
Package ‘word2vec’
June 12, 2020

Type Package

Title Distributed Representations of Words

Version 0.2.1

Maintainer Jan Wijffels <jwijffels@bnosac.be>

Description Learn vector representations of words by continuous bag of words and skip-
gram implementations of the 'word2vec' algorithm.
The techniques are detailed in the paper ``Distributed Representa-
tions of Words and Phrases and their Compositionality'' by Mikolov et al. (2013), avail-
able at <arXiv:1310.4546>.

URL https://github.com/bnosac/word2vec

License Apache License (>= 2.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Depends R (>= 2.10)

Imports Rcpp (>= 0.11.5)

LinkingTo Rcpp, RcppProgress

Suggests udpipe

NeedsCompilation yes

Author Jan Wijffels [aut, cre, cph] (R wrapper),
BNOSAC [cph] (R wrapper),
Max Fomichev [ctb, cph] (Code in src/word2vec)

Repository CRAN

Date/Publication 2020-06-12 09:10:02 UTC

R topics documented:
as.matrix.word2vec . 2
predict.word2vec . 3
read.word2vec . 4

1

https://github.com/bnosac/word2vec

2 as.matrix.word2vec

read.wordvectors . 5
word2vec . 6
word2vec_similarity . 9
write.word2vec . 10

Index 12

as.matrix.word2vec Get the word vectors of a word2vec model

Description

Get the word vectors of a word2vec model as a dense matrix.

Usage

S3 method for class 'word2vec'
as.matrix(x, encoding = "UTF-8", ...)

Arguments

x a word2vec model as returned by word2vec or read.word2vec

encoding set the encoding of the row names to the specified encoding. Defaults to ’UTF-
8’.

... not used

Value

a matrix with the word vectors where the rownames are the words from the model vocabulary

See Also

word2vec, read.word2vec

Examples

path <- system.file(package = "word2vec", "models", "example.bin")
model <- read.word2vec(path)

embedding <- as.matrix(model)

predict.word2vec 3

predict.word2vec Predict functionalities for a word2vec model

Description

Get either

• the embedding of words

• the nearest words which are similar to either a word or a word vector

Usage

S3 method for class 'word2vec'
predict(
object,
newdata,
type = c("nearest", "embedding"),
top_n = 10L,
encoding = "UTF-8",
...

)

Arguments

object a word2vec model as returned by word2vec or read.word2vec

newdata for type ’embedding’, newdata should be a character vector of words
for type ’nearest’, newdata should be a character vector of words or a matrix in
the embedding space

type either ’embedding’ or ’nearest’. Defaults to ’nearest’.

top_n show only the top n nearest neighbours. Defaults to 10.

encoding set the encoding of the text elements to the specified encoding. Defaults to
’UTF-8’.

... not used

Value

depending on the type, you get a different result back:

• for type nearest: a list of data.frames with columns term, similarity and rank indicating with
words which are closest to the provided newdata words or word vectors. If newdata is just
one vector instead of a matrix, it returns a data.frame

• for type embedding: a matrix of word vectors of the words provided in newdata

See Also

word2vec, read.word2vec

4 read.word2vec

Examples

path <- system.file(package = "word2vec", "models", "example.bin")
model <- read.word2vec(path)
emb <- predict(model, c("bus", "toilet", "unknownword"), type = "embedding")
emb
nn <- predict(model, c("bus", "toilet"), type = "nearest", top_n = 5)
nn

Do some calculations with the vectors and find similar terms to these
emb <- as.matrix(model)
vector <- emb["buurt",] - emb["rustige",] + emb["restaurants",]
predict(model, vector, type = "nearest", top_n = 10)

vector <- emb["gastvrouw",] - emb["gastvrij",]
predict(model, vector, type = "nearest", top_n = 5)

vectors <- emb[c("gastheer", "gastvrouw"),]
vectors <- rbind(vectors, avg = colMeans(vectors))
predict(model, vectors, type = "nearest", top_n = 10)

read.word2vec Read a binary word2vec model from disk

Description

Read a binary word2vec model from disk

Usage

read.word2vec(file, normalize = FALSE)

Arguments

file the path to the model file

normalize logical indicating to normalize the embeddings by dividing by the factor (sqrt(sum(x
. x) / length(x))). Defaults to FALSE.

Value

an object of class w2v which is a list with elements

• model: a Rcpp pointer to the model

• model_path: the path to the model on disk

• dim: the dimension of the embedding matrix

• n: the number of words in the vocabulary

read.wordvectors 5

Examples

path <- system.file(package = "word2vec", "models", "example.bin")
model <- read.word2vec(path)
vocab <- summary(model, type = "vocabulary")
emb <- predict(model, c("bus", "naar", "unknownword"), type = "embedding")
emb
nn <- predict(model, c("bus", "toilet"), type = "nearest")
nn

Do some calculations with the vectors and find similar terms to these
emb <- as.matrix(model)
vector <- emb["gastvrouw",] - emb["gastvrij",]
predict(model, vector, type = "nearest", top_n = 5)
vectors <- emb[c("gastheer", "gastvrouw"),]
vectors <- rbind(vectors, avg = colMeans(vectors))
predict(model, vectors, type = "nearest", top_n = 10)

read.wordvectors Read word vectors from a word2vec model from disk

Description

Read word vectors from a word2vec model from disk into a dense matrix

Usage

read.wordvectors(
file,
type = c("bin", "txt"),
n = .Machine$integer.max,
normalize = FALSE,
encoding = "UTF-8"

)

Arguments

file the path to the model file

type either ’bin’ or ’txt’ indicating the file is a binary file or a text file

n integer, indicating to limit the number of words to read in. Defaults to reading
all words.

normalize logical indicating to normalize the embeddings by dividing by the factor (sqrt(sum(x
. x) / length(x))). Defaults to FALSE.

encoding encoding to be assumed for the words. Defaults to ’UTF-8’

Value

A matrix with the embeddings of the words. The rownames of the matrix are the words which are
by default set to UTF-8 encoding.

6 word2vec

Examples

path <- system.file(package = "word2vec", "models", "example.bin")
embed <- read.wordvectors(path, type = "bin", n = 10)
embed <- read.wordvectors(path, type = "bin", n = 10, normalize = TRUE)
embed <- read.wordvectors(path, type = "bin")

path <- system.file(package = "word2vec", "models", "example.txt")
embed <- read.wordvectors(path, type = "txt", n = 10)
embed <- read.wordvectors(path, type = "txt", n = 10, normalize = TRUE)
embed <- read.wordvectors(path, type = "txt")

word2vec Train a word2vec model on text

Description

Construct a word2vec model on text. The algorithm is explained at https://arxiv.org/pdf/
1310.4546.pdf

Usage

word2vec(
x,
type = c("cbow", "skip-gram"),
dim = 50,
window = ifelse(type == "cbow", 5L, 10L),
iter = 5L,
lr = 0.05,
hs = FALSE,
negative = 5L,
sample = 0.001,
min_count = 5L,
split = c(" \n,.-!?:;/\"#$%&'()*+<=>@[]\^_`{|}~\t\v\f\r", ".\n?!"),
stopwords = character(),
threads = 1L,
...

)

Arguments

x a character vector with text or the path to the file on disk containing training data

type the type of algorithm to use, either ’cbow’ or ’skip-gram’. Defaults to ’cbow’

dim dimension of the word vectors. Defaults to 50.

window skip length between words. Defaults to 5.

iter number of training iterations. Defaults to 5.

lr initial learning rate also known as alpha. Defaults to 0.05

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

word2vec 7

hs logical indicating to use hierarchical softmax instead of negative sampling. De-
faults to FALSE indicating to do negative sampling.

negative integer with the number of negative samples. Only used in case hs is set to
FALSE

sample threshold for occurrence of words. Defaults to 0.001

min_count integer indicating the number of time a word should occur to be considered as
part of the training vocabulary. Defaults to 5.

split a character vector of length 2 where the first element indicates how to split words
and the second element indicates how to split sentences in x

stopwords a character vector of stopwords to exclude from training

threads number of CPU threads to use. Defaults to 1.

... further arguments passed on to the C++ function w2v_train - for expert use
only

Details

Some advice on the optimal set of parameters to use for training as defined by Mikolov et al.

• argument type: skip-gram (slower, better for infrequent words) vs cbow (fast)

• argument hs: the training algorithm: hierarchical softmax (better for infrequent words) vs
negative sampling (better for frequent words, better with low dimensional vectors)

• argument dim: dimensionality of the word vectors: usually more is better, but not always

• argument window: for skip-gram usually around 10, for cbow around 5

• argument sample: sub-sampling of frequent words: can improve both accuracy and speed for
large data sets (useful values are in range 0.001 to 0.00001)

Value

an object of class w2v_trained which is a list with elements

• model: a Rcpp pointer to the model

• data: a list with elements file: the training data used, stopwords: the character vector of
stopwords, n

• vocabulary: the number of words in the vocabulary

• success: logical indicating if training succeeded

• error_log: the error log in case training failed

• control: as list of the training arguments used, namely min_count, dim, window, iter, lr, skip-
gram, hs, negative, sample, split_words, split_sents, expTableSize and expValueMax

References

https://github.com/maxoodf/word2vec, https://arxiv.org/pdf/1310.4546.pdf

See Also

predict.word2vec, as.matrix.word2vec

https://github.com/maxoodf/word2vec
https://arxiv.org/pdf/1310.4546.pdf

8 word2vec

Examples

library(udpipe)
Take data and standardise it a bit
data(brussels_reviews, package = "udpipe")
x <- subset(brussels_reviews, language == "nl")
x <- tolower(x$feedback)

Build the model get word embeddings and nearest neighbours
model <- word2vec(x = x, dim = 15, iter = 20)
emb <- as.matrix(model)
head(emb)
emb <- predict(model, c("bus", "toilet", "unknownword"), type = "embedding")
emb
nn <- predict(model, c("bus", "toilet"), type = "nearest", top_n = 5)
nn

Get vocabulary
vocab <- summary(model, type = "vocabulary")

Do some calculations with the vectors and find similar terms to these
emb <- as.matrix(model)
vector <- emb["buurt",] - emb["rustige",] + emb["restaurants",]
predict(model, vector, type = "nearest", top_n = 10)

vector <- emb["gastvrouw",] - emb["gastvrij",]
predict(model, vector, type = "nearest", top_n = 5)

vectors <- emb[c("gastheer", "gastvrouw"),]
vectors <- rbind(vectors, avg = colMeans(vectors))
predict(model, vectors, type = "nearest", top_n = 10)

Save the model to hard disk
path <- "mymodel.bin"

write.word2vec(model, file = path)
model <- read.word2vec(path)

##
Example getting word embeddings
which are different depending on the parts of speech tag
Look to the help of the udpipe R package
to get parts of speech tags on text
##
library(udpipe)
data(brussels_reviews_anno, package = "udpipe")
x <- subset(brussels_reviews_anno, language == "fr")
x <- subset(x, grepl(xpos, pattern = paste(LETTERS, collapse = "|")))
x$text <- sprintf("%s/%s", x$lemma, x$xpos)
x <- subset(x, !is.na(lemma))

word2vec_similarity 9

x <- paste.data.frame(x, term = "text", group = "doc_id", collapse = " ")
x <- x$text

model <- word2vec(x = x, dim = 15, iter = 20, split = c(" ", ".\n?!"))
emb <- as.matrix(model)
nn <- predict(model, c("cuisine/NN", "rencontrer/VB"), type = "nearest")
nn
nn <- predict(model, c("accueillir/VBN", "accueillir/VBG"), type = "nearest")
nn

word2vec_similarity Similarity between word vectors as used in word2vec

Description

The similarity between word vectors is defined as the square root of the average inner product of
the vector elements (sqrt(sum(x . y) / ncol(x))) capped to zero

Usage

word2vec_similarity(x, y, top_n = +Inf)

Arguments

x a matrix with embeddings where the rownames of the matrix provide the label
of the term

y a matrix with embeddings where the rownames of the matrix provide the label
of the term

top_n integer indicating to return only the top n most similar terms from y for each row
of x. If top_n is supplied, a data.frame will be returned with only the highest
similarities between x and y instead of all pairwise similarities

Value

By default, the function returns a similarity matrix between the rows of x and the rows of y. The
similarity between row i of x and row j of y is found in cell [i,j] of the returned similarity matrix.
If top_n is provided, the return value is a data.frame with columns term1, term2, similarity and rank
indicating the similarity between the provided terms in x and y ordered from high to low similarity
and keeping only the top_n most similar records.

See Also

word2vec

10 write.word2vec

Examples

x <- matrix(rnorm(6), nrow = 2, ncol = 3)
rownames(x) <- c("word1", "word2")
y <- matrix(rnorm(15), nrow = 5, ncol = 3)
rownames(y) <- c("term1", "term2", "term3", "term4", "term5")

word2vec_similarity(x, y)
word2vec_similarity(x, y, top_n = 1)
word2vec_similarity(x, y, top_n = 2)
word2vec_similarity(x, y, top_n = +Inf)

Example with a word2vec model
path <- system.file(package = "word2vec", "models", "example.bin")
model <- read.word2vec(path)
emb <- as.matrix(model)

x <- emb[c("gastheer", "gastvrouw", "kamer"),]
y <- emb
word2vec_similarity(x, x)
word2vec_similarity(x, y, top_n = 3)
predict(model, x, type = "nearest", top_n = 3)

write.word2vec Save a word2vec model to disk

Description

Save a word2vec model as a binary file to disk or as a text file

Usage

write.word2vec(x, file, type = c("bin", "txt"), encoding = "UTF-8")

Arguments

x an object of class w2v or w2v_trained as returned by word2vec

file the path to the file where to store the model

type either ’bin’ or ’txt’ to write respectively the file as binary or as a text file. De-
faults to ’bin’.

encoding encoding to use when writing a file with type ’txt’ to disk. Defaults to ’UTF-8’

Value

a logical indicating if the save process succeeded

See Also

word2vec

write.word2vec 11

Examples

path <- system.file(package = "word2vec", "models", "example.bin")
model <- read.word2vec(path)

Save the model to hard disk as a binary file
path <- "mymodel.bin"

write.word2vec(model, file = path)

Save the model to hard disk as a text file (uses package udpipe)
library(udpipe)
path <- "mymodel.txt"

write.word2vec(model, file = path, type = "txt")

Index

as.matrix.word2vec, 2, 7

predict.word2vec, 3, 7

read.word2vec, 2, 3, 4
read.wordvectors, 5

word2vec, 2, 3, 6, 9, 10
word2vec_similarity, 9
write.word2vec, 10

12

	as.matrix.word2vec
	predict.word2vec
	read.word2vec
	read.wordvectors
	word2vec
	word2vec_similarity
	write.word2vec
	Index

