE, hyphen = TRUE, and = FALSE)

Arguments
X A numeric vector. Values should be integers. The absolute values should be less
than 1e15.
cap Whether to capitalize the first letter of the word. This can be useful when the
word is at the beginning of a sentence. Default is FALSE.
hyphen Whether to insert hyphen (-) when the number is between 21 and 99 (except 30,
40, etc.).
and Whether to insert and between hundreds and tens, e.g., write 110 as “one hun-
dred and ten” if TRUE instead of “one hundred ten”.
Value

A character vector.

Author(s)

Daijiang Li

16

Examples

library(xfun)

n2w(@, cap = TRUE)
n2w(0:121, and = TRUE)
n2w(1e+06)

n2w(le+11 + 12345678)
n2w(-987654321)
n2w(le+15 - 1)

parse_only

optipng Run OptiPNG on all PNG files under a directory

Description

Calls the command optipng to optimize all PNG files under a directory.

Usage

optipng(dir = ".")
Arguments

dir Path to a directory.
References

OptiPNG: http://optipng.sourceforge.net.

parse_only Parse R code and do not keep the source

Description

An abbreviation of parse(keep.source = FALSE).

Usage

parse_only(code)

Arguments

code A character vector of the R source code.

Value

R expressions.

http://optipng.sourceforge.net

pkg_attach 17

Examples

library(xfun)

parse_only("1+1")

parse_only(c("y~x", "1:5 # a comment"))
parse_only(character(0))

pkg_attach Attach or load packages, and automatically install missing packages
if requested

Description

pkg_attach() is a vectorized version of library() over the package argument to attach multiple
packages in a single function call. pkg_load() is a vectorized version of requireNamespace() to
load packages (without attaching them). The functions pkg_attach2() and pkg_load2() are wrap-
pers of pkg_attach(install = TRUE) and pkg_load(install = TRUE), respectively. loadable()
is an abbreviation of requireNamespace(quietly = TRUE).

Usage
pkg_attach(

install

= FALSE,
message = getOption("xfun.pkg_attach.message"”, TRUE)
)
pkg_load(..., error = TRUE, install = FALSE)

loadable(pkg, strict = TRUE, new_session = FALSE)
pkg_attach2(...)

pkg_load2(...)

Arguments

Package names (character vectors, and must always be quoted).

install Whether to automatically install packages that are not available using install.packages().
You are recommended to set a CRAN mirror in the global option repos via
options() if you want to automatically install packages.

message Whether to show the package startup messages (if any startup messages are
provided in a package).

error Whether to signal an error when certain packages cannot be loaded.

pkg A single package name.

18 prose_index

strict If TRUE, use requireNamespace() to test if a package is loadable; otherwise
only check if the package is in . packages(TRUE) (this does not really load the
package, so it is less rigorous but on the other hand, it can keep the current R
session clean).

new_session Whether to test if a package is loadable in a new R session. Note that new_session
= TRUE implies strict = TRUE.
Details

These are convenience functions that aim to solve these common problems: (1) We often need to
attach or load multiple packages, and it is tedious to type several 1ibrary() calls; (2) We are likely
to want to install the packages when attaching/loading them but they have not been installed.

Value
pkg_attach() returns NULL invisibly. pkg_load() returns a logical vector, indicating whether the

packages can be loaded.

Examples

library(xfun)
pkg_attach("stats"”, "graphics")
pkg_attach2('servr') # automatically install servr if it is not installed

(pkg_load("stats"”, "graphics"))

prose_index Find the indices of lines in Markdown that are prose (not code blocks)

Description

NN

Filter out the indices of lines between code block fences such as
backticks).

(could be three or four or more

Usage

prose_index(x, warn = TRUE)

Arguments

X A character vector of text in Markdown.

warn Whether to emit a warning when code fences are not balanced.
Value

An integer vector of indices of lines that are prose in Markdown.

protect_math 19

Note

If the code fences are not balanced (e.g., a starting fence without an ending fence), this function
will treat all lines as prose.

Examples

library(xfun)
prose_index(c(llall’ II\\\II’ Ilbll, II\\\H’ Ilcll))
prose_index(c(”a”, "NNNNT, MNSSpR mpaqm CmSsan waaaamnenyy

’

protect_math Protect math expressions in pairs of backticks in Markdown

Description

For Markdown renderers that do not support LaTeX math, we need to protect math expressions as
verbatim code (in a pair of backticks), because some characters in the math expressions may be
interpreted as Markdown syntax (e.g., a pair of underscores may make text italic). This function
detects math expressions in Markdown (by heuristics), and wrap them in backticks.

Usage

protect_math(x)

Arguments

X A character vector of text in Markdown.

Details

Expressions in pairs of dollar signs or double dollar signs are treated as math, if there are no spaces
after the starting dollar sign, or before the ending dollar sign. There should be spaces before the
starting dollar sign, unless the math expression starts from the very beginning of a line. For a
pair of single dollar signs, the ending dollar sign should not be followed by a number. With these
assumptions, there should not be too many false positives when detecing math expressions.

Besides, LaTeX environments (\begin{*} and \end{*}) are also protected in backticks.

Value

A character vector with math expressions in backticks.

Note

If you are using Pandoc or the rmarkdown package, there is no need to use this function, because
Pandoc’s Markdown can recognize math expressions.

20 read_utf8

Examples

library(xfun)
protect_math(c(”hi $a+b$”, "hello $$\\alpha$$”, "no math here: $x is $10 dollars”))
protect_math(c("hi $$"”, "\\begin{equation}", "x + y = z", "\\end{equation}"))

raw_string Print a character vector in its raw form

Description

The function raw_string() assigns the class xfun_raw_string to the character vector, and the
corresponding printing function print.xfun_raw_string() uses cat(x,sep = "\n") to write the
character vector to the console, which will suppress the leading indices (such as [1]) and double
quotes, and it may be easier to read the characters in the raw form (especially when there are escape
sequences).

Usage

raw_string(x)

S3 method for class 'xfun_raw_string'

print(x, ...)
Arguments
X For raw_string(), a character vector. For the print method, the raw_string()
object.
Other arguments (currently ignored).
Examples
library(xfun)

raw_string(head(LETTERS))
raw_string(c("a \"b\"", "hello\tworld!"))

read_utf8 Read / write files encoded in UTF-8

Description

Read or write files, assuming they are encoded in UTF-8. read_utf8() is roughly readLines(encoding
= 'UTF-8') (a warning will be issued if non-UTF8 lines are found), and write_utf8() calls
writeLines(enc2utf8(text),useBytes = TRUE).

rename_seq 21

Usage
read_utf8(con, error = FALSE)

write_utf8(text, con, ...)
Arguments
con A connection or a file path.
error Whether to signal an error when non-UTF8 characters are detected (if FALSE,

only a warning message is issued).
text A character vector (will be converted to UTF-8 via enc2utf8()).

Other arguments passed to writeLines() (except useBytes, which is TRUE in
write_utf8()).

rename_seq Rename files with a sequential numeric prefix

Description

Rename a series of files and add an incremental numeric prefix to the filenames. For example, files
‘a.txt’, ‘b.txt’, and ‘c.txt’ can be renamed to ‘1-a.txt’, ‘2-b.txt’, and ‘3-c.txt’.

Usage

rename_seq(
pattern = "*[0-9]+-.+[.]Rmd$",

format = "auto”,
replace = TRUE,
start = 1,
dry_run = TRUE
)
Arguments
pattern A regular expression for list.files() to obtain the files to be renamed. For
example, to rename . jpeg files, use pattern="[.]jpeg$".
format The format for the numeric prefix. This is passed to sprintf(). The default
format is "%@Nd" where N = floor(log1@(n)) + 1 and n is the number of files,
which means the prefix may be padded with zeros. For example, if there are 150
files to be renamed, the format will be "%@3d" and the prefixes will be 001, 002,
...y 150.
replace Whether to remove existing numeric prefixes in filenames.
start The starting number for the prefix (it can start from 0).
dry_run Whether to not really rename files. To be safe, the default is TRUE. If you have

looked at the new filenames and are sure the new names are what you want, you
may rerun rename_seq() with dry_run = FALSE) to actually rename files.

22 rev_check

Value

A named character vector. The names are original filenames, and the vector itself is the new file-
names.

Examples

xfun: :rename_seq()
xfun::rename_seq("[.](jpeg|png)$"”, format = "%04d")

rev_check Run R CMD check on the reverse dependencies of a package

Description

Install the source package, figure out the reverse dependencies on CRAN, download all of their
source packages, and run R CMD check on them in parallel.

Usage

rev_check(
pkg,
which = "all”,
recheck = NULL,
ignore = NULL,
update = TRUE,
timeout = getOption("xfun.rev_check.timeout”, 15 * 60),
src = file.path(src_dir, pkg),
src_dir = getOption("xfun.rev_check.src_dir")

)

compare_Rcheck(status_only = FALSE, output = "@@check_diffs.md")

Arguments
pkg The package name.
which Which types of reverse dependencies to check. See tools: : package_dependencies()
for possible values. The special value 'hard' means the hard dependencies, i.e.,
c('Depends', 'Imports', 'LinkingTo"').
recheck A vector of package names to be (re)checked. If not provided and there are any

‘x.Rcheck’ directories left by certain packages (this often means these packages
failed the last time), recheck will be these packages; if there are no ‘*.Rcheck’
directories but a text file ‘recheck’ exists, recheck will be the character vector
read from this file. This provides a way for you to manually specify the packages
to be checked. If there are no packages to be rechecked, all reverse dependencies
will be checked.

rev_check 23

ignore A vector of package names to be ignored in R CMD check. If this argument is
missing and a file ‘0@ignore’ exists, the file will be read as a character vector
and passed to this argument.

update Whether to update all packages before the check.

timeout Timeout in seconds for R CMD check.

src The path of the source package directory.

src_dir The parent directory of the source package directory. This can be set in a global

option if all your source packages are under a common parent directory.

status_only If TRUE, only compare the final statuses of the checks (the last line of ‘@@check. log’),
and delete ‘x.Rcheck’ and ‘*.Rcheck?’ if the statuses are identical, otherwise
write out the full diffs of the logs. If FALSE, compare the full logs under ‘*.Rcheck’
and ‘x.Rcheck?2’.

output The output Markdown file to which the diffs in check logs will be written. If the
markdown package is available, the Markdown file will be converted to HTML,
so you can see the diffs more clearly.

Details

Everything occurs under the current working directory, and you are recommended to call this func-
tion under a designated directory, especially when the number of reverse dependencies is large,
because all source packages will be downloaded to this directory, and all ‘*.Rcheck’ directories
will be generated under this directory, too.

If a source tarball of the expected version has been downloaded before (under the ‘tarball’ direc-
tory), it will not be downloaded again (to save time and bandwidth).

After a package has been checked, the associated ‘x.Rcheck’ directory will be deleted if the check
was successful (no warnings or errors or notes), which means if you see a ‘“*x.Rcheck’ directory, it
means the check failed, and you need to take a look at the log files under that directory.

The time to finish the check is recorded for each package. As the check goes on, the total remaining
time will be roughly estimated via n * mean(times), where n is the number of packages remaining
to be checked, and times is a vector of elapsed time of packages that have been checked.

If a check on a reverse dependency failed, its ‘*.Rcheck’ directory will be renamed to ‘*.Rcheck?2’,
and another check will be run against the CRAN version of the package. If the logs of the two checks
are the same, it means no new problems were introduced in the package, and you can probably
ignore this particular reverse dependency. The function compare_Rcheck () can be used to create a
summary of all the differences in the check logs under ‘*.Rcheck’ and ‘*.Rcheck?2’. This will be
done automatically if options(xfun.rev_check.summary = TRUE) has been set.

A recommended workflow is to use a special directory to run rev_check(), set the global options
xfun.rev_check.src_dir and repos in the R startup (see ?Startup) profile file .Rprofile under
this directory, and (optionally) set R_LIBS_USER in ‘.Renviron’ to use a special library path (so that
your usual library will not be cluttered). Then run xfun: : rev_check(pkg) once, investigate and fix
the problems or (if you believe it was not your fault) ignore broken packages in the file ‘0@ignore’,
and run xfun: :rev_check(pkg) again to recheck the failed packages. Repeat this process until all
‘x.Rcheck’ directories are gone.

As an example, I set options(repos = c(CRAN = "'https://cran.rstudio.com'),xfun.rev_check.src_dir
= '~/Dropbox/repo') in ‘.Rprofile’, and R_LIBS_USER=~/R-tmp in ‘.Renviron’. Then I can

24 Rscript

run, for example, xfun: : rev_check('knitr") repeatedly under a special directory ‘~/Downloads/revcheck’.
Reverse dependencies and their dependencies will be installed to ‘~/R-tmp’, and knitr will be in-
stalled from ‘~/Dropbox/repo/kintr’.

See Also

devtools: :revdep_check() is more sophisticated, but currently has a few major issues that affect
me: (1) It always deletes the ‘*.Rcheck’ directories (https://github.com/hadley/devtools/
issues/1395), which makes it difficult to know more information about the failures; (2) It does
not fully install the source package before checking its reverse dependencies (https://github.
com/hadley/devtools/pull/1397); (3) I feel it is fairly difficult to iterate the check (ignore the
successful packages and only check the failed packages); by comparison, xfun::rev_check()
only requires you to run a short command repeatedly (failed packages are indicated by the existing
‘x.Rcheck’ directories, and automatically checked again the next time).

xfun: :rev_check() borrowed a very nice feature from devtools: :revdep_check(): estimating
and displaying the remaining time. This is particularly useful for packages with huge numbers of
reverse dependencies.

Rscript Run the commands Rscript and R CMD

Description

Wrapper functions to run the commands Rscript and R CMD.

Usage
Rscript(args, ...)
Rcmd(args, ...)
Arguments
args A character vector of command-line arguments.
Other arguments to be passed to system2().
Value

A value returned by system2().

Examples

library(xfun)
Rscript(c(”-e", "1+1"))
Remd(c("build”, "--help"))

https://github.com/hadley/devtools/issues/1395
https://github.com/hadley/devtools/issues/1395
https://github.com/hadley/devtools/pull/1397
https://github.com/hadley/devtools/pull/1397

Rscript_call 25

Rscript_call Call a function in a new R session via Rscript()

Description

Save the argument values of a function in a temporary RDS file, open a new R session viaRscript(),
read the argument values, call the function, and read the returned value back to the current R session.

Usage

Rscript_call(fun, args = list())

Arguments
fun A function, or a character string that can be parsed and evaluated to a function.
args A list of argument values.

Value

The returned value of the function in the new R session.

Examples

factorial(10)
should return the same value
xfun::Rscript_call("factorial”, list(10))

the first argument can be either a character string or a function
xfun::Rscript_call(factorial, 1list(10))

rstudio_type Type a character vector into the RStudio source editor

Description

Use the rstudioapi package to insert characters one by one into the RStudio source editor, as if they
were typed by a human.

Usage

rstudio_type(x, pause = function() 0.1, mistake = @, save = 0)

26 same_path

Arguments
X A character vector.
pause A function to return a number in seconds to pause after typing each character.
mistake The probability of making random mistakes when typing the next character. A
random mistake is a random string typed into the editor and deleted immediately.
save The probability of saving the document after typing each character. Note that If
a document is not opened from a file, it will never be saved.
Examples
library(xfun)

if (loadable("rstudioapi”) && rstudioapi::isAvailable()) {
rstudio_type("Hello, RStudio! xfun::rstudio_type() looks pretty cool!”,
pause = function() runif(1, @, 0.5), mistake = 0.1)

same_path Test if two paths are the same after they are normalized

Description

Compare two paths after normalizing them with the same separator (/).

Usage
same_path(p1, p2, ...)
Arguments
pl, p2 Two vectors of paths.
Arguments to be passed to normalize_path().
Examples
library(xfun)

same_path("~/foo", file.path(Sys.getenv("HOME"), "foo0"))

session_info 27

session_info An alternative to sessionlnfo() to print session information

Description

This function tweaks the output of sessionInfo(): (1) It adds the RStudio version information
if running in the RStudio IDE; (2) It removes the information about matrix products, BLAS, and
LAPACK; (3) It removes the names of base R packages; (4) It prints out package versions in a
single group, and does not differentiate between loaded and attached packages.

Usage

session_info(packages = NULL, dependencies = TRUE)

Arguments

packages A character vector of package names, of which the versions will be printed. If
not specified, it means all loaded and attached packages in the current R session.

dependencies Whether to print out the versions of the recursive dependencies of packages.

Details

It also allows you to only print out the versions of specified packages (via the packages argument)
and optionally their recursive dependencies. For these specified packages (if provided), if a function
xfun_session_info() exists in a package, it will be called and expected to return a character
vector to be appended to the output of session_info(). This provides a mechanism for other
packages to inject more information into the session_info output. For example, rmarkdown (>=
1.20.2) has a function xfun_session_info() that returns the version of Pandoc, which can be very
useful information for diagnostics.

Value

A character vector of the session information marked as raw_string().

Examples

xfun::session_info()
if (loadable("MASS")) xfun::session_info("MASS")

28 strict_list

split_lines Split a character vector by line breaks

Description

Call unlist(strsplit(x, '\n")) on the character vector x and make sure it works in a few edge
cases: split_lines('') returns '' instead of character(@) (which is the returned value of
strsplit('','\n")); split_lines('a\n') returns c('a','") instead of c('a') (which is the
returned value of strsplit('a\n','\n").

Usage

split_lines(x)

Arguments

X A character vector.

Value

All elements of the character vector are split by '\n' into lines.

Examples

xfun::split_lines(c("a"”, "b\nc"))

strict_list Strict lists

Description

A strict list is essentially a normal 1ist () but it does not allow partial matching with $.
Usage

strict_list(...)

as_strict_list(x)

S3 method for class 'xfun_strict_list'
x$name

S3 method for class 'xfun_strict_list'
print(x, ...)

stringsAsStrings 29

Arguments
Objects (list elements), possibly named. Ignored in the print () method.
X For as_strict_list(), the object to be coerced to a strict list.
For print(), a strict list.
name The name (a character string) of the list element.
Details

To me, partial matching is often more annoying and surprising than convenient. It can lead to bugs
that are very hard to discover, and I have been bitten by it many times. When I write x$name, I
always mean precisely name. You should use a modern code editor to autocomplete the name if it is
too long to type, instead of using partial names.

Value

Both strict_list() and as_strict_list() return a list with the class xfun_strict_list.
Whereas as_strict_list() attempts to coerce its argument x to a list if necessary, strict_list()
just wraps its argument . . . in a list, i.e., it will add another list level regardless if . . . already is of
type list.

Examples

library(xfun)

(z = strict_list(aaa = "I am aaa", b = 1:5))
z%$a # NULL!

z%aaa # I am aaa

z$b

z$c = "create a new element”

z2 = unclass(z) # a normal list
z2%$a # partial matching

z3 = as_strict_list(z2) # a strict list again
z3%a # NULL again!

stringsAsStrings Set the global option options(stringsAsFactors = FALSE) inside a
parent function and restore the option after the parent function exits

Description

This is a shorthand of opts = options(stringsAsFactors = FALSE); on.exit(options(opts),add
=TRUE); strings_please() is an alias of stringsAsStrings().

Usage

stringsAsStrings()

strings_please()

30 tojson

Examples

f = function() {

xfun::strings_please()

data.frame(x = letters[1:4], y = factor(letters[1:4]))
3
str(f()) # the first column should be character

tojson A simple JSON serializer

Description

A JSON serializer that only works on a limited types of R data (NULL, lists, logical scalars, charac-
ter/numeric vectors). A character string of the class JS_EVAL is treated as raw JavaScript, so will
not be quoted. The function json_vector() converts an atomic R vector to JSON.

Usage

tojson(x)

json_vector(x, to_array = FALSE, quote = TRUE)

Arguments
X An R object.
to_array Whether to convert a vector to a JSON array (use []).
quote Whether to double quote the elements.

Value

A character string.

See Also
The jsonlite package provides a full JSON serializer.

Examples

library(xfun)

tojson(NULL)

tojson(1:10)

tojson(TRUE)

tojson(FALSE)

cat(tojson(list(a = 1, b = list(c = 1:3, d = "abc"))))
cat(tojson(list(c("a", "b"), 1:5, TRUE)))

the class JS_EVAL is originally from htmlwidgets::JS()
JS = function(x) structure(x, class = "JS_EVAL")
cat(tojson(list(a = 1:5, b = JS("function() {return true;}"))))

tree 31

tree Turn the output of str() into a tree diagram

Description

The super useful function str() uses .. to indicate the level of sub-elements of an object, which
may be difficult to read. This function uses vertical pipes to connect all sub-elements on the same
level, so it is clearer which elements belong to the same parent element in an object with a nested
structure (such as a nested list).

Usage
tree(...)
Arguments
Arguments to be passed to str() (note that the comp.str is hardcoded inside
this function, and it is the only argument that you cannot customize).
Value

A character string as a raw_string().

Examples

fit = 1sfit(1:9, 1:9)
str(fit)
xfun::tree(fit)

fit = 1lm(dist ~ speed, data = cars)
str(fit)
xfun::tree(fit)

some trivial examples
xfun::tree(1:10)
xfun::tree(iris)

try_silent Try to evaluate an expression silently

Description

An abbreviation of try(silent = TRUE).

Usage

try_silent(expr)

32 upload_ftp

Arguments

expr An R expression.

Examples

library(xfun)
z = try_silent(stop("Wrong!"))
inherits(z, "try-error”)

upload_ftp Upload to an FTP server via curl

Description

Run the command curl -T file server to upload a file to an FTP server. These functions require
the system package (not the R package) curl to be installed (which should be available on macOS
by default). The function upload_win_builder() uses upload_ftp() to upload packages to the
win-builder server.

Usage
upload_ftp(file, server, dir = "")

upload_win_builder(

file,
version = c("R-devel”, "R-release”, "R-oldrelease"”),
server = "ftp://win-builder.r-project.org/"
)
Arguments
file Path to a local file.
server The address of the FTP server.
dir The remote directory to which the file should be uploaded.
version The R version(s) on win-builder.
Details

These functions were written mainly to save package developers the trouble of going to the win-

builder web page and uploading packages there manually. You may also consider using devtools: : check_win_x,
which currently only allows you to upload a package to one folder on win-builder each time, and

xfun: :upload_win_builder () uploads to all three folders, which is more likely to be what you

need.

Value

Status code returned from system?2.

Index

.packages, 18

$.xfun_strict_list (strict_list), 28

as_strict_list (strict_list), 28

attr, 2,2, 3

base64_decode (base64_encode), 3

base64_encode, 3
base64_uri, 4

cache_rds, 4

compare_Rcheck (rev_check), 22

download.file, 7
download_file, 6

embed_dir (embed_file), 7
embed_file, 7

embed_files (embed_file), 7
enc2utfs§, 2/
expression, 16

file_ext, 8,9
file_path_sans_ext, 9
file_string, 9

gsub, 10

gsub_dir (gsub_file), 10
gsub_ext (gsub_file), 10
gsub_file, 10

gsub_files (gsub_file), 10

in_dir, 12
install.packages, 17
install_dir, 11
install_github, /17, 11
is_ascii, 13

is_linux (is_windows), 13
is_macos (is_windows), 13
is_unix (is_windows), 13
is_windows, 13

33

isFALSE, 12
json_vector (tojson), 30

library, 17

list, 28

list.files, 21

loadable (pkg_attach), 17

n2w (numbers_to_words), 15
native_encode, 14
normalize_path, 14, 26
normalizePath, /5
numbers_to_words, 15

options, 17,23,29
optipng, 16

package_dependencies, 22

parse, 6

parse_only, 16

pkg_attach, 17

pkg_attach2 (pkg_attach), 17

pkg_load (pkg_attach), 17

pkg_load?2 (pkg_attach), 17
print.xfun_raw_string (raw_string), 20
print.xfun_strict_list (strict_list), 28
prose_index, 18

protect_math, 19

raw_string, 20, 27, 31
Rcmd (Rscript), 24
read_utfs8, 20
rename_seq, 21
requireNamespace, 17, 18
rev_check, 22
Rscript, 24, 25
Rscript_call, 25
rstudio_type, 25

same_path, 26

34

sans_ext (file_ext), 8
saveRDS, 5
session_info, 27
sessionInfo, 27
split_lines, 28
sprintf, 21
Startup, 23

str, 31
strict_list, 28
strings_please (stringsAsStrings), 29
stringsAsStrings, 29
system2, 24, 32

tojson, 30
tree, 31
try_silent, 31

upload_ftp, 32
upload_win_builder (upload_ftp), 32

with_ext (file_ext), 8
write_utf8 (read_utf8), 20
writelLines, 2/

INDEX

	attr
	base64_encode
	base64_uri
	cache_rds
	download_file
	embed_file
	file_ext
	file_string
	gsub_file
	install_dir
	install_github
	in_dir
	isFALSE
	is_ascii
	is_windows
	native_encode
	normalize_path
	numbers_to_words
	optipng
	parse_only
	pkg_attach
	prose_index
	protect_math
	raw_string
	read_utf8
	rename_seq
	rev_check
	Rscript
	Rscript_call
	rstudio_type
	same_path
	session_info
	split_lines
	strict_list
	stringsAsStrings
	tojson
	tree
	try_silent
	upload_ftp
	Index

