Package 'wsbackfit'

May 19, 2020

Version 1.0-3 Date 2020-05-11 Imports graphics, stats Description Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mammen E, Park BU (2012) <doi:10.1214 12-aos1026="">. License GPL LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback print.sback print.sback residuals.sback sb</roca@uvigo.es></doi:10.1214></doi:10.1214></doi:10.1007>	Type Package	
Date 2020-05-11 Imports graphics, stats Description Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mammen E, Park BU (2012) <doi:10.1214 12-aos1026="">. License GPL LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback print.sback print.sback sb. 10</roca@uvigo.es></doi:10.1214></doi:10.1214></doi:10.1007>	Title Weighted Smooth Backfitting for Structured Models	
Imports graphics, stats Description Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mammen E, Park BU (2012) <doi:10.1214 12-aos1026="">. License GPL LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback print.sback residuals.sback sb</roca@uvigo.es></doi:10.1214></doi:10.1214></doi:10.1007>	Version 1.0-3	
Description Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mammen E, Park BU (2012) <doi:10.1214 12-aos1026="">. License GPL LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package</roca@uvigo.es></doi:10.1214></doi:10.1214></doi:10.1007>	Date 2020-05-11	
ing coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mammen E, Park BU (2012) <doi:10.1214 12-aos1026="">. License GPL LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <pre></pre></doi:10.1214></doi:10.1214></doi:10.1007>	Imports graphics, stats	
LazyLoad yes Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback print.sback residuals.sback sb 10</roca@uvigo.es>	Pardinas J and Sperlich S (2010) <doi:10.1007 s11222-009-9130-2="">; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214 1017939138="" aos="">; Lee YK, Mam-</doi:10.1214></doi:10.1007>	
Depends R (>= 3.5.0) NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback print.sback residuals.sback sb 10</roca@uvigo.es>	License GPL	
NeedsCompilation yes Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback print.sback residuals.sback sb 10</roca@uvigo.es>	LazyLoad yes	
Author Javier Roca-Pardinas [aut, cre], Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas < roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback residuals.sback sb 10	Depends R (>= $3.5.0$)	
Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut], Alan Miller (FORTRAN code lsq.f90: weighted least-squares module) [ctb] Maintainer Javier Roca-Pardinas <roca@uvigo.es> Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback predict.sback print.sback residuals.sback sb</roca@uvigo.es>	NeedsCompilation yes	
Repository CRAN Date/Publication 2020-05-19 11:20:02 UTC R topics documented: wsbackfit-package infect plot.sback predict.sback print.sback residuals.sback sb	Maria Xose Rodriguez-Alvarez [aut], Stefan Sperlich [aut],	
Date/Publication 2020-05-19 11:20:02 UTC R topics documented: 2 wsbackfit-package 2 infect 3 plot.sback 4 predict.sback 5 print.sback 7 residuals.sback 9 sb 10	Maintainer Javier Roca-Pardinas < roca@uvigo.es>	
R topics documented: wsbackfit-package infect plot.sback predict.sback print.sback residuals.sback sb	Repository CRAN	
wsbackfit-package 2 infect 3 plot.sback 4 predict.sback 5 print.sback 7 residuals.sback 5 sb 10	Date/Publication 2020-05-19 11:20:02 UTC	
infect 3 plot.sback 4 predict.sback 5 print.sback 7 residuals.sback 9 sb 10	R topics documented:	
plot.sback	wsbackfit-package	2
predict.sback 5 print.sback 7 residuals.sback 9 sb 10		3
print.sback	•	4
residuals.sback		5
sb	1	
sback </td <td></td> <td></td>		

2 wsbackfit-package

Index 19

wsbackfit-package

Weighted Smooth Backfitting for Structured Models

Description

Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations. Specifically, the package provides estimation procedures for a large class of regression models common in applied statistics. The regression models belong to the class of the so-called generalized structured models, i.e.,

$$E[Y|X,Z] = G(g_0 + \sum_{j} g_j(X_j)Z_j + Z'_k\beta).$$

Note that, up to identification restrictions specified e.g. in Park and Mammen (2006), several of the X_j and Z_j can refer to the same variable. For example, all X_j may be the same but all Z_j different.

The estimation procedure is based on smoothed backfitting which to our knowledge is the statistically most efficient existing procedure for this model class. Additional weights allow sampling weights, trimming, or efficient estimation under heteroscedasticity. This package also allows to either set the bandwidths or automatically select them using k-fold cross-validation. The option 'offset' facilitates the application of smooth backfitting on aggregated data.

Details

Package: wsbackfit
Type: Package
Version: 1.0-3
Date: 2020-05-11
License: GPL

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez, Stefan Sperlich

Maintainer: Javier Roca-Pardinas <roca@uvigo.es>

References

Lee, Y.K., Mammen, E. and Park, B.U. (2012). Flexible generalized varying coefficient regression models. The Annals of Statistics, 40(3), 1906-1933.

Mammen, E. and Nielsen, J. (2003). Generalised structured models. Biometrika, 90, 551-566.

Mammen, E. Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27 (5), 1443-1490.

infect 3

Mammen, E. and Park, B.U. (2006). A simple smooth backfitting method for additive models. Annals of Statistics, 34 (5), 2252-2271.

Nielsen. J. and Sperlich, S. (2005). Smooth backfitting in practice. Journal of the Royal Statistical Society, B, 67, 43-61.

Roca-Pardinas, J. and Sperlich, S. (2010). Feasible Estimation in Generalized Structured Models. Statistics and Computing, 20, 367-379.

infect

Postoperative Infection Data.

Description

Data from a prospective study conducted at the University Hospital of Santiago de Compostela (Spain). A total of 2318 patients who underwent surgery at this center between January 1996 and March 1997 were characterized post-operatively, in respect of whether they suffered or not post-operative infection.

Usage

```
data(infect)
```

Format

A data frame with 2318 observations on the following 6 variables.

```
age patient's age.
```

sex patient's sex. Coded as 1 = Man and 2 = Woman.

linf lymphocytes (expressed as relative counts (in %) of the white blood cell count)

gluc plasma glucose concentration (measured in mg/dl)

diab diabetes. Coded as 1 = presence and 2 = absence.

inf variable indicating whether the patient suffered (inf = 1) or not (inf = 0) a post-operative infection.

```
data(infect)
summary(infect)
```

4 plot.sback

Description

Takes a fitted object produced by sback() and plots the estimates of the nonparametric functions on the scale of their respective covariates, no matter whether a particular nonparametric function is an additive component or a varying coefficient.

Usage

```
## S3 method for class 'sback'
plot(x, composed = TRUE, ask = TRUE, select = NULL, ...)
```

Arguments

X	an object of class sback as produced by sback().
composed	a logical value. If TRUE, the default, the function plots the estimates of the composed (linear plus nonlinear) nonparametric functions (see Details).
ask	a logical value. If TRUE, the default, the user is asked for confirmation, before a new figure is drawn.
select	Allows the plot for a single model term to be selected for printing. e.g. if you just want the plot for the second smooth term set select $= 2$.
	other graphics parameters to pass on to plotting commands.

Details

For identifiability purposes, the estimating algorithm implemented in the wsbackfit package decomposes each nonparametric function in two components: a linear (parametric) component and a nonlinear (nonparametric) component. For plotting, the user can choose to plot these components either separately in one graph (composed = FALSE), or to only plot the resulting composed function (composed = TRUE). Also, for the varying coefficient terms, the plots show the estimated surface spanned by (g_i, X_i, Z_i) .

Value

None

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sback, summary.sback
```

predict.sback 5

Examples

```
library(wsbackfit)
# Gaussian Simulated Sample
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 \leftarrow runif(n)*4-2
x3 <- runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
f5 <- 1.5*x5
mu < -f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err
df \leftarrow data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)
# Fit the model with a fixed bandwidth for each covariate
m0 < - sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13)
 + sb(x3, h = 0.13) + sb(x4, h = 0.13), kbin = 15, data = df)
plot(m0)
```

predict.sback

Predict method for sback fits

Description

Predicted smooth functions and values based on an sback object

Usage

```
## S3 method for class 'sback'
predict(object, newdata, newoffset = NULL, ...)
```

Arguments

object

an object of class sback.

6 predict.sback

newdata a data frame containing the values of the covariates at which predictions are

wanted. If not provided then the predictions correspond to the original data.

newoffset an optional numerical vector containing an a priori known component to be

included in the linear predictor for the predictions (offset associated with the

newdata).

... not yet implemented.

Value

A list with the following components:

pdata the original supplied newdata argument.

poffset the original supplied newoffset argument.

coeff a numeric vector with the estimated coefficients. This vector includes both the

parametric effects as well as the coefficients associated with the linear compo-

nent of the nonparametric functions.

peffects matrix with the estimated nonparametric functions (only the nonlinear compo-

nent) for each covariate value in the original supplied newdata.

pfitted.values a numeric vector with the fitted values for the supplied newdata.

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sback, summary.sback
```

```
library(wsbackfit)
data(infect)

# Generalized varying coefficient model with binary response
m3 <- sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf, h = 10),
    data = infect, family = "binomial")

summary(m3)

# Plot both linear and non linear
# components of nonparametric functions: composed = FALSE
op <- par(no.readonly = TRUE)
par(mfrow = c(1,3))
plot(m3, composed = FALSE)

# Personalized plots
# First obtain predictions in new data
# Create newdata for prediction
ngrid <- 30</pre>
```

print.sback 7

```
gluc0 \leftarrow seq(50, 190, length = ngrid)
linf0 <- seq(0, 45, length = ngrid)</pre>
df <- expand.grid(gluc = gluc0, linf = linf0)</pre>
m3p <- predict(m3, newdata = df)</pre>
par(mfrow = c(1,2))
ii <- order(df[,"gluc"])</pre>
## Parametric coefficients
names(m3p$coeff)
# Nonlinear components
colnames(m3p$peffects)
# Include the linear component
plot(df[ii,"gluc"], m3p$coeff[["gluc"]]*df[ii,"gluc"] +
  m3p$peffects[ii,"sb(gluc, h = 10)"],
  type = 'l', xlab = "Glucose (mg/dl)", ylab = "f_1(gluc)",
  main = "Nonparametric effect of Glucose")
# Include the linear component
plot(df[ii,"gluc"], m3p$coeff[["gluc:linf"]]*df[ii,"gluc"] +
  m3p\$peffects[ii,"sb(gluc, h = 10, by = linf)"],
  type= 'l', xlab = "Glucose (mg/dl)", ylab = "f_2(gluc)",
  main = "Varying coefficients as a function of Glucose")
# Countour plot of the probability of post-opererational infection
n <- sqrt(nrow(df))</pre>
Z <- matrix(m3p$pfitted.values, n, n)</pre>
filled.contour(z = Z, x = gluc0, y = linf0,
  xlab = "Glucose (mg/dl)", ylab = "Lymphocytes (%)",
  main = "Probability of post-opererational infection")
par(op)
```

print.sback

Print a sback object.

Description

The default print method for a sback object.

Usage

```
## S3 method for class 'sback'
print(x, ...)
```

8 print.sback

Arguments

x an object of class sback as produced by sback.

... further arguments passed to or from other methods. Not yet implemented.

Value

None

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sback, summary.sback, plot.sback
```

```
library(wsbackfit)
# Gaussian Simulated Sample
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 <- runif(n)*4-2
x3 <- runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
f5 <- 1.5*x5
mu < -f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err
df \leftarrow data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)
# Fit the model with a fixed bandwidth for each covariate
m0 \leftarrow sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13)
 + sb(x3, h = 0.13) + sb(x4, h = 0.13), kbin = 15, data = df)
m0
```

residuals.sback 9

residuals.sback sback residuals

Description

Returns residuals for a fitted sback object. Deviance, pearson, working and response residuals are available.

Usage

```
## S3 method for class 'sback'
residuals(object, type = c("deviance", "pearson", "working", "response"), ...)
```

Arguments

object an object of class sback as produced by sback.

type the type of residuals which should be returned: "deviance" (default), "pearson",

"working" and "response".

... further arguments passed to or from other methods. Not yet implemented.

Details

For details see residuals.glm.

Value

Numeric vector with the residuals.

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sback, summary.sback, plot.sback.
```

```
library(wsbackfit)
data(infect)

# Generalized varying coefficient model with binary response
m3 <- sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf, h = 10),
    data = infect, family = "binomial")

summary(m3)

# Deviance</pre>
```

10 sb

```
summary(residuals(m3))
# Pearson
summary(residuals(m3, type = "pearson"))
```

sb

Specify a nonparametric and/or a varying coefficient term in a ws-backfit formula

Description

Function used to indicate nonparametric terms and varying coefficient terms in a sback formula.

Usage

```
sb(x1 = NULL, by = NULL, h = -1)
```

Arguments

x1	the univariate predictor
by	numeric predictor of the same dimension as $x1$. If present, the coefficients of this predictor depend, nonparametrically, on $x1$, i.e., a varying coefficient term.
h	bandwidth (on the scale of the predictor) for this term. If h = -1, the bandwidth is automatically selected using k-fold cross-validation (see sback). A value of 0 would indicate a linear fit. By default -1.

Value

A list with the following components:

cov character vector with the name(s) of the involved predictor(s).

h numeric value with the specified smoothing parameter.

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sback, summary.sback, plot.sback
```

sb 11

```
library(wsbackfit)
set.seed(123)
# Gaussian Simulated Sample
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 <- runif(n)*4-2
x3 <- runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
f5 <- 1.5*x5
mu < -f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err
df \leftarrow data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)
# Fit the model with a fixed bandwidth for each covariate
m0 < - sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13)
  + sb(x3, h = 0.13) + sb(x4, h = 0.13), kbin = 15, data = df)
summary(m0)
op <- par(no.readonly = TRUE)</pre>
par(mfrow = c(2,2))
plot(m0)
# Fit the model with the bandwidths selected by k-fold cross-validation.
m1 \leftarrow sback(formula = y \sim x5 + sb(x1, h = -1) + sb(x2, h = -1)
  + sb(x3, h = -1) + sb(x4, h = -1), kbin = 15, bw.grid = seq(0.01, 0.99, length = 30),
  data = df
summary(m1)
par(mfrow = c(2,2))
plot(m1)
par(op)
```

Generalized additive and partially linear models

Description

Main function for fitting generalized structured models by using smooth backfitting.

Usage

```
sback(formula, data, offset = NULL, weights = NULL,
bw.grid = seq(0.01, 0.99, length = 30), KfoldCV = 5, kbin = 15,
family = c("gaussian", "binomial", "poisson"))
```

Arguments

formula	a formula object specifying the model to be fitted (see Details).
data	data frame representing the data and containing all needed variables
offset	an optional numerical vector containing priori known components to be included in the linear predictor during fitting. Default is zero.
weights	an optional numeric vector of 'prior weights' to be used in the fitting process. By default, the weights are set to one.
bw.grid	numeric vector; a grid for for searching the bandwidth factor h_c when using cross-validation. The bandwidth for dimension (covariate) j is $h_c\sigma_j$, with σ_j being the standard deviation of X_j (see Details). Default is a sequence of length 30 between 0.01 and 0.99.
KfoldCV	number of cross-validation folds to be used for automatically selecting the optimal bandwidth (in the sequence given in argument bw.grid) for each nonparametric function. Default is 5.
kbin	an integer value specifying the number of binning knots. Default is 15.
family	an character specifying the distribution family. Implemented are: Gaussian, Binomial and Poisson. In all cases, the link function is the canonical one (logit for binomial, identity for Gaussian and logarithm for Poisson). By default 'gaussian'.

Details

The argument formula corresponds to the model for the conditional mean function, i.e.,

$$E[Y|X,Z] = G(g_0 + \sum_{j} g_j(X_j)Z_j + Z_k'\beta).$$

This formula is similar to that used for the glm function, except that nonparametric functions can be added to the additive predictor by means of function sb. For instance, specification $y \sim x1 + sb(x2, h = -1)$ assumes a parametric effect of x1 (with x1 either numerical or categorical), and a nonparametric effect of x2. h = -1 indicates that the bandwidth should be selected using k-fold

cross-validation. Varying coefficient terms get incorporated similarly. For example, $y \sim sb(x1, by = x2)$ indicates that the coefficients of x2 depend, nonparametrically, on x1. In this case both, x1 and x2, should be numerical predictors.

With respect to the bandwidths associated with each nonparametric function specified using function sb, the user has two options: a) to specify in the formula the desired bandwidth - on the scale of the predictor - through argument h of function sb; or, b) to allow the bandwidths to be automatically and data adaptively selected via cross-validation. In the latter case, the estimation procedure tests each of the bandwidth factors supplied in argument bw.grid, and selects the one that minimizes the deviance via (k-fold) cross-validation. The number k of cross-validation folds is specified through argument KfoldCV, with 5 by default. We note that when using cross-validation, to ensure that the bandwidths associated with the nonparametric functions are on the scale of the predictors, the finally used bandwidth is $h_j = h\sigma_j$ with σ_j being the standard deviation of X_j . That is, before fitting the model, each bandwidth factor h provided in bw.grid is multiplied by the standard deviation of the corresponding predictor. Note that the user has also the possibility to specify the bandwidths for some nonparametric function (through argument h), while letting for the remaining nonparametric functions the procedure select the bandwidths by cross-validation. For these functions, argument h should be set to -1.

Finally, it is worth noting that for identifiability purposes, the estimating algorithm implemented in the wsbackfit package decomposes each nonparametric function in two components: a linear (parametric) component and a nonlinear (nonparametric) component. Note that it implies that for a varying coefficient term $\sim sb(x1,by=x2)$, the parametric part includes the linear component associated with x1, as well as the linear interaction between x1 and x2.

Value

A list with the following components:

call the matched call.

formula the original supplied formula argument.
data the original supplied data argument.
offset the original supplied offset argument.
weights the original supplied weights argument.
kbin the original supplied kbin argument.
family the original supplied family argument.

effects matrix with the estimated nonparametric functions (only the nonlinear compo-

nent) for each covariate value in the original supplied data.

fitted.values a numeric vector with the fitted values for the supplied data.

h a numeric vector of the same length as the number of nonparametric functions,

with the bandwidths actually used in the estimation (scaled. See Details).

coeff a numeric vector with the estimated coefficients. This vector includes both the

parametric effects as well as the coefficients associated with the linear compo-

nent of the nonparametric functions.

err.CV matrix with the cross-validated error (deviance) associated with the sequence of

tested (unscaled) bandwidths. Each line corresponds to a particular bandwidth

(unscaled. See Details).

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez and Stefan Sperlich

See Also

```
sb, print.sback, summary.sback, plot.sback
```

```
library(wsbackfit)
# Gaussian Simulated Sample
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 <- runif(n)*4-2
x3 \leftarrow runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
f5 <- 1.5*x5
mu < -f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err
df \leftarrow data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)
# Fit the model with a fixed bandwidth for each covariate
m0 < - sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13)
  + sb(x3, h = 0.13) + sb(x4, h = 0.13), kbin = 15, data = df)
summary(m0)
op <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
plot(m0)
# Fit the model with bandwidths selectec using K-fold cross-validation
m0cv \leftarrow sback(formula = y \sim x5 + sb(x1) + sb(x2)
  + sb(x3) + sb(x4), kbin = 15, bw.grid = seq(0.01, 0.99, length = 30), KfoldCV = 5,
  data = df)
summary(m0cv)
```

```
par(mfrow = c(2,2))
plot(m0cv)
## End(Not run)
# Estimate Variance as a function of x5 (which is binary)
resid <- y - m0$fitted.values</pre>
sig0 \leftarrow var(resid[x5 == 0])
sig1 \leftarrow var(resid[x5 == 1])
w <- x5/sig1 + (1-x5)/sig0
m1 \leftarrow sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13)
 + sb(x3, h = 0.13) + sb(x4, h = 0.13), weights = w, kbin = 15, data = df)
summary(m1)
par(mfrow = c(2,2))
plot(m1)
# Poisson Simulated Data
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n,-1,1)
x2 <- runif(n,-1,1)
eta <- 2 + 3*x1^2 + 5*x2^3
exposure <- round(runif(n, 50, 500))</pre>
y <- rpois(n, exposure*exp(eta))</pre>
df \leftarrow data.frame(y = y, x1 = x1, x2 = x2)
# Fit the model
m2 \leftarrow sback(formula = y \sim sb(x1, h = 0.1) + sb(x2, h = 0.1),
 data = df, offset = log(exposure),
 kbin = 15, family = "poisson")
summary(m2)
par(mfrow = c(1,2))
plot(m2)
# Dataframe and offset for prediction
n.p <- 100
newoffset <- rep(0, n.p)</pre>
df.pred <- data.frame(x1 = seq(-1, 1,1 = n.p), x2 = seq(-1, 1,1 = n.p))
m2p <- predict(m2, newdata = df.pred, newoffset = newoffset)</pre>
# Postoperative Infection Data
```

```
data(infect)
# Generalized varying coefficient model with binary response
m3 \leftarrow sback(formula = inf \sim sb(gluc, h = 10) + sb(gluc, by = linf, h = 10),
  data = infect, family = "binomial")
summary(m3)
# Plot both linear and non linear
# components of nonparametric functions: composed = FALSE
par(mfrow = c(1,3))
plot(m3, composed = FALSE)
# Personalized plots
# First obtain predictions in new data
# Create newdata for prediction
ngrid <- 30
gluc0 <- seq(50, 190, length = ngrid)</pre>
linf0 \leftarrow seq(0, 45, length = ngrid)
df <- expand.grid(gluc = gluc0, linf = linf0)</pre>
m3p <- predict(m3, newdata = df)</pre>
par(mfrow = c(1,2))
ii <- order(df[,"gluc"])</pre>
## Parametric coefficients
names(m3p$coeff)
# Nonlinear components
colnames(m3p$peffects)
# Include the linear component
plot(df[ii,"gluc"], m3p$coeff[["gluc"]]*df[ii,"gluc"] +
  m3p$peffects[ii,"sb(gluc, h = 10)"],
  type = 'l', xlab = "Glucose (mg/dl)", ylab = "f_1(gluc)",
  main = "Nonparametric effect of Glucose")
# Include the linear component
plot(df[ii,"gluc"], m3p$coeff[["gluc:linf"]]*df[ii,"gluc"] +
  m3p$peffects[ii,"sb(gluc, h = 10, by = linf)"],
  type= 'l', xlab = "Glucose (mg/dl)", ylab = "f_2(gluc)",
  main = "Varying coefficients as a function of Glucose")
# Countour plot of the probability of post-opererational infection
n <- sqrt(nrow(df))</pre>
Z <- matrix(m3p$pfitted.values, n, n)</pre>
filled.contour(z = Z, x = gluc0, y = linf0,
  xlab = "Glucose (mg/dl)", ylab = "Lymphocytes (%)",
  main = "Probability of post-opererational infection")
par(op)
```

summary.sback 17

summary.sback

Summary for a sback fitted object

Description

Takes a fitted object produced by sback() and produces various useful summaries from it.

Usage

```
## S3 method for class 'sback'
summary(object, ...)
```

Arguments

```
object an object of class sback as produced by sback().
... other arguments (not implemented)
```

Value

An object of class summary. sback with the information needed to print the results.

Author(s)

Javier Roca-Pardinas, Maria Xose Rodriguez-Alvarez, Stefan Sperlich

See Also

```
sback, plot.sback
```

```
library(wsbackfit)
set.seed(123)
# Gaussian Simulated Sample
set.seed(123)
# Define the data generating process
n <- 1000
x1 <- runif(n)*4-2
x2 <- runif(n)*4-2
x3 <- runif(n)*4-2
x4 <- runif(n)*4-2
x5 <- as.numeric(runif(n)>0.6)
f1 <- 2*sin(2*x1)
f2 <- x2^2
f3 <- 0
f4 <- x4
```

summary.sback

```
f5 <- 1.5*x5

mu <- f1 + f2 + f3 + f4 + f5
err <- (0.5 + 0.5*x5)*rnorm(n)
y <- mu + err

df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)

# Fit the model with a fixed bandwidth for each covariate
m0 <- sback(formula = y \sim x5 + sb(x1, h = 0.13) + sb(x2, h = 0.13) + sb(x3, h = 0.13) + sb(x4, h = 0.13), kbin = 15, data = df)

summary(m0)
```

Index

```
*Topic datasets
infect, 3

formula, 12

glm, 12

infect, 3

plot.sback, 4, 8–10, 14, 17

predict.sback, 5

print.sback, 7, 14

residuals.glm, 9

residuals.sback, 9

sb, 10, 12–14

sback, 4–6, 8–10, 12, 17

summary.sback, 4, 6, 8–10, 14, 17

wsbackfit (wsbackfit-package), 2

wsbackfit-package, 2
```