
Package ‘withr’
April 21, 2020

Title Run Code 'With' Temporarily Modified Global State

Version 2.2.0

Description A set of functions to run code 'with' safely and
temporarily modified global state. Many of these functions were
originally a part of the 'devtools' package, this provides a simple
package with limited dependencies to provide access to these
functions.

License GPL (>= 2)

URL http://withr.r-lib.org, http://github.com/r-lib/withr#readme

BugReports http://github.com/r-lib/withr/issues

Depends R (>= 3.2.0)

Imports graphics, grDevices, stats

Suggests covr, DBI, knitr, lattice, methods, rmarkdown, RSQLite,
testthat (>= 2.1.0)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Collate 'local_.R' 'with_.R' 'collate.R' 'connection.R' 'db.R'
'defer.R' 'wrap.R' 'devices.R' 'dir.R' 'env.R' 'file.R'
'libpaths.R' 'locale.R' 'makevars.R' 'namespace.R' 'options.R'
'par.R' 'path.R' 'rng.R' 'seed.R' 'sink.R' 'tempfile.R'
'timezone.R' 'torture.R' 'utils.R' 'with.R'

NeedsCompilation no

Author Jim Hester [aut, cre],
Kirill Müller [aut],
Kevin Ushey [aut],
Hadley Wickham [aut],
Winston Chang [aut],
Richard Cotton [ctb],
RStudio [cph]

1

http://withr.r-lib.org
http://github.com/r-lib/withr#readme
http://github.com/r-lib/withr/issues


2 defer

Maintainer Jim Hester <james.f.hester@gmail.com>

Repository CRAN

Date/Publication 2020-04-20 22:10:02 UTC

R topics documented:

defer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
withr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
with_collate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
with_connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
with_db_connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
with_dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
with_envvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
with_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
with_gctorture2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
with_libpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
with_locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
with_makevars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
with_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
with_package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
with_par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
with_path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
with_rng_version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
with_seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
with_sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
with_tempfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
with_temp_libpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
with_timezone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Index 34

defer Defer Evaluation of an Expression

Description

Similar to on.exit(), but allows one to attach an expression to be evaluated when exiting any frame
currently on the stack. This provides a nice mechanism for scoping side effects for the duration of
a function’s execution.



defer 3

Usage

defer(expr, envir = parent.frame(), priority = c("first", "last"))

defer_parent(expr, priority = c("first", "last"))

deferred_run(envir = parent.frame())

deferred_clear(envir = parent.frame())

Arguments

expr [expression]
An expression to be evaluated.

envir [environment]
Attach exit handlers to this environment. Typically, this should be either the
current environment or a parent frame (accessed through parent.frame()).

priority [character(1)]
Specify whether this handler should be executed "first" or "last", relative to
any other registered handlers on this environment.

Details

defer() works by attaching handlers to the requested environment (as an attribute called "handlers"),
and registering an exit handler that executes the registered handler when the function associated with
the requested environment finishes execution.

Deferred events can be set on the global environment, primarily to facilitate the interactive devel-
opment of code that is intended to be executed inside a function or test. A message alerts the user
to the fact that an explicit deferred_run() is the only way to trigger these deferred events. Use
deferred_clear() to clear them without evaluation. The global environment scenario is the main
motivation for these functions.

Examples

# define a 'local' function that creates a file, and
# removes it when the parent function has finished executing
local_file <- function(path) {

file.create(path)
defer_parent(unlink(path))

}

# create tempfile path
path <- tempfile()

# use 'local_file' in a function
local({

local_file(path)
stopifnot(file.exists(path))

})



4 devices

# file is deleted as we leave 'local' local
stopifnot(!file.exists(path))

# investigate how 'defer' modifies the
# executing function's environment
local({

local_file(path)
print(attributes(environment()))

})

# defer and trigger events on the global environment
defer(print("one"))
defer(print("two"))
deferred_run()

defer(print("three"))
deferred_clear()
deferred_run()

devices Graphics devices

Description

Temporarily use a graphics device.

Usage

with_bmp(new, code, ...)

local_bmp(new, ..., .local_envir = parent.frame())

with_cairo_pdf(new, code, ...)

local_cairo_pdf(new, ..., .local_envir = parent.frame())

with_cairo_ps(new, code, ...)

local_cairo_ps(new, ..., .local_envir = parent.frame())

with_pdf(
new,
code,
width,
height,
onefile,
family,
title,



devices 5

fonts,
version,
paper,
encoding,
bg,
fg,
pointsize,
pagecentre,
colormodel,
useDingbats,
useKerning,
fillOddEven,
compress

)

local_pdf(
new,
width,
height,
onefile,
family,
title,
fonts,
version,
paper,
encoding,
bg,
fg,
pointsize,
pagecentre,
colormodel,
useDingbats,
useKerning,
fillOddEven,
compress,
.local_envir = parent.frame()

)

with_postscript(
new,
code,
onefile,
family,
title,
fonts,
encoding,
bg,
fg,



6 devices

width,
height,
horizontal,
pointsize,
paper,
pagecentre,
print.it,
command,
colormodel,
useKerning,
fillOddEven

)

local_postscript(
new,
onefile,
family,
title,
fonts,
encoding,
bg,
fg,
width,
height,
horizontal,
pointsize,
paper,
pagecentre,
print.it,
command,
colormodel,
useKerning,
fillOddEven,
.local_envir = parent.frame()

)

with_svg(
new,
code,
width = 7,
height = 7,
pointsize = 12,
onefile = FALSE,
family = "sans",
bg = "white",
antialias = c("default", "none", "gray", "subpixel"),
...

)



devices 7

local_svg(
new,
width = 7,
height = 7,
pointsize = 12,
onefile = FALSE,
family = "sans",
bg = "white",
antialias = c("default", "none", "gray", "subpixel"),
...,
.local_envir = parent.frame()

)

with_tiff(new, code, ...)

local_tiff(new, ..., .local_envir = parent.frame())

with_xfig(
new,
code,
onefile = FALSE,
encoding = "none",
paper = "default",
horizontal = TRUE,
width = 0,
height = 0,
family = "Helvetica",
pointsize = 12,
bg = "transparent",
fg = "black",
pagecentre = TRUE,
defaultfont = FALSE,
textspecial = FALSE

)

local_xfig(
new,
onefile = FALSE,
encoding = "none",
paper = "default",
horizontal = TRUE,
width = 0,
height = 0,
family = "Helvetica",
pointsize = 12,
bg = "transparent",
fg = "black",



8 devices

pagecentre = TRUE,
defaultfont = FALSE,
textspecial = FALSE,
.local_envir = parent.frame()

)

with_png(new, code, ...)

local_png(new, ..., .local_envir = parent.frame())

with_jpeg(new, code, ...)

local_jpeg(new, ..., .local_envir = parent.frame())

Arguments

new [named character]
New graphics device

code [any]
Code to execute in the temporary environment

... Additional arguments passed to the graphics device.

.local_envir [environment]
The environment to use for scoping.

width the width of the device in inches.

height the height of the device in inches.

onefile should all plots appear in one file or in separate files?

family one of the device-independent font families, "sans", "serif" and "mono", or a
character string specify a font family to be searched for in a system-dependent
way.
On unix-alikes (incl.\ Mac), see the ‘Cairo fonts’ section in the help for X11.

title title string to embed as the ‘/Title’ field in the file. Defaults to "R Graphics
Output".

fonts a character vector specifying R graphics font family names for additional fonts
which will be included in the PDF file. Defaults to NULL.

version a string describing the PDF version that will be required to view the output. This
is a minimum, and will be increased (with a warning) if necessary. Defaults to
"1.4", but see ‘Details’.

paper the target paper size. The choices are "a4", "letter", "legal" (or "us")
and "executive" (and these can be capitalized), or "a4r" and "USr" for ro-
tated (‘landscape’). The default is "special", which means that the width and
height specify the paper size. A further choice is "default"; if this is selected,
the papersize is taken from the option "papersize" if that is set and as "a4" if
it is unset or empty. Defaults to "special".

encoding the name of an encoding file. See postscript for details. Defaults to "default".

bg the initial background colour: can be overridden by setting par("bg").



devices 9

fg the initial foreground color to be used. Defaults to "black".

pointsize the default pointsize of plotted text (in big points).

pagecentre logical: should the device region be centred on the page? – is only relevant for
paper != "special". Defaults to TRUE.

colormodel a character string describing the color model: currently allowed values are "srgb",
"gray" (or "grey") and "cmyk". Defaults to "srgb". See section ‘Color mod-
els’.

useDingbats logical. Should small circles be rendered via the Dingbats font? Defaults to
TRUE, which produces smaller and better output. Setting this to FALSE can work
around font display problems in broken PDF viewers: although this font is one
of the 14 guaranteed to be available in all PDF viewers, that guarantee is not
always honoured.
On Unix-alikes (incl. Mac), see the ‘Note’ for a possible fix for some viewers.

useKerning logical. Should kerning corrections be included in setting text and calculating
string widths? Defaults to TRUE.

fillOddEven logical controlling the polygon fill mode: see polygon for details. Defaults to
FALSE.

compress logical. Should PDF streams be generated with Flate compression? Defaults to
TRUE.

horizontal the orientation of the printed image, a logical. Defaults to true, that is landscape
orientation on paper sizes with width less than height.

print.it logical: should the file be printed when the device is closed? (This only applies
if file is a real file name.) Defaults to false.

command the command to be used for ‘printing’. Defaults to "default", the value of
option "printcmd". The length limit is 2*PATH_MAX, typically 8096 bytes on
unix systems and 520 bytes on windows.

antialias string, the type of anti-aliasing (if any) to be used; defaults to "default".

defaultfont logical: should the device use xfig’s default font?

textspecial logical: should the device set the textspecial flag for all text elements. This is
useful when generating pstex from xfig figures.

Value

[any]
The results of the evaluation of the code argument.

Functions

• with_bmp: BMP device

• with_cairo_pdf: CAIRO_PDF device

• with_cairo_ps: CAIRO_PS device

• with_pdf: PDF device

• with_postscript: POSTSCRIPT device



10 withr

• with_svg: SVG device

• with_tiff: TIFF device

• with_xfig: XFIG device

• with_png: PNG device

• with_jpeg: JPEG device

See Also

withr for examples

Devices

Examples

# dimensions are in inches
with_pdf(file.path(tempdir(), "test.pdf"), width = 7, height = 5,

plot(runif(5))
)

# dimensions are in pixels
with_png(file.path(tempdir(), "test.png"), width = 800, height = 600,

plot(runif(5))
)

withr Execute code in temporarily altered environment

Description

All functions prefixed by with_ work as follows. First, a particular aspect of the global environment
is modified (see below for a list). Then, custom code (passed via the code argument) is executed.
Upon completion or error, the global environment is restored to the previous state. Each with_
function has a local_ variant, which instead resets the state when the current evaluation context
ends (such as the end of a function).

Arguments pattern

new [various] Values for setting
code [any] Code to execute in the temporary environment
... Further arguments

Usage pattern

with_...(new,code,...)



withr 11

withr functions

• with_collate(): collation order

• with_dir(): working directory

• with_envvar(): environment variables

• with_libpaths(): library paths, replacing current libpaths

• with_locale(): any locale setting

• with_makevars(): Makevars variables

• with_options(): options

• with_par(): graphics parameters

• with_path(): PATH environment variable

• with_sink(): output redirection

Creating new "with" functions

All with_ functions are created by a helper function, with_(). This functions accepts two argu-
ments: a setter function and an optional resetter function. The setter function is expected to change
the global state and return an "undo instruction". This undo instruction is then passed to the reset-
ter function, which changes back the global state. In many cases, the setter function can be used
naturally as resetter.

Author(s)

Maintainer: Jim Hester <james.f.hester@gmail.com>

Authors:

• Kirill Müller <krlmlr+r@mailbox.org>

• Kevin Ushey <kevinushey@gmail.com>

• Hadley Wickham <hadley@rstudio.com>

• Winston Chang

Other contributors:

• Richard Cotton [contributor]

• RStudio [copyright holder]

See Also

Useful links:

• http://withr.r-lib.org

• http://github.com/r-lib/withr#readme

• Report bugs at http://github.com/r-lib/withr/issues

http://withr.r-lib.org
http://github.com/r-lib/withr#readme
http://github.com/r-lib/withr/issues


12 with_collate

Examples

getwd()
with_dir(tempdir(), getwd())
getwd()

Sys.getenv("WITHR")
with_envvar(c("WITHR" = 2), Sys.getenv("WITHR"))
Sys.getenv("WITHR")

with_envvar(c("A" = 1),
with_envvar(c("A" = 2), action = "suffix", Sys.getenv("A"))

)

# local variants are best used within other functions
f <- function(x) {

local_envvar(c("WITHR" = 2))
Sys.getenv("WITHR")

}
Sys.getenv("WITHR")

with_collate Collation Order

Description

Temporarily change collation order by changing the value of the LC_COLLATE locale.

Usage

with_collate(new, code)

local_collate(new, .local_envir = parent.frame())

Arguments

new [character(1)]
New collation order

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.



with_connection 13

See Also

withr for examples

Examples

# Modify collation order:
x <- c("bernard", "bérénice", "béatrice", "boris")
with_collate("fr_FR", sort(x))
with_collate("C", sort(x))

with_connection Connections which close themselves

Description

R file connections which are automatically closed.

Usage

with_connection(con, code)

local_connection(con, .local_envir = parent.frame())

Arguments

con For with_connection() a named list with the connection(s) to create. For
local_connection() the code to create a single connection, which is then re-
turned.

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples



14 with_db_connection

Examples

with_connection(list(con = file("foo", "w")), {
writeLines(c("foo", "bar"), con)

})

read_foo <- function() {
readLines(local_connection(file("foo", "r")))

}
read_foo()

unlink("foo")

with_db_connection DBMS Connections which disconnect themselves.

Description

Connections to Database Management Systems which automatically disconnect. In particular con-
nections which are created with DBI::dbConnect() and closed with DBI::dbDisconnect().

Usage

with_db_connection(con, code)

local_db_connection(con, .local_envir = parent.frame())

Arguments

con For with_db_connection() a named list with the connection(s) to create. For
local_db_connection() the code to create a single connection, which is then
returned.

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples



with_dir 15

Examples

db <- tempfile()
with_db_connection(

list(con = DBI::dbConnect(RSQLite::SQLite(), db)), {
DBI::dbWriteTable(con, "mtcars", mtcars)

})

head_db_table <- function(...) {
con <- local_db_connection(DBI::dbConnect(RSQLite::SQLite(), db))
head(DBI::dbReadTable(con, "mtcars"), ...)

}
head_db_table()
unlink(db)

with_dir Working directory

Description

Temporarily change the current working directory.

Usage

with_dir(new, code)

local_dir(new, .local_envir = parent.frame())

with_tempdir(code, clean = TRUE)

Arguments

new [character(1)]
New working directory

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

clean [logical(1)]
A logical indicating if the temporary directory should be deleted after use (TRUE,
default) or left alone (FALSE).

Value

[any]
The results of the evaluation of the code argument.



16 with_envvar

See Also

withr for examples

setwd()

Examples

getwd()

with_dir(tempdir(), getwd())

with_envvar Environment variables

Description

Temporarily change system environment variables.

Usage

with_envvar(new, code, action = "replace")

local_envvar(new, action = "replace", .local_envir = parent.frame())

Arguments

new [named character]
New environment variables

code [any]
Code to execute in the temporary environment

action should new values "replace", "prefix" or "suffix" existing variables with
the same name.

.local_envir [environment]
The environment to use for scoping.

Details

if NA is used those environment variables will be unset. If there are any duplicated variable names
only the last one is used.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Sys.setenv()



with_file 17

Examples

with_envvar(new = c("GITHUB_PAT" = "abcdef"), Sys.getenv("GITHUB_PAT"))

# with_envvar unsets variables after usage
Sys.getenv("TEMP_SECRET")
with_envvar(new = c("TEMP_SECRET" = "secret"), Sys.getenv("TEMP_SECRET"))
Sys.getenv("TEMP_SECRET")

with_file Files which delete themselves

Description

Create files, which are then automatically removed afterwards.

Usage

with_file(file, code)

local_file(file, .local_envir = parent.frame())

Arguments

file [named list]
Files to create.

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Examples

with_file("file1", {
writeLines("foo", "file1")
readLines("file1")

})

with_file(list("file1" = writeLines("foo", "file1")), {
readLines("file1")

})



18 with_libpaths

with_gctorture2 Torture Garbage Collector

Description

Temporarily turn gctorture2 on.

Usage

with_gctorture2(new, code, wait = new, inhibit_release = FALSE)

Arguments

new [integer]
run GC every ’step’ allocations.

code [any]
Code to execute in the temporary environment

wait integer; number of allocations to wait before starting GC torture.
inhibit_release

logical; do not release free objects for re-use: use with caution.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

with_libpaths Library paths

Description

Temporarily change library paths.

Usage

with_libpaths(new, code, action = "replace")

local_libpaths(new, action = "replace", .local_envir = parent.frame())



with_locale 19

Arguments

new [character]
New library paths

code [any]
Code to execute in the temporary environment

action [character(1)]
should new values "replace", "prefix" or "suffix" existing paths.

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

.libPaths()

Other libpaths: with_temp_libpaths()

Examples

.libPaths()
new_lib <- tempfile()
dir.create(new_lib)
with_libpaths(new_lib, print(.libPaths()))
unlink(new_lib, recursive = TRUE)

with_locale Locale settings

Description

Temporarily change locale settings.

Usage

with_locale(new, code)

local_locale(new, .local_envir = parent.frame())



20 with_locale

Arguments

new [named character]
New locale settings

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Details

Setting the LC_ALL category is currently not implemented.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Sys.setlocale()

Examples

## Change locale for time:
df <- data.frame(

stringsAsFactors = FALSE,
date = as.Date(c("2019-01-01", "2019-02-01")),
value = c(1, 2)

)
with_locale(new = c("LC_TIME" = "es_ES"), code = plot(df$date, df$value))
## Compare with:
# plot(df$date, df$value)

## Month names:
with_locale(new = c("LC_TIME" = "en_GB"), format(ISOdate(2000, 1:12, 1), "%B"))
with_locale(new = c("LC_TIME" = "es_ES"), format(ISOdate(2000, 1:12, 1), "%B"))

## Change locale for currencies:
with_locale(new = c("LC_MONETARY" = "it_IT"), Sys.localeconv())
with_locale(new = c("LC_MONETARY" = "en_US"), Sys.localeconv())

## Ordering:
x <- c("bernard", "bérénice", "béatrice", "boris")
with_locale(c(LC_COLLATE = "fr_FR"), sort(x))
with_locale(c(LC_COLLATE = "C"), sort(x))



with_makevars 21

with_makevars Makevars variables

Description

Temporarily change contents of an existing Makevars file.

Usage

with_makevars(
new,
code,
path = makevars_user(),
assignment = c("=", ":=", "?=", "+=")

)

Arguments

new [named character]
New variables and their values

code [any]
Code to execute in the temporary environment

path [character(1)]
location of existing Makevars file to modify.

assignment [character(1)]
assignment type to use.

Details

If no Makevars file exists or the fields in new do not exist in the existing Makevars file then the fields
are added to the new file. Existing fields which are not included in new are appended unchanged.
Fields which exist in Makevars and in new are modified to use the value in new.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Examples

writeLines("void foo(int* bar) { *bar = 1; }\n", "foo.c")
system("R CMD SHLIB --preclean -c foo.c")
with_makevars(c(CFLAGS = "-O3"), system("R CMD SHLIB --preclean -c foo.c"))
unlink(c("foo.c", "foo.so"))



22 with_options

with_options Options

Description

Temporarily change global options.

Usage

with_options(new, code)

local_options(new, .local_envir = parent.frame())

Arguments

new [named list]
New options and their values

code [any]
Code to execute in the temporary environment

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

options()

Examples

# number of significant digits to print
getOption("digits")
# modify temporarily the number of significant digits to print
with_options(list(digits = 3), getOption("digits"))
with_options(list(digits = 3), print(pi))

# modify temporarily the character to be used as the decimal point
getOption("digits")
with_options(list(OutDec = ","), print(pi))

# modify temporarily multiple options
with_options(list(OutDec = ",", digits = 3), print(pi))

# modify, within the scope of the function, the number of



with_package 23

# significant digits to print
print_3_digits <- function(x) {

# assign 3 to the option "digits" for the rest of this function
# after the function exits, the option will return to its previous
# value
local_options(list(digits = 3))
print(x)

}

print_3_digits(pi) # returns 3.14
print(pi) # returns 3.141593

with_package Execute code with a modified search path

Description

with_package() attaches a package to the search path, executes the code, then removes the pack-
age from the search path. The package namespace is not unloaded however. with_namespace()
does the same thing, but attaches the package namespace to the search path, so all objects (even
unexported ones) are also available on the search path.

Usage

with_package(
package,
code,
pos = 2,
lib.loc = NULL,
character.only = TRUE,
logical.return = FALSE,
warn.conflicts = FALSE,
quietly = TRUE,
verbose = getOption("verbose")

)

local_package(
package,
pos = 2,
lib.loc = NULL,
character.only = TRUE,
logical.return = FALSE,
warn.conflicts = FALSE,
quietly = TRUE,
verbose = getOption("verbose"),
.local_envir = parent.frame()

)



24 with_package

with_namespace(package, code, warn.conflicts = FALSE)

local_namespace(package, .local_envir = parent.frame(), warn.conflicts = FALSE)

with_environment(
env,
code,
pos = 2L,
name = format(env),
warn.conflicts = FALSE

)

local_environment(
env,
pos = 2L,
name = format(env),
warn.conflicts = FALSE,
.local_envir = parent.frame()

)

Arguments

package [character(1)]
package name to load.

code [any]
Code to execute in the temporary environment

pos the position on the search list at which to attach the loaded namespace. Can also
be the name of a position on the current search list as given by search().

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known to
.libPaths(). Non-existent library trees are silently ignored.

character.only a logical indicating whether package or help can be assumed to be character
strings.

logical.return logical. If it is TRUE, FALSE or TRUE is returned to indicate success.
warn.conflicts logical. If TRUE, warnings are printed about conflicts from attaching the

new package. A conflict is a function masking a function, or a non-function
masking a non-function. The default is TRUE unless specified as FALSE in the
conflicts.policy option.

quietly a logical. If TRUE, no message confirming package attaching is printed, and most
often, no errors/warnings are printed if package attaching fails.

verbose a logical. If TRUE, additional diagnostics are printed.
.local_envir [environment]

The environment to use for scoping.
env [environment()]

Environment to attach.
name name to use for the attached database. Names starting with package: are re-

served for library.



with_par 25

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Examples

## Not run:
with_package("ggplot2", {

ggplot(mtcars) + geom_point(aes(wt, hp))
})

## End(Not run)

with_par Graphics parameters

Description

Temporarily change graphics parameters.

Usage

with_par(new, code, no.readonly = FALSE)

local_par(new, no.readonly = FALSE, .local_envir = parent.frame())

Arguments

new [named list]
New graphics parameters and their values

code [any]
Code to execute in the temporary environment

no.readonly [logical(1)]
see par() documentation.

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.



26 with_path

See Also

withr for examples

par()

Examples

old <- par("col" = "black")

# This will be in red
with_par(list(col = "red", pch = 19),

plot(mtcars$hp, mtcars$wt)
)

# This will still be in black
plot(mtcars$hp, mtcars$wt)

par(old)

with_path PATH environment variable

Description

Temporarily change the system search path.

Usage

with_path(new, code, action = "prefix")

local_path(new, action = "prefix", .local_envir = parent.frame())

Arguments

new [character]
New PATH entries

code [any]
Code to execute in the temporary environment

action [character(1)]
Should new values "replace", "prefix" or "suffix" existing paths

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.



with_rng_version 27

See Also

withr for examples

Sys.setenv()

Examples

# temporarily modify the system PATH, *replacing* the current path
with_path(getwd(), Sys.getenv("PATH"))
# temporarily modify the system PATH, *appending* to the current path
with_path(getwd(), Sys.getenv("PATH"), "suffix")

with_rng_version RNG version

Description

Change the RNG version and restore it afterwards.

Usage

with_rng_version(version, code)

local_rng_version(version, .local_envir = parent.frame())

Arguments

version [character(1)] an R version number, e.g. "3.5.0", to switch to the RNG this
version of R uses. See RNGversion().

code [any]
Code to execute in the temporary environment

.local_envir The environment to apply the change to.

Details

with_rng_version() runs the code with the specified RNG version and resets it afterwards.

local_rng_version() changes the RNG version for the caller execution environment.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

RNGversion(), RNGkind(), with_seed().



28 with_seed

Examples

RNGkind()
with_rng_version("3.0.0", RNGkind())
with_rng_version("1.6.0", RNGkind())

with_rng_version("3.0.0",
with_seed(42, sample(1:100, 3)))

with_rng_version("1.6.0",
with_seed(42, sample(1:100, 3)))

RNGkind()

fun1 <- function() {
local_rng_version("3.0.0")
with_seed(42, sample(1:100, 3))

}

fun2 <- function() {
local_rng_version("1.6.0")
with_seed(42, sample(1:100, 3))

}

RNGkind()
fun1()
fun2()
RNGkind()

with_seed Random seed

Description

with_seed() runs code with a specific random seed and resets it afterwards.

with_preserve_seed() runs code with the current random seed and resets it afterwards.

Usage

with_seed(seed, code)

with_preserve_seed(code)

Arguments

seed [integer(1)]
The random seed to use to evaluate the code.

code [any]
Code to execute in the temporary environment



with_sink 29

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Examples

# Same random values:
with_preserve_seed(runif(5))
with_preserve_seed(runif(5))

# Use a pseudorandom value as seed to advance the RNG and pick a different
# value for the next call:
with_seed(seed <- sample.int(.Machine$integer.max, 1L), runif(5))
with_seed(seed, runif(5))
with_seed(seed <- sample.int(.Machine$integer.max, 1L), runif(5))

with_sink Output redirection

Description

Temporarily divert output to a file via sink(). For sinks of type message, an error is raised if such
a sink is already active.

Usage

with_output_sink(new, code, append = FALSE, split = FALSE)

local_output_sink(
new,
append = FALSE,
split = FALSE,
.local_envir = parent.frame()

)

with_message_sink(new, code, append = FALSE)

local_message_sink(new, append = FALSE, .local_envir = parent.frame())



30 with_tempfile

Arguments

new [character(1)|connection]
A writable connection or a character string naming the file to write to. Passing
NULL will throw an error.

code [any]
Code to execute in the temporary environment

append logical. If TRUE, output will be appended to file; otherwise, it will overwrite
the contents of file.

split logical: if TRUE, output will be sent to the new sink and to the current output
stream, like the Unix program tee.

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

sink()

with_tempfile Temporary files

Description

Temporarily create a tempfile, which is automatically removed afterwards.

Usage

with_tempfile(
new,
code,
envir = parent.frame(),
pattern = "file",
tmpdir = tempdir(),
fileext = ""

)

local_tempfile(
new,
envir = parent.frame(),
pattern = "file",
tmpdir = tempdir(),



with_temp_libpaths 31

fileext = ""
)

Arguments

new [character vector]
Names of temporary file handles to create.

code [any]
Code to execute in the temporary environment

envir [environment]
Environment in which to define the temporary files.

pattern a non-empty character vector giving the initial part of the name.

tmpdir a non-empty character vector giving the directory name

fileext a non-empty character vector giving the file extension

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Examples

# check how big iris would be if written as csv vs RDS
with_tempfile("tf", {write.csv(iris, tf); file.size(tf)})
with_tempfile("tf", {saveRDS(iris, tf); file.size(tf)})

with_temp_libpaths Library paths

Description

Temporarily prepend a new temporary directory to the library paths.

Usage

with_temp_libpaths(code, action = "prefix")

local_temp_libpaths(action = "prefix", .local_envir = parent.frame())



32 with_timezone

Arguments

code [any]
Code to execute in the temporary environment

action [character(1)]
should new values "replace", "prefix" or "suffix" existing paths.

.local_envir [environment]
The environment to use for scoping.

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

.libPaths()

Other libpaths: with_libpaths()

with_timezone Time zone

Description

Change the time zone, and restore it afterwards.

Usage

with_timezone(tz, code)

local_timezone(tz, .local_envir = parent.frame())

Arguments

tz [character(1)] a valid time zone specification, note that time zone names might
be platform dependent.

code [any]
Code to execute in the temporary environment

.local_envir The environment to apply the change to.

Details

with_time_zone() runs the code with the specified time zone and resets it afterwards.

local_time_zone() changes the time zone for the caller execution environment.



with_timezone 33

Value

[any]
The results of the evaluation of the code argument.

See Also

withr for examples

Sys.timezone().

Examples

Sys.time()
with_timezone("Europe/Paris", print(Sys.time()))
with_timezone("US/Pacific", print(Sys.time()))

fun1 <- function() {
local_timezone("CET")
print(Sys.time())

}

fun2 <- function() {
local_timezone("US/Pacific")
print(Sys.time())

}
Sys.time()
fun1()
fun2()
Sys.time()



Index

.libPaths, 24

.libPaths(), 19, 32

conflicts, 24
connection, 30

defer, 2
defer_parent (defer), 2
deferred_clear (defer), 2
deferred_run (defer), 2
Devices, 10
devices, 4

library, 24
local_bmp (devices), 4
local_cairo_pdf (devices), 4
local_cairo_ps (devices), 4
local_collate (with_collate), 12
local_connection (with_connection), 13
local_db_connection

(with_db_connection), 14
local_dir (with_dir), 15
local_environment (with_package), 23
local_envvar (with_envvar), 16
local_file (with_file), 17
local_jpeg (devices), 4
local_libpaths (with_libpaths), 18
local_locale (with_locale), 19
local_message_sink (with_sink), 29
local_namespace (with_package), 23
local_options (with_options), 22
local_output_sink (with_sink), 29
local_package (with_package), 23
local_par (with_par), 25
local_path (with_path), 26
local_pdf (devices), 4
local_png (devices), 4
local_postscript (devices), 4
local_rng_version (with_rng_version), 27
local_svg (devices), 4

local_temp_libpaths
(with_temp_libpaths), 31

local_tempfile (with_tempfile), 30
local_tiff (devices), 4
local_timezone (with_timezone), 32
local_xfig (devices), 4

on.exit(), 2
options(), 22

par(), 25, 26
parent.frame(), 3
polygon, 9
postscript, 8

RNGkind(), 27
RNGversion(), 27

search, 24
setwd(), 16
sink(), 29, 30
Sys.setenv(), 16, 27
Sys.setlocale(), 20
Sys.timezone(), 33

with_(), 11
with_bmp (devices), 4
with_cairo_pdf (devices), 4
with_cairo_ps (devices), 4
with_collate, 12
with_collate(), 11
with_connection, 13
with_db_connection, 14
with_dev (devices), 4
with_device (devices), 4
with_dir, 15
with_dir(), 11
with_environment (with_package), 23
with_envvar, 16
with_envvar(), 11
with_file, 17

34



INDEX 35

with_gctorture2, 18
with_jpeg (devices), 4
with_libpaths, 18, 32
with_libpaths(), 11
with_locale, 19
with_locale(), 11
with_makevars, 21
with_makevars(), 11
with_message_sink (with_sink), 29
with_namespace (with_package), 23
with_options, 22
with_options(), 11
with_output_sink (with_sink), 29
with_package, 23
with_par, 25
with_par(), 11
with_path, 26
with_path(), 11
with_pdf (devices), 4
with_png (devices), 4
with_postscript (devices), 4
with_preserve_seed (with_seed), 28
with_rng_version, 27
with_seed, 28
with_seed(), 27
with_sink, 29
with_sink(), 11
with_svg (devices), 4
with_temp_libpaths, 19, 31
with_tempdir (with_dir), 15
with_tempfile, 30
with_tiff (devices), 4
with_timezone, 32
with_xfig (devices), 4
withr, 10, 10, 13, 14, 16–22, 25–27, 29–33
withr-package (withr), 10

X11, 8


	defer
	devices
	withr
	with_collate
	with_connection
	with_db_connection
	with_dir
	with_envvar
	with_file
	with_gctorture2
	with_libpaths
	with_locale
	with_makevars
	with_options
	with_package
	with_par
	with_path
	with_rng_version
	with_seed
	with_sink
	with_tempfile
	with_temp_libpaths
	with_timezone
	Index

