
Package ‘vimp’
June 18, 2020

Type Package

Title Perform Inference on Algorithm-Agnostic Variable Importance

Version 2.1.0

Description Calculate point estimates of and valid confidence intervals for
nonparametric, algorithm-agnostic variable importance measures in high and low dimensions,
using flexible estimators of the underlying regression functions. For more information
about the methods, please see Williamson et al. (Biomet-
rics, 2020), Williamson et al. (arXiv, 2020+) <arXiv:2004.03683>, and Williamson and Feng (ICML, 2020) <arXiv:>.

Depends R (>= 3.1.0)

Imports SuperLearner, stats, dplyr, magrittr, ROCR, tibble, rlang,
MASS

Suggests knitr, rmarkdown, gam, xgboost, glmnet, ranger, polspline,
quadprog, covr, testthat, ggplot2, cowplot, RCurl, forcats

License MIT + file LICENSE

URL https://github.com/bdwilliamson/vimp

BugReports https://github.com/bdwilliamson/vimp/issues

LazyData TRUE

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Brian D. Williamson [aut, cre]
(<https://orcid.org/0000-0002-7024-548X>),
Noah Simon [aut] (<https://orcid.org/0000-0002-8985-2474>),
Marco Carone [aut] (<https://orcid.org/0000-0003-2106-0953>)

Maintainer Brian D. Williamson <brianw26@uw.edu>

Repository CRAN

Date/Publication 2020-06-18 18:20:02 UTC

1

https://github.com/bdwilliamson/vimp
https://github.com/bdwilliamson/vimp/issues

2 R topics documented:

R topics documented:

average_vim . 3
cv_predictiveness_point_est . 4
cv_predictiveness_update . 5
cv_vim . 6
cv_vimp_point_est . 10
cv_vimp_update . 11
format.vim . 12
measure_accuracy . 13
measure_auc . 13
measure_cross_entropy . 14
measure_deviance . 14
measure_mse . 15
measure_r_squared . 15
merge_vim . 16
predictiveness_ci . 17
predictiveness_point_est . 18
predictiveness_se . 19
predictiveness_update . 19
print.vim . 20
sample_subsets . 21
spvim_ics . 21
spvim_se . 22
sp_vim . 23
vim . 25
vimp . 29
vimp_accuracy . 30
vimp_anova . 32
vimp_auc . 35
vimp_ci . 37
vimp_deviance . 38
vimp_hypothesis_test . 40
vimp_point_est . 42
vimp_regression . 43
vimp_rsquared . 45
vimp_se . 48
vimp_update . 49

Index 50

average_vim 3

average_vim Average multiple independent importance estimates

Description

Average the output from multiple calls to vimp_regression, for different independent groups, into
a single estimate with a corresponding standard error and confidence interval.

Usage

average_vim(..., weights = rep(1/length(list(...)), length(list(...))))

Arguments

... an arbitrary number of vim objects.

weights how to average the vims together, and must sum to 1; defaults to 1/(number of
vims) for each vim, corresponding to the arithmetic mean

Value

an object of class vim containing the (weighted) average of the individual importance estimates, as
well as the appropriate standard error and confidence interval. This results in a list containing:

• call - the call to average_vim()

• s - a list of the column(s) to calculate variable importance for

• SL.library - a list of the libraries of learners passed to SuperLearner

• full_fit - a list of the fitted values of the chosen method fit to the full data

• red_fit - a list of the fitted values of the chosen method fit to the reduced data

• est- a vector with the corrected estimates

• naive- a vector with the naive estimates

• update- a list with the influence curve-based updates

• mat - a matrix with the estimated variable importance, the standard error, and the (1 − α) ×
100% confidence interval

• full_mod - a list of the objects returned by the estimation procedure for the full data regression
(if applicable)

• red_mod - a list of the objects returned by the estimation procedure for the reduced data
regression (if applicable)

• alpha - the level, for confidence interval calculation

• y - a list of the outcomes

4 cv_predictiveness_point_est

Examples

library(SuperLearner)
library(ranger)
generate the data
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

get estimates on independent splits of the data
samp <- sample(1:n, n/2, replace = FALSE)

using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y[samp], X = x[samp,], indx = 2, V = 2,

run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))

est_1 <- vimp_regression(Y = y[-samp], X = x[-samp,], indx = 2, V = 2,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))

ests <- average_vim(est_1, est_2, weights = c(1/2, 1/2))

cv_predictiveness_point_est

Estimate a nonparametric predictiveness functional using cross-
validation

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

cv_predictiveness_point_est(
fitted_values,
y,
weights = rep(1, length(y)),
folds,
type = "r_squared",

cv_predictiveness_update 5

na.rm = FALSE
)

Arguments

fitted_values fitted values from a regression function; a list of length V, where each object is
a set of predictions on the validation data.

y the outcome.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

folds the cross-validation folds

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

cv_predictiveness_update

Estimate the influence function for an estimator of predictiveness

Description

Estimate the influence function for the given measure of predictiveness.

Usage

cv_predictiveness_update(
fitted_values,
y,
folds,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

6 cv_vim

Arguments

fitted_values fitted values from a regression function; a list of length V, where each object is
a set of predictions on the validation data.

y the outcome.

folds the cross-validation folds

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which risk parameter are you estimating (defaults to r_squared, for the R^2)?

na.rm logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated influence function values for the given measure of predictiveness.

cv_vim Nonparametric Variable Importance Estimates and Inference using
Cross-fitting

Description

Compute estimates and confidence intervals for the nonparametric variable importance parameter
of interest, using cross-fitting. This essentially involves splitting the data into V train/test splits;
train the learners on the training data, evaluate importance on the test data; and average over these
splits.

Usage

cv_vim(
Y,
X,
f1,
f2,
indx = 1,
V = length(unique(folds)),
folds = NULL,
stratified = FALSE,
weights = rep(1, length(Y)),
type = "r_squared",
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),

cv_vim 7

alpha = 0.05,
delta = 0,
scale = "identity",
na.rm = FALSE,
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

folds the folds to use, if f1 and f2 are supplied. A list of length two; the first element
provides the outer folds (for hypothesis testing), while the second element is a
list providing the inner folds (for cross-validation).

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type the type of parameter (e.g., ANOVA-based is "anova").

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

scale should CIs be computed on original ("identity") or logit ("logit") scale?

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

... other arguments to the estimation tool, see "See also".

8 cv_vim

Details

We define the population variable importance measure (VIM) for the group of features (or single
feature) s with respect to the predictiveness measure V by

ψ0,s := V (f0, P0)− V (f0,s, P0),

where f0 is the population predictiveness maximizing function, f0,s is the population predictiveness
maximizing function that is only allowed to access the features with index not in s, and P0 is the
true data-generating distribution. Cross-fitted VIM estimates are obtained by first splitting the data
into K folds; then using each fold in turn as a hold-out set, constructing estimators fn,k and fn,k,s
of f0 and f0,s, respectively on the training data and estimator Pn,k of P0 using the test data; and
finally, computing

ψn,s := K(−1)
K∑

k=1

{V (fn,k, Pn,k)− V (fn,k,s, Pn,k)}

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results
in a list containing:

• call - the call to cv_vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data (a list, for train and test data)

• red_fit - the fitted values of the chosen method fit to the reduced data (a list, for train and test
data)

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• naives - the naive estimator on each fold

• updates - the influence curve-based update for each fold

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• folds - the folds used for hypothesis testing and cross-validation

• y - the outcome

• weights - the weights

• mat- a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

cv_vim 9

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.ranger")

using Super Learner (with a small number of folds, for illustration only)

set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 2,
type = "r_squared", run_regression = TRUE,
SL.library = learners, cvControl = list(V = 2), alpha = 0.05)

--
doing things by hand, and plugging them in (with a small number of folds, for illustration only)
--
set up the folds
indx <- 2
V <- 2
set.seed(4747)
outer_folds <- sample(rep(seq_len(2), length = n))
inner_folds_1 <- sample(rep(seq_len(V), length = sum(outer_folds == 1)))
inner_folds_2 <- sample(rep(seq_len(V), length = sum(outer_folds == 2)))
y_1 <- y[outer_folds == 1, , drop = FALSE]
x_1 <- x[outer_folds == 1, , drop = FALSE]
y_2 <- y[outer_folds == 2, , drop = FALSE]
x_2 <- x[outer_folds == 2, , drop = FALSE]
get the fitted values by fitting the super learner on each pair
fhat_ful <- list()
fhat_red <- list()
for (v in 1:V) {

fit super learner

10 cv_vimp_point_est

fit <- SuperLearner::SuperLearner(Y = y_1[inner_folds_1 != v, , drop = FALSE],
X = x_1[inner_folds_1 != v, , drop = FALSE],
SL.library = learners, cvControl = list(V = V))
fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred
get predictions on the validation fold
fhat_ful[[v]] <- SuperLearner::predict.SuperLearner(fit,
newdata = x_1[inner_folds_1 == v, , drop = FALSE])$pred
fit the super learner on the reduced covariates
red <- SuperLearner::SuperLearner(Y = y_2[inner_folds_2 != v, , drop = FALSE],
X = x_2[inner_folds_2 != v, -indx, drop = FALSE],
SL.library = learners, cvControl = list(V = V))
get predictions on the validation fold
fhat_red[[v]] <- SuperLearner::predict.SuperLearner(red,
newdata = x_2[inner_folds_2 == v, -indx, drop = FALSE])$pred

}
est <- cv_vim(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2,
V = V, folds = list(outer_folds = outer_folds,
inner_folds = list(inner_folds_1, inner_folds_2)),
type = "r_squared", run_regression = FALSE, alpha = 0.05)

cv_vimp_point_est Estimate variable importance using cross-validation

Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction
for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

cv_vimp_point_est(
full,
reduced,
y,
folds,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

Arguments

full fitted values from a regression of the outcome on the full set of covariates; a list
of length V, where each object is a set of predictions on the validation data.

reduced fitted values from a regression of the fitted values from the full regression on
the reduced set of covariates; a list of length V, where each object is a set of
predictions on the validation data.

cv_vimp_update 11

y the outcome.

folds a list of outer and inner folds (outer for hypothesis testing, inner for cross-
validation)

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.

cv_vimp_update Estimate the influence function for variable importance parameters

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

cv_vimp_update(
full,
reduced,
y,
folds,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

Arguments

full fitted values from a regression of the outcome on the full set of covariates; a list
of length V, where each object is a set of predictions on the validation data.

reduced fitted values from a regression of the fitted values from the full regression on
the reduced set of covariates; a list of length V, where each object is a set of
predictions on the validation data.

y the outcome.

12 format.vim

folds a list of outer and inner folds (outer for hypothesis testing, inner for cross-
validation)

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.

format.vim Format a vim object

Description

Nicely formats the output from a vim object for printing.

Usage

S3 method for class 'vim'
format(x, ...)

Arguments

x the vim object of interest.

... other options, see the generic format function.

measure_accuracy 13

measure_accuracy Estimate the classification accuracy

Description

Compute nonparametric estimate of classification accuracy.

Usage

measure_accuracy(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated classification accuracy of the fitted regression function, and (2)
the estimated influence function.

measure_auc Estimate area under the receiver operating characteristic curve (AUC)

Description

Compute nonparametric estimate of AUC.

Usage

measure_auc(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated AUC of the fitted regression function, and (2) the estimated
influence function.

14 measure_deviance

measure_cross_entropy Estimate the cross-entropy

Description

Compute nonparametric estimate of cross-entropy.

Usage

measure_cross_entropy(
fitted_values,
y,
weights = rep(1, length(y)),
na.rm = FALSE

)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated cross-entropy of the fitted regression function, and (2) the esti-
mated influence function.

measure_deviance Estimate the deviance

Description

Compute nonparametric estimate of deviance.

Usage

measure_deviance(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

measure_mse 15

Value

A named list of: (1) the estimated deviance of the fitted regression function, and (2) the estimated
influence function.

measure_mse Estimate mean squared error

Description

Compute nonparametric estimate of mean squared error.

Usage

measure_mse(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated mean squared error of the fitted regression function, and (2) the
estimated influence function.

measure_r_squared Estimate R-squared Compute nonparametric estimate of R-squared.

Description

Estimate R-squared Compute nonparametric estimate of R-squared.

Usage

measure_r_squared(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights (IPW, etc.).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

16 merge_vim

Value

A named list of: (1) the estimated R-squared of the fitted regression function, and (2) the estimated
influence function.

merge_vim Merge multiple vim objects into one

Description

Take the output from multiple different calls to vimp_regression and merge into a single vim
object; mostly used for plotting results.

Usage

merge_vim(...)

Arguments

... an arbitrary number of vim objects, separated by commas.

Value

an object of class vim containing all of the output from the individual vim objects. This results in a
list containing:

• call - the call to merge_vim()

• s - a list of the column(s) to calculate variable importance for

• SL.library - a list of the libraries of learners passed to SuperLearner

• full_fit - a list of the fitted values of the chosen method fit to the full data

• red_fit - a list of the fitted values of the chosen method fit to the reduced data

• est- a vector with the corrected estimates

• naive- a vector with the naive estimates

• update- a list with the influence curve-based updates

• se- a vector with the standard errors

• ci- a matrix with the CIs

• mat - a tibble with the estimated variable importance, the standard errors, and the (1 − α) ×
100% confidence intervals

• full_mod - a list of the objects returned by the estimation procedure for the full data regression
(if applicable)

• red_mod - a list of the objects returned by the estimation procedure for the reduced data
regression (if applicable)

• alpha - a list of the levels, for confidence interval calculation

predictiveness_ci 17

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,

run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))

est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 2))

ests <- merge_vim(est_1, est_2)

predictiveness_ci Confidence intervals for measures of predictiveness

Description

Compute confidence intervals for the true measure of predictiveness.

Usage

predictiveness_ci(est, se, level = 0.95, one_sided = FALSE)

Arguments

est estimate of predictiveness, e.g., from a call to predictiveness_point_est.

se estimate of the standard error of est, e.g., from a call to vimp_se.

level confidence interval type (defaults to 0.95).

one_sided should one-sided intervals be returned? (defaults to FALSE)

18 predictiveness_point_est

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true predictiveness of the given group of covariates.

predictiveness_point_est

Estimate a nonparametric predictiveness functional

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

predictiveness_point_est(
fitted_values,
y,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

predictiveness_se 19

predictiveness_se Estimate standard errors for measures of predictiveness

Description

Compute standard error estimates for estimates of measures of predictiveness.

Usage

predictiveness_se(est, update, denom = NULL, n = length(update), na.rm = FALSE)

Arguments

est the estimate of variable importance.

update the influence curve-based update.

denom a list of point estimate and influence curve for the denominator (if any) to make
the measure of predictiveness interpretable.

n the sample size.

na.rm logical; should NA’s be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated measure of predictiveness for the given group of covariates.

predictiveness_update Estimate the influence function for an estimator of predictiveness

Description

Estimate the influence function for the given measure of predictiveness.

Usage

predictiveness_update(
fitted_values,
y,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

20 print.vim

Arguments

fitted_values fitted values from a regression function.

y the outcome.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which risk parameter are you estimating (defaults to r_squared, for the R^2)?

na.rm logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated influence function values for the given measure of predictiveness.

print.vim Print a vim object

Description

Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage

S3 method for class 'vim'
print(x, ...)

Arguments

x the vim object of interest.

... other options, see the generic print function.

sample_subsets 21

sample_subsets Create necessary objects for SPVIMs

Description

Creates the Z and W matrices and a list of sampled subsets, S, for SPVIM estimation.

Usage

sample_subsets(p, gamma, n)

Arguments

p the number of covariates

gamma the fraction of the sample size to sample (e.g., gamma = 1 means sample n sub-
sets)

n the sample size

Value

a list, with elements Z (the matrix encoding presence/absence of each feature in the uniquely sam-
pled subsets), S (the list of unique sampled subsets), W (the matrix of weights), and z_counts (the
number of times each subset was sampled)

Examples

p <- 10
gamma <- 1
n <- 100
set.seed(100)
subset_lst <- sample_subsets(p, gamma, n)

spvim_ics Influence function estimates for SPVIMs

Description

Compute the influence functions for the contribution from sampling observations and subsets.

Usage

spvim_ics(Z, z_counts, W, v, psi, G, c_n, ics, measure)

22 spvim_se

Arguments

Z the matrix of presence/absence of each feature (columns) in each sampled subset
(rows)

z_counts the number of times each unique subset was sampled

W the matrix of weights

v the estimated predictiveness measures

psi the estimated SPVIM values

G the constraint matrix

c_n the constraint values

ics a matrix of influence function values for each predictiveness measure

measure the type of measure (e.g., "r_squared" or "auc")

Details

The processes for sampling observations and sampling subsets are independent. Thus, we can
compute the influence function separately for each sampling process. For further details, see the
paper by Williamson and Feng (2020).

Value

a named list of length 2; contrib_v is the contribution from estimating V, while contrib_s is the
contribution from sampling subsets.

spvim_se Standard error estimate for SPVIM values

Description

Compute standard error estimates based on the estimated influence function for a SPVIM value of
interest.

Usage

spvim_se(ics, idx = 1, gamma = 1, na_rm = FALSE)

Arguments

ics the influence function estimates based on the contributions from sampling ob-
servations and sampling subsets: a list of length two resulting from a call to
spvim_ics.

idx the index of interest

gamma the proportion of the sample size used when sampling subsets

na_rm remove NAs?

sp_vim 23

Details

Since the processes for sampling observations and subsets are independent, the variance for a given
SPVIM estimator is simply the sum of the vairances based on sampling observations and on sam-
pling subsets.

Value

The standard error estimate for the desired SPVIM value

See Also

spvim_ics for how the influence functions are estimated.

sp_vim Shapley Population Variable Importance Measure (SPVIM) Estimates
and Inference

Description

Compute estimates and confidence intervals for the SPVIMs, using cross-fitting. This essentially
involves splitting the data into V train/test splits; train the learners on the training data, evaluate
importance on the test data; and average over these splits.

Usage

sp_vim(
Y,
X,
V = 5,
weights = rep(1, length(Y)),
type = "r_squared",
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
univariate_SL.library = NULL,
gamma = 1,
alpha = 0.05,
delta = 0,
na.rm = FALSE,
stratified = FALSE,
...

)

Arguments

Y the outcome.

X the covariates.

V the number of folds for cross-validation, defaults to 10.

24 sp_vim

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type the type of parameter (e.g., R-squared-based is "r_squared").

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

univariate_SL.library

(optional) a character vector of learners to pass to SuperLearner for estimating
univariate regression functions. Defaults to SL.polymars

gamma the fraction of the sample size to use when sampling subsets (e.g., gamma = 1
samples the same number of subsets as the sample size)

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

stratified should the generated folds be stratified based on the outcome (helps to ensure
class balance across cross-validation folds)?

... other arguments to the estimation tool, see "See also".

Details

We define the SPVIM as the weighted average of the population difference in predictiveness over
all subsets of features not containing feature j.

This is equivalent to finding the solution to a population weighted least squares problem. This key
fact allows us to estimate the SPVIM using weighted least squares, where we first sample subsets
from the power set of all possible features using the Shapley sampling distribution; then use cross-
fitting to obtain estimators of the predictiveness of each sampled subset; and finally, solve the least
squares problem given in Williamson and Feng (2020).

See the paper by Williamson and Feng (2020) for more details on the mathematics behind this
function, and the validity of the confidence intervals. The function works by estimating In the
interest of transparency, we return most of the calculations within the vim object. This results in a
list containing:

• call - the call to cv_vim

• SL.library - the library of learners passed to SuperLearner

• v- the estimated predictiveness measure for each sampled subset

• preds_lst - the predicted values from the chosen method for each sampled subset

• est - the estimated SPVIM value for each feature

• ic_lst - the influence functions for each sampled subset

• ic- a list of the SPVIM influence function contributions

• se - the standard errors for the estimated variable importance

• ci - the (1− α)× 100% confidence intervals based on the variable importance estimates

• gamma- the fraction of the sample size used when sampling subsets

vim 25

• alpha - the level, for confidence interval calculation

• delta- the delta value used for hypothesis testing

• y - the outcome

• weights - the weights

• mat- a tibble with the estimates, SEs, CIs, hypothesis testing decisions, and p-values

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.ranger")

using Super Learner (with a small number of CV folds,
for illustration only)

set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 2, type = "r_squared",
SL.library = learners, alpha = 0.05)

vim Nonparametric Variable Importance Estimates and Inference

Description

Compute estimates of and confidence intervals for nonparametric risk-based variable importance.

26 vim

Usage

vim(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
weights = rep(1, length(Y)),
type = "r_squared",
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
scale = "identity",
na.rm = FALSE,
folds = NULL,
stratified = FALSE,
...

)

Arguments

Y the outcome.

X the covariates.

f1 the fitted values from a flexible estimation technique regressing Y on X.

f2 the fitted values from a flexible estimation technique regressing Y on X with-
holding the columns in indx.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type the type of importance to compute; defaults to r_squared, but other supported
options are auc, accuracy, and anova.

run_regression if outcome Y and covariates X are passed to vimp_accuracy, and run_regression
is TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

scale should CIs be computed on original ("identity") or logit ("logit") scale?

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

vim 27

folds the folds used for f1 and f2; assumed to be 1 for the observations used in f1
and 2 for the observations used in f2. If there is only a single fold passed in,
then hypothesis testing is not done.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

... other arguments to the estimation tool, see "See also".

Details

We define the population variable importance measure (VIM) for the group of features (or single
feature) s with respect to the predictiveness measure V by

ψ0,s := V (f0, P0)− V (f0,s, P0),

where f0 is the population predictiveness maximizing function, f0,s is the population predictiveness
maximizing function that is only allowed to access the features with index not in s, and P0 is
the true data-generating distribution. VIM estimates are obtained by obtaining estimators fn and
fn,s of f0 and f0,s, respectively; obtaining an estimator Pn of P0; and finally, setting ψn,s :=
V (fn, Pn)− V (fn,s, Pn).

In the interest of transparency, we return most of the calculations within the vim object. This results
in a list containing:

• call - the call to vim

• s - the column(s) to calculate variable importance for
• SL.library - the library of learners passed to SuperLearner

• type - the type of risk-based variable importance measured
• full_fit - the fitted values of the chosen method fit to the full data
• red_fit - the fitted values of the chosen method fit to the reduced data
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• update - the influence curve-based update
• se - the standard error for the estimated variable importance
• ci - the (1− α)× 100% confidence interval for the variable importance estimate
• test - a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a

conservative test
• pval - a conservative p-value based on the same conservative test as test
• full_mod - the object returned by the estimation procedure for the full data regression (if

applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if

applicable)
• alpha - the level, for confidence interval calculation
• folds - the folds used for hypothesis testing
• y - the outcome
• weights - the weights
• mat- a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

28 vim

Value

An object of classes vim and the type of risk-based measure. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

using Y and X; use class-balanced folds
folds_1 <- sample(rep(seq_len(2), length = sum(y == 1)))
folds_0 <- sample(rep(seq_len(2), length = sum(y == 0)))
folds <- vector("numeric", length(y))
folds[y == 1] <- folds_1
folds[y == 0] <- folds_0
est <- vim(y, x, indx = 2, type = "r_squared",

alpha = 0.05, run_regression = TRUE,
SL.library = learners, cvControl = list(V = 2),
folds = folds)

using pre-computed fitted values
full <- SuperLearner(Y = y[folds == 1], X = x[folds == 1,],
SL.library = learners, cvControl = list(V = 2))
full.fit <- predict(full)$pred
reduced <- SuperLearner(Y = y[folds == 2], X = x[folds == 2, -2, drop = FALSE],
SL.library = learners, cvControl = list(V = 2))
red.fit <- predict(reduced)$pred

est <- vim(Y = y, f1 = full.fit, f2 = red.fit,
indx = 2, run_regression = FALSE, alpha = 0.05, folds = folds,
type = "accuracy")

vimp 29

vimp vimp: Perform Inference on Algorithm-Agnostic Variable Importance

Description

A unified framework for valid statistical inference on algorithm-agnostic measures of variable im-
portance. You provide the data, a method for estimating the conditional mean of the outcome given
the covariates, choose a variable importance measure, and specify variable(s) of interest; ’vimp’
takes care of the rest.

Author(s)

Maintainer: Brian Williamson http://bdwilliamson.github.io

Methodology authors:

• Brian D. Williamson

• Peter B. Gilbert

• Noah R. Simon

• Marco Carone

See Also

Preprints:

• http://biostats.bepress.com/uwbiostat/paper422/ (R-squared-based variable impor-
tance)

• http://arxiv.org/abs/2004.03683 (general variable importance)

• https://arxiv.org/abs/2006.09481 (general Shapley-based variable importance)

Other useful links:

• http://bdwilliamson.github.io/vimp

• http://github.com/bdwilliamson/vimp

• Report bugs at http://github.com/bdwilliamson/vimp/issues

Imports

The packages that we import either make the internal code nice (dplyr, magrittr, tibble, rlang,
MASS), are directly relevant to estimating the conditional mean (SuperLearner) or predictiveness
measures (ROCR), or are necessary for hypothesis testing (stats).

We suggest several other packages: xgboost, ranger, gam, glmnet, and quadprog allow a flexible
library of candidate learners in the Super Learner; ggplot2, cowplot, and forcats help with plotting
variable importance estimates; testthat and covr help with unit tests; and knitr, rmarkdown, and
RCurl help with the vignettes and examples.

http://bdwilliamson.github.io
http://biostats.bepress.com/uwbiostat/paper422/
http://arxiv.org/abs/2004.03683
https://arxiv.org/abs/2006.09481
http://bdwilliamson.github.io/vimp
http://github.com/bdwilliamson/vimp
http://github.com/bdwilliamson/vimp/issues

30 vimp_accuracy

vimp_accuracy Nonparametric Variable Importance Estimates: Classification accu-
racy

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracy-
based variable importance. This is a wrapper function for cv_vim, with type = "accuracy".

Usage

vimp_accuracy(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
folds = NULL,
stratified = TRUE,
scale = "identity",
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

vimp_accuracy 31

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale?
(defaults to "identity")

... other arguments to the estimation tool, see "See also".

Details

In the interest of transparency, we return most of the calculations within the vim object. This results
in a list containing:

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

Value

An object of classes vim and vim_accuracy. See Details for more information.

32 vimp_anova

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))

vimp_anova Nonparametric Variable Importance Estimates: ANOVA

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracy-
based variable importance. This is a wrapper function for cv_vim, with type = "anova".

Usage

vimp_anova(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),

vimp_anova 33

alpha = 0.05,
delta = 0,
na.rm = FALSE,
scale = "identity",
folds,
stratified = FALSE,
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale?
(defaults to "identity")

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function, and the validity of the confidence intervals. In the interest of transparency, we
return most of the calculations within the vim object. This results in a list containing:

34 vimp_anova

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_anova(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,

vimp_auc 35

SL.library = learners, V = 2, cvControl = list(V = 2))

vimp_auc Nonparametric Variable Importance Estimates: AUC

Description

Compute estimates of and confidence intervals for nonparametric difference in AUC-based vari-
able importance. This is a wrapper function for cv_vim, with type = "auc".

Usage

vimp_auc(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
folds = NULL,
stratified = TRUE,
scale = "identity",
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

36 vimp_auc

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale?
(defaults to "identity")

... other arguments to the estimation tool, see "See also".

Details

AUC for each regression (full and reduced) is computed using performance. In the interest of
transparency, we return most of the calculations within the vim object. This results in a list contain-
ing:

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

Value

An object of classes vim and vim_auc. See Details for more information.

vimp_ci 37

See Also

SuperLearner for specific usage of the SuperLearner function and package, and performance
for specific usage of the ROCR package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_auc(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))

vimp_ci Confidence intervals for variable importance

Description

Compute confidence intervals for the true variable importance parameter.

Usage

vimp_ci(est, se, scale = "identity", level = 0.95)

Arguments

est estimate of variable importance, e.g., from a call to vimp_point_est.

se estimate of the standard error of est, e.g., from a call to vimp_se.

scale scale to compute interval estimate on (defaults to "identity": compute SE and CI
on log scale and back-transform).

level confidence interval type (defaults to 0.95).

38 vimp_deviance

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.

vimp_deviance Nonparametric Variable Importance Estimates: Deviance

Description

Compute estimates of and confidence intervals for nonparametric deviance-based variable impor-
tance. This is a wrapper function for cv_vim, with type = "deviance".

Usage

vimp_deviance(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
folds = NULL,
stratified = TRUE,
scale = "identity",
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

vimp_deviance 39

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale?
(defaults to "identity")

... other arguments to the estimation tool, see "See also".

Details

In the interest of transparency, we return most of the calculations within the vim object. This results
in a list containing:

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

40 vimp_hypothesis_test

Value

An object of classes vim and vim_deviance. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(stats::rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_deviance(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))

vimp_hypothesis_test Perform a hypothesis test against the null hypothesis of δ importance

Description

Perform a hypothesis test against the null hypothesis of zero importance by: (i) for a user-specified
level α, compute a (1 − α) × 100% confidence interval around the predictiveness for both the full
and reduced regression functions (these must be estimated on independent splits of the data); (ii) if
the intervals do not overlap, reject the null hypothesis.

Usage

vimp_hypothesis_test(
full,
reduced,
y,

vimp_hypothesis_test 41

folds,
delta = 0,
weights = rep(1, length(y)),
type = "r_squared",
alpha = 0.05,
cv = FALSE,
scale = "identity",
na.rm = FALSE

)

Arguments

full either (i) fitted values from a regression of the outcome on the full set of co-
variates from a first independent split of the data (if cv = FALSE) or (ii) a list of
predicted values from a cross-validated procedure (if cv = TRUE).

reduced fitted values from a regression either (1) of the outcome on the reduced set of
covariates, or (2) of the predicted values from the full regression on the reduced
set of covariates; either (i) a single set of predictions (if cv = FALSE) fit on an
independent split of the data from full or (ii) a list of predicted values from a
cross-validated procedure (if cv = TRUE).

y the outcome.

folds the folds used for splitting. If cv = FALSE, assumed to be a vector with 1 for the
full regression and 2 for the reduced regression (if V = 2). If cv = TRUE, assumed
to be a list with first element the outer folds (for hypothesis testing) and second
element a list with the inner cross-validation folds.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to r_squared, for difference in
R-squared-based variable importance)?

alpha the desired type I error rate (defaults to 0.05).

cv was V-fold cross-validation used to estimate the predictiveness (TRUE) or was
the sample split in two (FALSE); defaults to FALSE.

scale scale to compute CI on ("identity" for identity scale, "logit" for logit scale and
back-transform)

na.rm logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

TRUE if the null hypothesis is rejected (i.e., if the confidence intervals do not overlap); otherwise,
FALSE.

42 vimp_point_est

vimp_point_est Estimate variable importance

Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction
for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

vimp_point_est(
full,
reduced,
y,
folds,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

Arguments

full fitted values from a regression of the outcome on the full set of covariates.

reduced fitted values from a regression of the fitted values from the full regression on the
reduced set of covariates.

y the outcome.

folds the folds for hypothesis testing

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NA’s be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.

vimp_regression 43

vimp_regression Nonparametric Variable Importance Estimates

Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based variable impor-
tance. This is a wrapper function for cv_vim, with type = "anova". This function is deprecated in
vimp version 2.0.0.

Usage

vimp_regression(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
folds,
stratified = FALSE,
...

)

Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique re-

gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for

coarsened-at-random settings)
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is

TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

44 vimp_regression

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function, and the validity of the confidence intervals. In the interest of transparency, we
return most of the calculations within the vim object. This results in a list containing:

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

vimp_rsquared 45

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_regression(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))

vimp_rsquared Nonparametric Variable Importance Estimates: R^2

Description

Compute estimates of and confidence intervals for nonparametric R^2-based variable importance.
This is a wrapper function for cv_vim, with type = "r_squared".

Usage

vimp_rsquared(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05,
delta = 0,
na.rm = FALSE,
folds = NULL,

46 vimp_rsquared

stratified = FALSE,
...

)

Arguments

Y the outcome.

X the covariates.

f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.

f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.

indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.

V the number of folds for cross-validation, defaults to 10.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
TRUE, then Super Learner will be used; otherwise, variable importance will be
computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA’s in the outcome and fitted values in computation? (de-
faults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)

... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function, and the validity of the confidence intervals. In the interest of transparency, we
return most of the calculations within the vim object. This results in a list containing:

• call - the call to vim

• s - the column(s) to calculate variable importance for

• SL.library - the library of learners passed to SuperLearner

• full_fit - the fitted values of the chosen method fit to the full data

• red_fit - the fitted values of the chosen method fit to the reduced data

vimp_rsquared 47

• est - the estimated variable importance

• naive - the naive estimator of variable importance

• update - the influence curve-based update

• se - the standard error for the estimated variable importance

• ci - the (1− α)× 100% confidence interval for the variable importance estimate

• full_mod - the object returned by the estimation procedure for the full data regression (if
applicable)

• red_mod - the object returned by the estimation procedure for the reduced data regression (if
applicable)

• alpha - the level, for confidence interval calculation

• y - the outcome

Value

An object of classes vim and vim_rsquared. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_rsquared(y, x, indx = 2,

alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 2))

48 vimp_se

vimp_se Estimate standard errors

Description

Compute standard error estimates for estimates of variable importance.

Usage

vimp_se(
est,
update,
denom = NULL,
n = length(update),
scale = "log",
na.rm = FALSE

)

Arguments

est the estimate of variable importance.

update the influence curve-based update.

denom a list of point estimate and influence curve for the denominator (if any) to make
the measure of predictiveness interpretable.

n the sample size.

scale the scale to compute SEs on (either "log", for log-scale, or "identity", for same
scale as point estimate).

na.rm logical; should NA’s be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.

vimp_update 49

vimp_update Estimate the influence function for variable importance parameters

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

vimp_update(
full,
reduced,
y,
folds = folds,
weights = rep(1, length(y)),
type = "r_squared",
na.rm = FALSE

)

Arguments

full fitted values from a regression of the outcome on the full set of covariates.

reduced fitted values from a regression either (1) of the outcome on the reduced set of
covariates, or (2) of the fitted values from the full regression on the reduced set
of covariates.

y the outcome.

folds the folds for hypothesis testing.

weights weights for the computed influence curve (e.g., inverse probability weights for
coarsened-at-random settings)

type which parameter are you estimating (defaults to anova, for ANOVA-based vari-
able importance)?

na.rm logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.

Index

average_vim, 3

cv_predictiveness_point_est, 4
cv_predictiveness_update, 5
cv_vim, 6
cv_vimp_point_est, 10
cv_vimp_update, 11

format.vim, 12

measure_accuracy, 13
measure_auc, 13
measure_cross_entropy, 14
measure_deviance, 14
measure_mse, 15
measure_r_squared, 15
merge_vim, 16

performance, 36, 37
predictiveness_ci, 17
predictiveness_point_est, 18
predictiveness_se, 19
predictiveness_update, 19
print.vim, 20

sample_subsets, 21
sp_vim, 23
spvim_ics, 21, 23
spvim_se, 22
SuperLearner, 9, 25, 28, 32, 34, 37, 40, 44, 47

vim, 25
vimp, 29
vimp_accuracy, 30
vimp_anova, 32
vimp_auc, 35
vimp_ci, 37
vimp_deviance, 38
vimp_hypothesis_test, 40
vimp_point_est, 42
vimp_regression, 43

vimp_rsquared, 45
vimp_se, 48
vimp_update, 49

50

	average_vim
	cv_predictiveness_point_est
	cv_predictiveness_update
	cv_vim
	cv_vimp_point_est
	cv_vimp_update
	format.vim
	measure_accuracy
	measure_auc
	measure_cross_entropy
	measure_deviance
	measure_mse
	measure_r_squared
	merge_vim
	predictiveness_ci
	predictiveness_point_est
	predictiveness_se
	predictiveness_update
	print.vim
	sample_subsets
	spvim_ics
	spvim_se
	sp_vim
	vim
	vimp
	vimp_accuracy
	vimp_anova
	vimp_auc
	vimp_ci
	vimp_deviance
	vimp_hypothesis_test
	vimp_point_est
	vimp_regression
	vimp_rsquared
	vimp_se
	vimp_update
	Index

