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Abstract

We provide a new and unified standard for the field of wind farm layout optimization
(WFLO). The problem of optimally arranging turbines within a given area (e.g. irregularly
shaped land owned by the potential wind farm operator) has been researched for quite
some time. Dependent on the wind direction, a single turbine A may or may not be
located within the wake of another turbine B, leading to a (potentially) unnecessary loss of
electricity produced at A. Arranging the farm in a way that rules out potential wake losses
is a difficult problem because of the interdependencies of the turbines. A comprehensive
methodology to solve this problem is yet to be found. Our R package providing both,
a high-quality data set as well as useful functionality, will enable researchers to focus
on their actual methodology contributions. The package also serves as a benchmark to
empirically compare the outcomes of contributed solutions.

Keywords: WFLO, wind farm layout optimization, NP-hard, package, data set, benchmark,
R.

1. Introduction

Wind farm layout optimization (WFLO), i.e. the question of how to optimally arrange a
set of wind turbines inside a wind farm, is a problem that has been analyzed for quite some
time. In mathematics, this problem is typically seen as a constraint optimization (i.e. maxi-
mization or minimization) task. However, while the objective space encompasses a typically
rather simple surface in R

3, “feature space” is a high-dimensional, mostly non-continuous
(hence, non-differentiable), multimodal space of ex ante unknown complexity. Furthermore,
as several points in that space are sought-after and these points possess a strongly interde-
pendent behavior due to wake effects in the wind farm, the WFLO problem is considered to
be N P−hard (see Garey and Johnson 1979 for a definition).
Approaches to solving this problem can not only be classified a) according to the wake model
used, but also b) according to the class of optimization approaches (gradient-based approaches
and gradient-free algorithms), or c) according to the target function class. Most approaches
to WFLO incorporate a physical model for inner-farm wake effects. The model by Jensen
(1983) is most popular, as it provides a quite accurate approximation of measured wakes in ac-
tual farms, despite the model’s simplicity. See Shakoor, Hassan, Raheem, and Wu (2016) and
the references therein for a comprehensive overview of WFLO literature employing the Jensen
model. However, some contributions employ other wake models. For instance, Kirchner-Bossi
and Porte-Agel (2018) use a Gaussian wake model.
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Most optimizers employ gradient-free methods, as these methods (e.g. metaheuristic algo-
rithms such as genetic algorithms (GA) or simulated annealing) perform fairly well at ex-
ploring the feature space, given that this space is not of too high dimension. For example,
Chen, Li, Jin, and Song (2013), Park, An, Lee, Jung, and Lee (2019), and Yang, Kwak, Cho,
and Huh (2019) use these methods. Higher-dimensional spaces however are the domain of
gradient-based approaches, as Thomas and Ning (2018) point out.
Many researchers use wind farm efficiency or annual energy production (AEP) as their tar-
get function, e.g. Park et al. (2019). However, a more realistic approach considers what
wind farm operators are really after: Earning money. Therefore, as Giovanni (2019) points
out, AEP maximization is not an immediately meaningful goal. Instead, researchers recently
tend to use economically driven target functions. Wu, Zhang, Wang, Wang, and Feng (2020)
use a profit-driven function, which also enables them to flexibly incorporate cost or revenue
influencing drivers of the optimization problem, e.g. inner-farm wiring. As an alternative,
Yang et al. (2019) discuss wake effect uniformity instead of AEP or profit maximization as
an alternative target.
Antonini, Romero, and Amon (2020) point out the complex terrain aspects of the WFLO
problem, an issue that Thomas and Ning (2018) try to relax. However, as this is just a
means of modifying the problem at hand to ease its handling, it even emphasizes the neces-
sity for a unified setting and goal in order to focus on the methodology to solve that goal.
Thus, researchers even start WFLO competitions to have participants compete on a unified
setting. Baker, Stanley, Thomas, Ning, and Dykes (2019) show the outcome of such a com-
petition. Their competition does not only provide a unified target and unified data, it also
serves as a benchmark that every participant can use to evaluate his/her own methodology
idea/contribution.
Using R by R Core Team (2017), package windfarmGA provides a genetic algorithm imple-
mentation to deal with WFLO. The methodology can be explored at https://windfarmga.

shinyapps.io/windga_shiny/ as well. However, as this is an approach at solving the prob-
lem, it still does not fully describe the problem itself, nor does it provide a data set or a
benchmark. At this point, package wflo (see https://CRAN.R-project.org/package=wflo)
comes into place: It provides high-quality and highly accurate data, which can be used for
both, developing a methodology as well as benchmarking it. It does not, however, provide
an actual optimization solution. wflo is merely a sandbox for solution researchers. The
package also provides a set of modular functions around the WFLO problem, providing an
economically driven target function implementing Jensen’s multiple wake effects model, plug-
in functions for cost and revenue and a set of parameters. In this article, we discuss the
components of package wflo and its intended usage in great detail. Section 2 presents the
data and sheds light on the functions and their utility. Section 3 provides usage examples
and section 4 draws a brief conclusion.

2. Data and Functions

2.1. Data Description

Package wflo deals with a high-quality data set available in a list object FarmData after the
package is installed and loaded within R. The data stem from DWD (Deutscher Wetterdienst,
German Meteorological Service) and NASA (National Aeronautics and Space Administration,

https://windfarmga.shinyapps.io/windga_shiny/
https://windfarmga.shinyapps.io/windga_shiny/
https://CRAN.R-project.org/package=wflo
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SRTM data set, Shuttle Radar Topography Mission) and have been preprocessed, i.e. the me-
teorologic measurement station data are spatially interpolated using Geographic Information
System (GIS) software1 and the wind direction data are temporally averaged by transforming
polar coordinates to cartesian coordinates and then computing the vector averages.
The package comes with a subset of the entire data set. Due to CRAN2 package size limita-
tions, it is not possible to enclose the entire data set within the package. However, the full
data set can be downloaded conveniently using the built-in function AcquireData(). As a
parameter, the function accepts the directory to where the file will be saved. For example,
the user may choose to use the current working directory obtained via getwd() as a target
directory. After file FarmData.RData is downloaded, it is loaded automatically. While the
reduced, built-in data set is accessible via list object FarmData, once the full data set is avail-
able, it replaces the built-in data set by being embedded into user writeable environment
e, easily accessible via e$FarmData. Therefore, one object does not mask the other. All
subsequent functions check for the full data set being present in environment e accordingly.
On load, the package checks whether the file is present in the current working directory and
if so, loads the file automatically. Otherwise, wflo automatically falls back to basic mode,
using the built-in data set. The functionality described in this article works perfectly with
the built-in data set. Downloading the full file is only necessary for cross-checks or advanced
tests of a self-implemented optimizer. WFLO research is perfectly possible with the built-in
data set.
List object FarmData (or e$FarmData) has seven slots. Each of them contains a matrix that
has 4,400 × 3,250 elements in full mode and 25 × 25 elements in basic mode (built-in data
set). The subset in basic mode is “carved” out of the entire data set at position [2000:2024,
2000:2024], so it is nested in the full data set. The 4,400 × 3,250 elements in full mode cover
the entire area of Germany. They represent a raster data set at a rather accurate resolution of
200 × 200 meters. Slot 1 of the list object, named AdjustedYield, contains adjusted potential
AEP (“yield”) for German onshore sites. AEP is computed based on FGW technical guidelines
(Fördergesellschaft Windenergie und andere Dezentrale Energien, support organization for
wind energy and other types of decentralized energy). Those technical guidelines are manda-
tory to use in Germany, are stipulated in the German Renewable Energy Act (EEG 2017),
and are obtainable at https://wind-fgw.de/shop/technical-guidelines/?lang=en. The
guidelines themselves are based on IEC 61400-12-1, the international standard on “power
performance measurements of electricity producing wind turbines” by the International Elec-
trotechnical Commission, IEC. According to EEG (2017), AEP computed that way must be
multiplied by a correction factor. That factor is based on a specific location’s quality in order
to compensate for several market regulations in Germany. Users can interpret the contained
values immediately as AEP in “megawatt hours per year” (MWh/a), however we decide to
name that variable adjusted yield, as researchers computing AEP on their own may obtain
slightly different values. Figure 1 visualizes the data.
Slot 2, named WindSpeed, contains temporally averaged wind speed in meters per second
(m/s), while slot 3, named WindDirection, contains temporally averaged wind direction in
degrees (azimuth). Figure 2 presents both in a joint image. Slot 4, named SDDirection,
contains the standard deviations of wind directions after temporally averaging. So far, stan-

1We use the inverse distance weighted (IDW) method, see https://desktop.arcgis.com/en/arcmap/10.

3/tools/3d-analyst-toolbox/how-idw-works.htm for documentation.
2Comprehensive R Archive Network, the worldwide repository network for R packages.

https://wind-fgw.de/shop/technical-guidelines/?lang=en
https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-idw-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-idw-works.htm
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dard deviations are not used anywhere in the package. However, they may provide important
insight into the volatility of wind directions at each point and may thus be relevant for, e.g.,
computing confidence bands. Slot 5 (Elevation) holds the terrain elevation in meters, slot
6 (Slope) provides terrain slope in degrees, and slot 7 (SlopeDirection) gives the direction
of hillside, in degrees as well. Figure 3 presents a joint image plot for the data in the seven
slots (built-in data set).
The second data object in the e environment installed by wflo is e$FarmVars. This list object
contains a set of variables required for the functions of wflo and, among other things, controls
the “data window” of consideration if the full data set is present. $StartPoint, $EndPoint

and $Width control which area from the data set is used as the current wind farm area. In
general, $Width describes width (and height, as the area is assumed to be a square) of the
area used, in raster points. As the raster resolution is 200 m, the default value of $Width =
25 results in a square of 5 × 5 km. For convenience, e$FarmVars also contains the farm size
in meters in its variable $MeterWidth, which is computed as

e$FarmVars$MeterWidth <- e$FarmVars$Width * 200. (1)

In full mode (downloaded data set), $StartPoint = 2000, while in basic mode (built-in data
set), $StartPoint = 1. In both cases, $EndPoint is computed based on $StartPoint and
$Width following

e$FarmVars$EndPoint <- e$FarmVars$StartPoint + e$FarmVars$Width - 1, (2)

which results in e$FarmVars$EndPoint = 2024 in full mode and e$FarmVars$EndPoint = 24
in basic mode. Furthermore, e$FarmVars contains $MeterMinDist, which holds the minimum
distance between any two turbines in the wind farm. Its default value is 500 meters. As
internally, the wind farm is considered to be a unit square (automatically and irrespective of
the current $StartPoint, $Width, $EndPoint, and $MeterWidth), e$FarmVars also contains
a variable $MinDist for the minimum distance in unit space as

e$FarmVars$MinDist <- e$FarmVars$MeterMinDist / e$FarmVars$MeterWidth, (3)

which consequently defaults to 500 / 5000 = 0.1, i.e. one tenth of the farm square’s height or
width. e$FarmVars also contains variables $z, $z0, and $r0, which contain the turbines’ hub
height in meters (defaults to e$FarmVars$z = 100), the terrain’s roughness length required
for Jensen’s wake model (defaults to e$FarmVars$z0 = 0.1), and the turbines’ rotor radius in
meters (defaults to e$FarmVars$r0 = 45). Users should adjust these values according to their
turbine specifications or use the default values for benchmarking. Furthermore, e$FarmVars

contains the variables $UnitCost and $Price. $UnitCost is meant to carry a single turbine’s
yearly cost. If, for example, total turbine installation costs are 2 mio. EUR and the projected
life span of the turbine is 20 years, then the yearly cost is roughly 100,000 EUR, which is
also the default value for this item. Additional cost components such as wiring, (non-linear)
amortization, maintenance, opportunity cost, or others can be modeled using an alternative
cost function which can be plugged in easily (see below). Similarly, $Price contains the sale
price per megawatt hour. This defaults to an empirically reasonable average of 100 EUR.
However, if revenue is to be modeled in a more sophisticated fashion than using “constant price
times sale volume”, the necessary adjustments are easily performed (once again, see below).
Finally, e$FarmVars contains a vector object $BenchmarkSolution, which holds 40 values
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(20 pairs of x and y coordinates) representing a setup of 20 turbines within the standard data
set terrain. It has been obtained using optimizer genoud() of package rgenoud by Mebane
and Sekhon (2011) and provides a standard of comparison for future optimizers or can be
used as starting points for further exploring the feature space.
Changing, say, $r0 or $z, but more immediately, $StartPoint and $EndPoint, turns the
problem into an entirely new setup. For instance, assuming the full data set is present,
selecting

R> e$FarmVars$StartPoint <- 1800

R> e$FarmVars$Width <- 100

R> e$FarmVars$EndPoint <- e$FarmVars$StartPoint + e$FarmVars$Width - 1

R> e$FarmVars$MeterWidth <- 200 * e$FarmVars$Width

R> e$FarmVars$MinDist <- e$FarmVars$MeterMinDist / e$FarmVars$MeterWidth

provides an entirely new (and larger) testing ground. A huge multitude of optimization areas
is accessible that way, even allowing to immediately select costal regions, mountain regions,
or areas known to be especially apt or unsuitable to wind power plants.

2.2. Functions

The central function to wflo is Profit(). It takes a set of points in the unit square (turbine
locations) and based on the adjusted AEP in the farm specified via the e$FarmVars settings
object, checks whether the layout is valid (i.e. minimum distances are met for all turbines),
computes multiple Jensen wake penalties, generates the total marketable power production
of the specified layout, takes cost and sale price into consideration and finally computes the
farm’s economic profit. Since most numeric optimizers by default operate as a minimizer,
Profit() returns the negative profit, i.e. a negative number for positive actual profit values
and a positive number if cost is greater than revenue (negative actual profit).
Profit() calls Cost(), which is a stub function only returning the $UnitCost value from the
FarmVars object. For more sophisticated cost components, users should replace the Cost()

function by their own cost model. This can be done by embedding another function Cost()

in the e environment. Profit() will then operate on it immediately. Note that Cost() must
be a function that is provided with x and y (the turbine coordinates in the unit square) and
both, x and y, must be ∈ R

n, i.e. both variables are vectors of length n (the number of
turbines). An example for such a workflow is given in Section 3. Similarly, Yield() is a stub
looking up the adjusted AEP based on a given turbine location. If yield or revenue should
follow a more sophisticated model, replacing Yield() by that model would be the way to go.
Again, a plug-in yield function must be embedded in e, and Profit() will use it accordingly.
In contrast to Cost(), Yield() must be a function provided with x, y, and AEP. Here, x and
y must be ∈ R, i.e. single-valued variables for one turbine at a time. AEP will carry the AEP
values for the wind farm. The user function is not required to evaluate this, the object is
just provided for convenience. Note, however, that according to the calling convention, the
function must have a prototype declaration that expects that object.
PlotResult() is a convenience function that takes an optimizer result, i.e. an object as
returned by optim(), visualizes the adjusted yield “landscape” in the current wind farm
setting, superimposes a contour plot and a vector field representing the wind directions and
then draws the provided points (turbines). For example, a usual optimization run can be
performed in the first place via
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R> library(wflo)

R> NumTurbines <- 4

R> set.seed(2763)

R> Result <- optim(par = runif(NumTurbines * 2), fn = Profit,

+ method = "L-BFGS-B", lower = rep(0, NumTurbines * 2),

+ upper = rep(1, NumTurbines * 2))

R> Result

$par

[1] 0.004135149 0.182979427 0.833207494 0.364683764 0.038710320

[6] 0.036169698 0.700000355 0.101751237

$value

[1] -2103136

$counts

function gradient

63 63

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Afterward, a call to PlotResult(Result) will produce the image in Figure 4. Lighter shades
of blue indicate larger values of AEP, darker ones indicate low AEP values. The actual AEP
values are also indicated via the contour lines. The area selected represents a rather complex
AEP “terrain”, a challenging task to optimizers. The light arrows indicate the main wind
directions, while the grey arrows add/subtract half the standard deviation to/from the main
direction to indicate the direction volatility. The gold dots, finally, show the turbines’ ar-
rangement. Figure 5 shows the alternative testing ground presented in Section 2.1, together
with a (not necessarily optimal) solution of 20 turbines (gold dots).
Another “post-optimization” result inspection functionality is provided by ShowWakePenalizers().
A call to ShowWakePenalizers(Result), where again Result is the optimizer’s output (list
object containing at least a “$par” slot), draws a reduced field (neglecting terrain and con-
tour, yet imposing wind directions) and in gold, draws all points (turbines) that are in the
wake of other turbines (called “sufferers” in the plot’s legend) while in grey, all points are
drawn causing wake effects on other points (called “causers”). The Jensen cones imposed on
the sufferers are drawn in red. Figure 6 shows an example. Using ShowWakePenalizers(),
it can be easily inspected whether the optimizer puts emphasis on avoiding wake effects or,
vice versa, whether an optimizer finds an optimal arrangement although it means that some
points cause wake effects on others.
Function ProfitContributors() computes the profit contribution of each point (turbine) as
a part of an optimization result. That way, the setup location and wake influence of each point
can be analyzed in greater detail. Calling ProfitContributors(Result) returns a matrix
with two columns and as many rows as points present in the provided list object. The first
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Figure 1: Adjusted yield (AEP) in Germany.

column represents turbine IDs, the second column contains the respective profit contributions
of each point. If the solution provided is valid in terms of the minimum distance criterion, the
sum of values in the second column will be identical to the (absolute value of) the returned
value of Profit().
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3. Use Cases

It is the foremost intention of wflo to be compatible to the R optimization quasi-standard,
i.e. optimizers are minimizers, they expect start values and the function to optimize as
their parameters and that function is to be provided with nothing but a vector object of
values. The optimizer returns a list which contains at least $par and $value. With wflo,
researchers in WFLO can focus on developing and providing a standard-compliant optimizer
and use it to measure its performance on the wind farm setting provided by the package.
An actual wflo workflow of course implies that the user utilizes a self-developed plug-in op-
timization function. Since none is available here, we merely show a set of sample workflows
based on pre-existing optimizers. As can be seen, a wflo use case is as simple as just min-
imizing Profit() using an optimizer. Post-optimization analysis can be performed using
PlotResult(), ShowWakePenalizers(), ProfitContributors(), and all arbitrary analysis
procedures for optimizers.
In R, most optimizers observe the quasi-standard described above. The only additional re-
quirement for wflo is that the optimizer respects box constraints. However, for optimizers
that do not, a crude wrapper is presented below. As a first use case, package nloptr by
Johnson and Ypma (n.d.) provides a controlled random search optimizer (CRS). It can be
utilized like this:

R> library(nloptr)

R> set.seed(1357)

R> Result <- crs2lm(x0 = runif(NumTurbines * 2), fn = Profit,

+ lower = rep(0, NumTurbines * 2), upper = rep(1, NumTurbines * 2))

R> Result

$par

[1] 0.2394255 1.0000000 0.3670594 0.1329830 0.5197366 0.0000000

[7] 0.0000000 1.0000000

$value

[1] -2359115

$iter

[1] 10000

$convergence

[1] 5

$message

[1] "NLOPT_MAXEVAL_REACHED: Optimization stopped because maxeval (above) was reached."

Many WFLO researchers use genetic algorithms to optimize their wind farms. In R, a sophis-
ticated GA implementation is provided via package rgenoud:

R> library(rgenoud)

R> set.seed(1357)
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R> Dom = cbind(rep(0, 2 * NumTurbines), rep(1, 2 * NumTurbines))

R> Result <- genoud(fn = Profit, nvars = 2 * NumTurbines,

+ starting.values = runif(NumTurbines * 2), Domains = Dom,

+ boundary.enforcement = 2, print.level = 0)

R> Result

$value

[1] -2445920

$par

[1] 0.63250725 0.04927494 0.74812584 0.59172686 0.58084278 0.41179594

[7] 0.08776379 0.10433266

$gradients

[1] 0 0 0 0 0 0 NaN 0

$generations

[1] 13

$peakgeneration

[1] 2

$popsize

[1] 1000

$operators

[1] 122 125 125 125 125 126 125 126 0

Finally, particle swarm optimization (PSO) is another metaheuristic frequently used in WFLO.
Package pso by Bendtsen (n.d.) provides a straight-forward implementation:

R> library(pso)

R> set.seed(1357)

R> Result <- psoptim(par = runif(NumTurbines * 2), fn = Profit,

+ lower = rep(0, NumTurbines * 2), upper = rep(1, NumTurbines * 2))

R> Result

$par

[1] 0.9153697 0.3092070 0.9651576 0.0000000 0.5485764 0.0000000

[7] 0.6916834 0.5013425

$value

[1] -2445920

$counts

function iteration restarts

15000 1000 0
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$convergence

[1] 2

$message

[1] "Maximal number of iterations reached"

For optimizers that do not provide box-constraint compliance, e.g. the SANN (simulated
annealing) optimizer that is part of optim(), a simple wrapper can look like this:

R> lower <- rep(0, NumTurbines * 2)

R> upper <- rep(1, NumTurbines * 2)

R> Wrapper <- function(X)

+ {

+ xSel <- seq(from = 1, to = length(X) - 1, by = 2)

+ x <- X[xSel]

+ y <- X[xSel + 1]

+

+ if (any(x < lower) | any(x > upper) | any(y < lower) | any(y > upper))

+ {

+ return(sum(rep(e$FarmVars$UnitCost, length(x))))

+ }

+

+ return(Profit(X))

+ }

R> set.seed(1357)

R> Result <- optim(par = runif(NumTurbines * 2), fn = Wrapper,

+ method = "SANN")

R> Result

$par

[1] 0.16629696 0.96090420 0.55578489 0.02630332 0.83219195 0.34124568

[7] 0.69785617 0.03611307

$value

[1] -2291240

$counts

function gradient

10000 NA

$convergence

[1] 0

$message

NULL
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Returning the sum of $UnitCost if any point violates the constraints may seem crude. More
sophisticated ways to deal with that are up to the researcher. For now, this simple wrapper
gets the job done.
Replacing Cost() and Yield() functions by user defined code is straightforward and enables
the researcher to incorporate more sophisticated models for these components, still using the
integrated wlfo workflow. For example,

R> e$Cost <- function(x, y) #x, y \in R^n

+ {

+ retVal <- rep(e$FarmVars$UnitCost, min(length(x), length(y)))

+ retVal[x > 0.5] <- retVal[x > 0.5] * 2

+ return(retVal)

+ }

embeds a cost function that overly punishes turbine locations on the right (or eastern) half of
the unit square. There is no fundamental reason to this as it is just a crude and simple proof-
of-concept example. In practice, users may want to setup a function that instead encompasses,
e.g., (possibly non-linear) maintenance or opportunity cost. As to be expected, an optimizer
run

R> set.seed(1357)

R> Result <- psoptim(par = runif(NumTurbines * 2), fn = Profit,

+ lower = rep(0, NumTurbines * 2), upper = rep(1, NumTurbines * 2))

R> Result

$par

[1] 0.0527673590 0.1154515810 0.3739443954 0.1494660420 0.3895410254

[6] 0.4089666057 0.0000707834 1.0000000000

$value

[1] -2445920

$counts

function iteration restarts

15000 1000 0

$convergence

[1] 2

$message

[1] "Maximal number of iterations reached"

R> rm(Cost, envir = e)

returns locations on the left (or western) half of the wind farm. Note the last code line to
remove the superimposed cost function. A more realistic idea for a cost based model could
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be that in many cases, turbine locations should a) keep their minimum distances, b) possess
as little wake as possible, and c) still be as close to one another as possible to at the same
time minimize wiring cost. A cost function that obtains that may be

R> e$Cost <- function(x, y)

+ {

+ n <- min(length(x), length(y))

+

+ retVal <- rep(e$FarmVars$UnitCost, n)

+

+ DistMat <- matrix(ncol = n, nrow = n)

+ for (i in 1:n)

+ {

+ for (j in 1:n)

+ {

+ DistMat[i, j] <- sqrt((x[i] - x[j]) ^ 2 + (y[i] - y[j]) ^ 2)

+ }

+ }

+ SumDist <- as.numeric()

+ for (i in 1:n) SumDist[i] <- sum(DistMat[i, ])

+

+ retVal <- retVal * SumDist

+ return(retVal)

+ }

R> rm(Cost, envir = e)

Similarly to Cost(), users can incorporate an alternative yield function that provides yield
for each turbine individually. Profit() will automatically impose Jensen wake penalties on
the result. For instance,

R> e$Yield <- function(x, y, AEP) #x, y \in R

+ {

+ return(x + y)

+ }

is again a crude example. The function does not even evaluate AEP and provides a strong
tendency of the turbine layout result to locate turbines in the topright corner, where both, x
and y, take their largest values, however still keeping their minimum distance and still subject
to wake penalties. A run

R> set.seed(1357)

R> Result <- psoptim(par = runif(NumTurbines * 2), fn = Profit,

+ lower = rep(0, NumTurbines * 2), upper = rep(1, NumTurbines * 2))

R> Result

$par

[1] 0.8 1.0 0.9 1.0 1.0 0.9 1.0 1.0
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$value

[1] 399992.4

$counts

function iteration restarts

15000 1000 0

$convergence

[1] 2

$message

[1] "Maximal number of iterations reached"

R> rm(Yield, envir = e)

returns a result as expected in that sense. Note, again, the last code line to remove the
superimposed yield function.
The values returned by optimizers operating on the standard cost and yield functions through
Profit() can be interpreted as negative profits in currency (Euros) immediately. As pso,
CRS, and genoud each return a good result of -2445920 (pso setup shown in Figure 7), the
setups found by these optimizers generate 2.4 mio. Euros of profit per year. The setup found
via SANN generates 2.3 mio. Euros, a simple L-BFGS-B approach only 2.1 mio. Euros.
Optimizers should compete in terms of the returned values, higher (absolute) profits are
better.
Using function ProfitContributors(), the influence of each turbine on the total profit can
be analyzed using the following code chunk, while using the second column values as labels
for PlotResult() results in Figure 8:

R> NumTurbines <- 4

R> set.seed(1235)

R> Result <- optim(par = runif(NumTurbines * 2), fn = Profit,

+ method = "L-BFGS-B", lower = rep(0, NumTurbines * 2),

+ upper = rep(1, NumTurbines * 2))

R> Contribs <- ProfitContributors(Result)

R> Contribs

Turbine Profit

[1,] 1 473491.1

[2,] 2 499280.9

[3,] 3 554724.1

[4,] 4 324832.1

R> PlotResult(Result, DoLabels = TRUE, Labels = Contribs[, 2])

We emphasize that increasing the number of turbines to a more reasonable number increases
feature space dimension, and with it, the necessity for increased iterations, population sizes,
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generations, or whatever tuning parameter necessary for the optimizer to more profoundly
explore the problem space. Gradient-based optimizers might come in handy, then. So far,
for a 20 turbines setting, e$FarmVars$BenchmarkSolution provides an orientation (the plots
are shows in Figures 9 and 10, respectively):

R> Result <- list(par = e$FarmVars$BenchmarkSolution)

R> Result$value <- Profit(Result$par)

R> Result

$par

[1] 0.66681197 0.51920366 0.40001173 0.73883743 0.39199855 0.29543266

[7] 0.83333332 0.36453646 0.84200820 0.17836044 0.58333332 0.20833333

[13] 0.77751433 0.57246404 0.13369234 0.08333335 0.00000000 1.00000000

[19] 0.04166667 0.12246495 0.53759769 0.03688077 0.57690332 0.41578636

[25] 0.75026990 0.42526027 0.63112939 0.07676504 0.98465420 0.02097486

[31] 0.44808668 0.64066857 0.43917715 0.88938042 0.37499991 0.19688800

[37] 0.40500598 0.40134872 0.91059693 0.08887331

$value

[1] -12053607

R> PlotResult(Result)

R> ShowWakePenalizers(Result)

4. Conclusion

wflo is an approach to provide a level playing field for researchers in WFLO: It makes the
necessary data available at high quality and contains a useful set of functions that takes
the necessity to implement a wake model and a specific problem function away from the
researcher, enabling her/him to entirely focus on the actual job, which is the optimizer itself.
Furthermore, a unified benchmark is provided.
A number of turbines to place of around four is a good start to obtain first experience with
wflo. Things become however really challenging if, say, 20 turbines are to be placed. Every
WFLO researcher is invited to try her/his approach with wflo to get to see how competitive
the contributed approach really is.



Carsten Croonenbroeck, David Hennecke 15

Figure 2: Wind speed and wind direction in Germany.
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AEP Wind speed

Wind direction SD of wind direction

Elevation Slope

Hillside

Figure 3: Image plots for the seven slots in FarmData. Lighter shades of blue indicate larger
values, darker ones indicate low values.
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Figure 4: PlotResult() showing the benchmark area, four turbines, L-BFGS-B optimizer.
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Figure 5: Alternative testing ground, together with a first solution.
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Figure 6: ShowWakePenalizers() showing the wake structure in the benchmark area, four
turbines, L-BFGS-B optimizer.
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Figure 7: PlotResult() showing the pso optimizer result, four turbines.
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Figure 8: PlotResult() showing an L-BFGS-B result (four turbines), imposing the values
returned by ProfitContributors() as labels.
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Figure 9: PlotResult() showing the 20 turbines benchmark setup result.
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