The lc50
dataset provided with webchem
contains acute ecotoxicity of 124 insecticides. We’ll work with a subset of these to obtain chemical names and octanal/water partitioning coefficients from PubChem, and gas chromatography retention indices from the NIST Web Book.
head(lc50)
#> cas value
#> 4 50-29-3 12.415277
#> 12 52-68-6 1.282980
#> 15 55-38-9 12.168138
#> 18 56-23-5 35000.000000
#> 21 56-38-2 1.539119
#> 36 57-74-9 98.400000
lc50_sub <- lc50[1:15, ]
Usually a webchem
workflow starts with translating and retrieving chemical identifiers since most chemical information databases use their own internal identifiers.
First, we will covert CAS numbers to InChIKey identifiers using the Chemical Translation Service. Then, we’ll use these InChiKeys to get Pubchem CompoundID numbers, to use for retrieving chemical properties from PubChem.
lc50_sub$inchikey <- cts_convert(lc50_sub$cas, from = "CAS", to = "InChIKey", choices = 1, verbose = FALSE)
head(lc50_sub)
#> cas value inchikey
#> 4 50-29-3 12.415277 YVGGHNCTFXOJCH-UHFFFAOYSA-N
#> 12 52-68-6 1.282980 NFACJZMKEDPNKN-UHFFFAOYSA-N
#> 15 55-38-9 12.168138 PNVJTZOFSHSLTO-UHFFFAOYSA-N
#> 18 56-23-5 35000.000000 VZGDMQKNWNREIO-UHFFFAOYSA-N
#> 21 56-38-2 1.539119 LCCNCVORNKJIRZ-UHFFFAOYSA-N
#> 36 57-74-9 98.400000 BIWJNBZANLAXMG-YQELWRJZSA-N
any(is.na(lc50_sub$inchikey))
#> [1] FALSE
Great, now we can retrieve PubChem CIDs. All get_*()
functions return a data frame containing the query and the retrieved identifier. We can merge this with our dataset with dplyr::full_join()
x <- get_cid(lc50_sub$inchikey, from = "inchikey", match = "first", verbose = FALSE)
library(dplyr)
lc50_sub2 <- full_join(lc50_sub, x, by = c("inchikey" = "query"))
head(lc50_sub2)
#> cas value inchikey cid
#> 1 50-29-3 12.415277 YVGGHNCTFXOJCH-UHFFFAOYSA-N 3036
#> 2 52-68-6 1.282980 NFACJZMKEDPNKN-UHFFFAOYSA-N 5853
#> 3 55-38-9 12.168138 PNVJTZOFSHSLTO-UHFFFAOYSA-N 3346
#> 4 56-23-5 35000.000000 VZGDMQKNWNREIO-UHFFFAOYSA-N 5943
#> 5 56-38-2 1.539119 LCCNCVORNKJIRZ-UHFFFAOYSA-N 991
#> 6 57-74-9 98.400000 BIWJNBZANLAXMG-YQELWRJZSA-N 11954021
Functions that query chemical information databases begin with a prefix that matches the database. For example, functions to query PubChem begin with pc_
and functions to query ChemSpider begin with cs_
. In this example, we’ll get the names and log octanal/water partitioning coefficients for each compound using PubChem, and the WHO acute toxicity rating from the PAN Pesticide database.
y <- pc_prop(lc50_sub2$cid, properties = c("IUPACName", "XLogP"))
#> https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/property/IUPACName,XLogP/JSON
y$CID <- as.character(y$CID)
lc50_sub3 <- full_join(lc50_sub2, y, by = c("cid" = "CID"))
head(lc50_sub3)
#> cas value inchikey cid
#> 1 50-29-3 12.415277 YVGGHNCTFXOJCH-UHFFFAOYSA-N 3036
#> 2 52-68-6 1.282980 NFACJZMKEDPNKN-UHFFFAOYSA-N 5853
#> 3 55-38-9 12.168138 PNVJTZOFSHSLTO-UHFFFAOYSA-N 3346
#> 4 56-23-5 35000.000000 VZGDMQKNWNREIO-UHFFFAOYSA-N 5943
#> 5 56-38-2 1.539119 LCCNCVORNKJIRZ-UHFFFAOYSA-N 991
#> 6 57-74-9 98.400000 BIWJNBZANLAXMG-YQELWRJZSA-N 11954021
#> IUPACName XLogP
#> 1 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene 6.9
#> 2 2,2,2-trichloro-1-dimethoxyphosphorylethanol 0.5
#> 3 dimethoxy-(3-methyl-4-methylsulfanylphenoxy)-sulfanylidene-lambda5-phosphane 4.1
#> 4 tetrachloromethane 2.8
#> 5 diethoxy-(4-nitrophenoxy)-sulfanylidene-lambda5-phosphane 3.8
#> 6 (1R,7S)-1,3,4,7,8,9,10,10-octachlorotricyclo[5.2.1.02,6]dec-8-ene 4.9
The IUPAC names are long and unwieldy, and one could use pc_synonyms()
to choose better names. Several other functions return synonyms as well, even though they are not explicitly translator type functions. We’ll see an example of that next.
Many of the chemical databases webchem
can query contain vast amounts of information in a variety of structures. Therefore, some webchem
functions return nested lists rather than data frames. pan_query()
is one such function.
out <- pan_query(lc50_sub3$cas, verbose = FALSE)
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
#> Warning in lapply(out[tonum], as.numeric): NAs introduced by coercion
out
is a nested list which you can inspect with View()
. It has an element for each query, and within each query, many elements corresponding to different properties in the database. To extract a single property from all queries, we need to use a mapping function such as sapply()
or one of the map_*()
functions from the purrr
package.
lc50_sub3$who_tox <- sapply(out, function(y) y$`WHO Acute Toxicity`)
lc50_sub3$common_name <- sapply(out, function(y) y$`Chemical name`)
# #equivalent with purrr package:
# lc50_sub3$who_tox <- map_chr(out, pluck, "WHO Acute Toxicity")
# lc50_sub3$common_name <- map_chr(out, pluck, "Chemical name")
#tidy up columns
lc50_done <- dplyr::select(lc50_sub3, common_name, cas, inchikey, XLogP, who_tox)
head(lc50_done)
#> common_name cas inchikey XLogP who_tox
#> 1 DDT, p,p' 50-29-3 YVGGHNCTFXOJCH-UHFFFAOYSA-N 6.9 II, Moderately Hazardous
#> 2 Trichlorfon 52-68-6 NFACJZMKEDPNKN-UHFFFAOYSA-N 0.5 II, Moderately Hazardous
#> 3 Fenthion 55-38-9 PNVJTZOFSHSLTO-UHFFFAOYSA-N 4.1 II, Moderately Hazardous
#> 4 Carbon tetrachloride 56-23-5 VZGDMQKNWNREIO-UHFFFAOYSA-N 2.8 Not Listed
#> 5 Parathion 56-38-2 LCCNCVORNKJIRZ-UHFFFAOYSA-N 3.8 Ia, Extremely Hazardous
#> 6 Chlordane 57-74-9 BIWJNBZANLAXMG-YQELWRJZSA-N 4.9 II, Moderately Hazardous