Package 'vimp'

June 18, 2020

Type Package

Title Perform Inference on Algorithm-Agnostic Variable Importance

Version 2.1.0

Description Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (arXiv, 2020+) <arXiv:2004.03683>, and Williamson and Feng (ICML, 2020) <arXiv:>.

Depends R (>= 3.1.0)

Imports SuperLearner, stats, dplyr, magrittr, ROCR, tibble, rlang, MASS

Suggests knitr, rmarkdown, gam, xgboost, glmnet, ranger, polspline, quadprog, covr, testthat, ggplot2, cowplot, RCurl, forcats

License MIT + file LICENSE

URL https://github.com/bdwilliamson/vimp

BugReports https://github.com/bdwilliamson/vimp/issues

LazyData TRUE

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Brian D. Williamson [aut, cre] (<https://orcid.org/0000-0002-7024-548X>), Noah Simon [aut] (<https://orcid.org/0000-0002-8985-2474>), Marco Carone [aut] (<https://orcid.org/0000-0003-2106-0953>)

Maintainer Brian D. Williamson <brianw26@uw.edu>

Repository CRAN

Date/Publication 2020-06-18 18:20:02 UTC

R topics documented:

average_vim	3
cv_predictiveness_point_est	4
cv_predictiveness_update	5
cv_vim	6
cv_vimp_point_est	10
cv_vimp_update	11
format.vim	12
measure_accuracy	13
measure_auc	13
measure_cross_entropy	14
measure_deviance	14
measure_mse	15
measure_r_squared	15
merge_vim	16
predictiveness_ci	17
predictiveness_point_est	18
predictiveness_se	19
predictiveness_update	19
print.vim	20
sample_subsets	21
spvim_ics	21
spvim_se	22
sp_vim	23
vim	25
vimp	29
vimp_accuracy	30
vimp_anova	32
vimp_auc	35
vimp_ci	37
vimp_deviance	38
vimp_hypothesis_test	40
vimp_point_est	42
vimp_regression	43
vimp_rsquared	45
vimp_se	48
vimp_update	49

Index

average_vim

Description

Average the output from multiple calls to vimp_regression, for different independent groups, into a single estimate with a corresponding standard error and confidence interval.

Usage

```
average_vim(..., weights = rep(1/length(list(...)), length(list(...))))
```

Arguments

•••	an arbitrary number of vim objects.
weights	how to average the vims together, and must sum to 1; defaults to 1/(number of
	vims) for each vim, corresponding to the arithmetic mean

Value

an object of class vim containing the (weighted) average of the individual importance estimates, as well as the appropriate standard error and confidence interval. This results in a list containing:

- call the call to average_vim()
- s a list of the column(s) to calculate variable importance for
- SL.library a list of the libraries of learners passed to SuperLearner
- full_fit a list of the fitted values of the chosen method fit to the full data
- red_fit a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates
- update- a list with the influence curve-based updates
- mat a matrix with the estimated variable importance, the standard error, and the $(1 \alpha) \times 100\%$ confidence interval
- full_mod a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y a list of the outcomes

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## get estimates on independent splits of the data
samp <- sample(1:n, n/2, replace = FALSE)</pre>
## using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y[samp], X = x[samp, ], indx = 2, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y[-samp], X = x[-samp, ], indx = 2, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
ests <- average_vim(est_1, est_2, weights = c(1/2, 1/2))
```

cv_predictiveness_point_est

Estimate a nonparametric predictiveness functional using crossvalidation

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

```
cv_predictiveness_point_est(
  fitted_values,
  y,
  weights = rep(1, length(y)),
  folds,
  type = "r_squared",
```

4

cv_predictiveness_update

na.rm = FALSE
)

Arguments

fitted_values	fitted values from a regression function; a list of length V, where each object is a set of predictions on the validation data.
У	the outcome.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
folds	the cross-validation folds
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

cv_predictiveness_update

Estimate the influence function for an estimator of predictiveness

Description

Estimate the influence function for the given measure of predictiveness.

Usage

```
cv_predictiveness_update(
  fitted_values,
  y,
  folds,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

Arguments

fitted_values	fitted values from a regression function; a list of length V, where each object is a set of predictions on the validation data.
У	the outcome.
folds	the cross-validation folds
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which risk parameter are you estimating (defaults to <code>r_squared</code> , for the R^2)?
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated influence function values for the given measure of predictiveness.

cv_vim	Nonparametric	Variable	Importance	Estimates	and	Inference	using
	Cross-fitting						

Description

Compute estimates and confidence intervals for the nonparametric variable importance parameter of interest, using cross-fitting. This essentially involves splitting the data into V train/test splits; train the learners on the training data, evaluate importance on the test data; and average over these splits.

Usage

```
cv_vim(
 Y,
 X,
 f1,
 f2,
 indx = 1,
 V = length(unique(folds)),
 folds = NULL,
 stratified = FALSE,
 weights = rep(1, length(Y)),
 type = "r_squared",
 run_regression = TRUE,
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
```

cv_vim

```
alpha = 0.05,
delta = 0,
scale = "identity",
na.rm = FALSE,
....
```

Y	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique re- gressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
٧	the number of folds for cross-validation, defaults to 10.
folds	the folds to use, if f1 and f2 are supplied. A list of length two; the first element provides the outer folds (for hypothesis testing), while the second element is a list providing the inner folds (for cross-validation).
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	the type of parameter (e.g., ANOVA-based is "anova").
run_regression	if outcome Y and covariates X are passed to cv_vim , and $run_regression$ is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
scale	should CIs be computed on original ("identity") or logit ("logit") scale?
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE) $% \left(\frac{1}{2}\right) =0$
	other arguments to the estimation tool, see "See also".

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution. Cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n,k}$ and $f_{n,k,s}$ of f_0 and $f_{0,s}$, respectively on the training data and estimator $P_{n,k}$ of P_0 using the test data; and finally, computing

$$\psi_{n,s} := K^{(-1)} \sum_{k=1}^{K} \{ V(f_{n,k}, P_{n,k}) - V(f_{n,k,s}, P_{n,k}) \}$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to cv_vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
- red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
- est the estimated variable importance
- naive the naive estimator of variable importance
- · naives the naive estimator on each fold
- · updates the influence curve-based update for each fold
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- · folds the folds used for hypothesis testing and cross-validation
- y the outcome
- weights the weights
- mat- a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

cv_vim

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
n <- 100
p <- 2
## generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))</pre>
## set up a library for SuperLearner
learners <- c("SL.mean", "SL.ranger")</pre>
## -----
## using Super Learner (with a small number of folds, for illustration only)
## -----
set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 2,</pre>
type = "r_squared", run_regression = TRUE,
SL.library = learners, cvControl = list(V = 2), alpha = 0.05)
## -----
## doing things by hand, and plugging them in (with a small number of folds, for illustration only)
## -----
## set up the folds
indx <- 2
V <- 2
set.seed(4747)
outer_folds <- sample(rep(seq_len(2), length = n))</pre>
inner_folds_1 <- sample(rep(seq_len(V), length = sum(outer_folds == 1)))</pre>
inner_folds_2 <- sample(rep(seq_len(V), length = sum(outer_folds == 2)))</pre>
y_1 <- y[outer_folds == 1, , drop = FALSE]</pre>
x_1 <- x[outer_folds == 1, , drop = FALSE]</pre>
y_2 <- y[outer_folds == 2, , drop = FALSE]</pre>
x_2 <- x[outer_folds == 2, , drop = FALSE]</pre>
## get the fitted values by fitting the super learner on each pair
fhat_ful <- list()</pre>
fhat_red <- list()</pre>
for (v in 1:V) {
   ## fit super learner
```

```
fit <- SuperLearner::SuperLearner(Y = y_1[inner_folds_1 != v, , drop = FALSE],</pre>
     X = x_1[inner_folds_1 != v, , drop = FALSE],
     SL.library = learners, cvControl = list(V = V))
    fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred</pre>
    ## get predictions on the validation fold
    fhat_ful[[v]] <- SuperLearner::predict.SuperLearner(fit,</pre>
     newdata = x_1[inner_folds_1 == v, , drop = FALSE])$pred
    ## fit the super learner on the reduced covariates
    red <- SuperLearner::SuperLearner(Y = y_2[inner_folds_2 != v, , drop = FALSE],</pre>
     X = x_2[inner_folds_2 != v, -indx, drop = FALSE],
     SL.library = learners, cvControl = list(V = V))
    ## get predictions on the validation fold
    fhat_red[[v]] <- SuperLearner::predict.SuperLearner(red,</pre>
     newdata = x_2[inner_folds_2 == v, -indx, drop = FALSE])$pred
}
est <- cv_vim(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2,</pre>
V = V, folds = list(outer_folds = outer_folds,
inner_folds = list(inner_folds_1, inner_folds_2)),
type = "r_squared", run_regression = FALSE, alpha = 0.05)
```

cv_vimp_point_est Estimate variable importance using cross-validation

Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

```
cv_vimp_point_est(
  full,
  reduced,
  у,
  folds,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

full	fitted values from a regression of the outcome on the full set of covariates; a list of length V, where each object is a set of predictions on the validation data.
reduced	fitted values from a regression of the fitted values from the full regression on the reduced set of covariates; a list of length V, where each object is a set of
	predictions on the validation data.

У	the outcome.
folds	a list of outer and inner folds (outer for hypothesis testing, inner for cross-validation)
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.

cv_vimp_update Estimate the influence function for variable importance param	meters
--	--------

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

```
cv_vimp_update(
  full,
  reduced,
  y,
  folds,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

full	fitted values from a regression of the outcome on the full set of covariates; a list of length V, where each object is a set of predictions on the validation data.
reduced	fitted values from a regression of the fitted values from the full regression on the reduced set of covariates; a list of length V, where each object is a set of predictions on the validation data.
у	the outcome.

folds	a list of outer and inner folds (outer for hypothesis testing, inner for cross-validation)
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.

format.vim Format a vim object

Description

Nicely formats the output from a vim object for printing.

Usage

```
## S3 method for class 'vim'
format(x, ...)
```

х	the vim object of interest.
	other options, see the generic format function.

measure_accuracy Estimate the classification accuracy

Description

Compute nonparametric estimate of classification accuracy.

Usage

```
measure_accuracy(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated classification accuracy of the fitted regression function, and (2) the estimated influence function.

measure_auc	Estimate area ui	nder the receive	r operating	characteristic cu	rve (AUC)
-------------	------------------	------------------	-------------	-------------------	-----------

Description

Compute nonparametric estimate of AUC.

Usage

```
measure_auc(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated AUC of the fitted regression function, and (2) the estimated influence function.

measure_cross_entropy Estimate the cross-entropy

Description

Compute nonparametric estimate of cross-entropy.

Usage

```
measure_cross_entropy(
  fitted_values,
  y,
  weights = rep(1, length(y)),
  na.rm = FALSE
)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated cross-entropy of the fitted regression function, and (2) the estimated influence function.

measure_deviance Estimate the deviance

Description

Compute nonparametric estimate of deviance.

Usage

```
measure_deviance(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

fitted_values	fitted values from a regression function.
у	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

measure_mse

Value

A named list of: (1) the estimated deviance of the fitted regression function, and (2) the estimated influence function.

measure_mse Estimate mean squared error

Description

Compute nonparametric estimate of mean squared error.

Usage

```
measure_mse(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated mean squared error of the fitted regression function, and (2) the estimated influence function.

measure_r_squared Estimate R-squared Compute nonparametric estimate of R-squared.

Description

Estimate R-squared Compute nonparametric estimate of R-squared.

Usage

```
measure_r_squared(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

fitted_values	fitted values from a regression function.
у	the outcome.
weights	weights (IPW, etc.).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Value

A named list of: (1) the estimated R-squared of the fitted regression function, and (2) the estimated influence function.

merge_vim

Merge multiple vim objects into one

Description

Take the output from multiple different calls to vimp_regression and merge into a single vim object; mostly used for plotting results.

Usage

merge_vim(...)

Arguments

. . .

an arbitrary number of vim objects, separated by commas.

Value

an object of class vim containing all of the output from the individual vim objects. This results in a list containing:

- call the call to merge_vim()
- s a list of the column(s) to calculate variable importance for
- SL.library a list of the libraries of learners passed to SuperLearner
- full_fit a list of the fitted values of the chosen method fit to the full data
- red_fit a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates
- · update- a list with the influence curve-based updates
- se- a vector with the standard errors
- ci- a matrix with the CIs
- mat a tibble with the estimated variable importance, the standard errors, and the $(1 \alpha) \times 100\%$ confidence intervals
- full_mod a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha a list of the levels, for confidence interval calculation

predictiveness_ci

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2,</pre>
           run_regression = TRUE, alpha = 0.05,
           SL.library = learners, cvControl = list(V = 2))
ests <- merge_vim(est_1, est_2)</pre>
```

predictiveness_ci Confidence intervals for measures of predictiveness

Description

Compute confidence intervals for the true measure of predictiveness.

Usage

```
predictiveness_ci(est, se, level = 0.95, one_sided = FALSE)
```

est	estimate of predictiveness, e.g., from a call to predictiveness_point_est.
se	estimate of the standard error of est, e.g., from a call to vimp_se.
level	confidence interval type (defaults to 0.95).
one_sided	should one-sided intervals be returned? (defaults to FALSE)

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true predictiveness of the given group of covariates.

predictiveness_point_est

Estimate a nonparametric predictiveness functional

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

```
predictiveness_point_est(
  fitted_values,
  y,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

predictiveness_se Estimate standard errors for measures of predictiveness

Description

Compute standard error estimates for estimates of measures of predictiveness.

Usage

predictiveness_se(est, update, denom = NULL, n = length(update), na.rm = FALSE)

Arguments

est	the estimate of variable importance.
update	the influence curve-based update.
denom	a list of point estimate and influence curve for the denominator (if any) to make the measure of predictiveness interpretable.
n	the sample size.
na.rm	logical; should NA's be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated measure of predictiveness for the given group of covariates.

predictiveness_update Estimate the influence function for an estimator of predictiveness

Description

Estimate the influence function for the given measure of predictiveness.

Usage

```
predictiveness_update(
   fitted_values,
   y,
   weights = rep(1, length(y)),
   type = "r_squared",
   na.rm = FALSE
)
```

Arguments

fitted_values	fitted values from a regression function.
У	the outcome.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which risk parameter are you estimating (defaults to <code>r_squared</code> , for the R^2)?
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated influence function values for the given measure of predictiveness.

print.vim	Print a vim object	
le	- · · · · · · · · · · · · · · · · · · ·	

Description

Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage

```
## S3 method for class 'vim'
print(x, ...)
```

х	the vim object of interest.
	other options, see the generic print function.

sample_subsets

Description

Creates the Z and W matrices and a list of sampled subsets, S, for SPVIM estimation.

Usage

sample_subsets(p, gamma, n)

Arguments

р	the number of covariates
gamma	the fraction of the sample size to sample (e.g., gamma = 1 means sample n subsets)
n	the sample size

Value

a list, with elements Z (the matrix encoding presence/absence of each feature in the uniquely sampled subsets), S (the list of unique sampled subsets), W (the matrix of weights), and z_counts (the number of times each subset was sampled)

Examples

```
p <- 10
gamma <- 1
n <- 100
set.seed(100)
subset_lst <- sample_subsets(p, gamma, n)</pre>
```

spvim_ics

Influence function estimates for SPVIMs

Description

Compute the influence functions for the contribution from sampling observations and subsets.

Usage

```
spvim_ics(Z, z_counts, W, v, psi, G, c_n, ics, measure)
```

Arguments

Z	the matrix of presence/absence of each feature (columns) in each sampled subset (rows)
z_counts	the number of times each unique subset was sampled
W	the matrix of weights
v	the estimated predictiveness measures
psi	the estimated SPVIM values
G	the constraint matrix
c_n	the constraint values
ics	a matrix of influence function values for each predictiveness measure
measure	the type of measure (e.g., "r_squared" or "auc")

Details

The processes for sampling observations and sampling subsets are independent. Thus, we can compute the influence function separately for each sampling process. For further details, see the paper by Williamson and Feng (2020).

Value

a named list of length 2; contrib_v is the contribution from estimating V, while contrib_s is the contribution from sampling subsets.

•		
SDV1m	Se	
001111	_00	

Standard error estimate for SPVIM values

Description

Compute standard error estimates based on the estimated influence function for a SPVIM value of interest.

Usage

```
spvim_se(ics, idx = 1, gamma = 1, na_rm = FALSE)
```

Arguments

ics	the influence function estimates based on the contributions from sampling ob- servations and sampling subsets: a list of length two resulting from a call to spvim_ics.
idx	the index of interest
gamma	the proportion of the sample size used when sampling subsets
na_rm	remove NAs?

22

sp_vim

Details

Since the processes for sampling observations and subsets are independent, the variance for a given SPVIM estimator is simply the sum of the variances based on sampling observations and on sampling subsets.

Value

The standard error estimate for the desired SPVIM value

See Also

spvim_ics for how the influence functions are estimated.

sp_vim

Shapley Population Variable Importance Measure (SPVIM) Estimates and Inference

Description

Compute estimates and confidence intervals for the SPVIMs, using cross-fitting. This essentially involves splitting the data into V train/test splits; train the learners on the training data, evaluate importance on the test data; and average over these splits.

Usage

```
sp_vim(
 Y,
 X,
 V = 5,
 weights = rep(1, length(Y)),
 type = "r_squared",
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 univariate_SL.library = NULL,
 gamma = 1,
 alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
 stratified = FALSE,
 ...
)
```

Y	the outcome.
Х	the covariates.
V	the number of folds for cross-validation, defaults to 10.

weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	the type of parameter (e.g., R-squared-based is "r_squared").
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
univariate_SL.l	ibrary
	(optional) a character vector of learners to pass to SuperLearner for estimating univariate regression functions. Defaults to SL.polymars
gamma	the fraction of the sample size to use when sampling subsets (e.g., gamma = 1 samples the same number of subsets as the sample size)
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
stratified	should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)?
	other arguments to the estimation tool, see "See also".

We define the SPVIM as the weighted average of the population difference in predictiveness over all subsets of features not containing feature j.

This is equivalent to finding the solution to a population weighted least squares problem. This key fact allows us to estimate the SPVIM using weighted least squares, where we first sample subsets from the power set of all possible features using the Shapley sampling distribution; then use cross-fitting to obtain estimators of the predictiveness of each sampled subset; and finally, solve the least squares problem given in Williamson and Feng (2020).

See the paper by Williamson and Feng (2020) for more details on the mathematics behind this function, and the validity of the confidence intervals. The function works by estimating In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to cv_vim
- SL.library the library of learners passed to SuperLearner
- v- the estimated predictiveness measure for each sampled subset
- preds_lst the predicted values from the chosen method for each sampled subset
- est the estimated SPVIM value for each feature
- ic_lst the influence functions for each sampled subset
- ic- a list of the SPVIM influence function contributions
- se the standard errors for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence intervals based on the variable importance estimates
- gamma- the fraction of the sample size used when sampling subsets

- alpha the level, for confidence interval calculation
- delta- the delta value used for hypothesis testing
- y the outcome
- weights the weights
- mat- a tibble with the estimates, SEs, CIs, hypothesis testing decisions, and p-values

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
n <- 100
p <- 2
## generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))</pre>
## set up a library for SuperLearner
learners <- c("SL.mean", "SL.ranger")</pre>
## -----
## using Super Learner (with a small number of CV folds,
## for illustration only)
## ------
set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 2, type = "r_squared",
SL.library = learners, alpha = 0.05)
```

vim

Nonparametric Variable Importance Estimates and Inference

Description

Compute estimates of and confidence intervals for nonparametric risk-based variable importance.

Usage

```
vim(
 Υ,
 Χ,
 f1 = NULL,
 f2 = NULL,
  indx = 1,
 weights = rep(1, length(Y)),
  type = "r_squared",
  run_regression = TRUE,
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
 delta = 0,
  scale = "identity",
 na.rm = FALSE,
 folds = NULL,
 stratified = FALSE,
  . . .
)
```

Arguments

Y	the outcome.
х	the covariates.
f1	the fitted values from a flexible estimation technique regressing Y on X.
f2	the fitted values from a flexible estimation technique regressing Y on X with- holding the columns in indx.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, and anova.
run_regression	if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
scale	should CIs be computed on original ("identity") or logit ("logit") scale?
na.rm	should we remove NA's in the outcome and fitted values in computation? (de- faults to FALSE)

26

folds	the folds used for f1 and f2; assumed to be 1 for the observations used in f1
	and 2 for the observations used in f2. If there is only a single fold passed in,
	then hypothesis testing is not done.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
	other arguments to the estimation tool, see "See also".

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),$$

where f_0 is the population predictiveness maximizing function, $f_{0,s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_0 is the true data-generating distribution. VIM estimates are obtained by obtaining estimators f_n and $f_{n,s}$ of f_0 and $f_{0,s}$, respectively; obtaining an estimator P_n of P_0 ; and finally, setting $\psi_{n,s} := V(f_n, P_n) - V(f_{n,s}, P_n)$.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- type the type of risk-based variable importance measured
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
- pval a conservative p-value based on the same conservative test as test
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- folds the folds used for hypothesis testing
- y the outcome
- weights the weights
- mat- a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and the type of risk-based measure. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
## apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
## generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## using Y and X; use class-balanced folds
folds_1 <- sample(rep(seq_len(2), length = sum(y == 1)))</pre>
folds_0 <- sample(rep(seq_len(2), length = sum(y == 0)))</pre>
folds <- vector("numeric", length(y))</pre>
folds[y == 1] <- folds_1</pre>
folds[y == 0] <- folds_0</pre>
est <- vim(y, x, indx = 2, type = "r_squared",</pre>
           alpha = 0.05, run_regression = TRUE,
            SL.library = learners, cvControl = list(V = 2),
           folds = folds)
## using pre-computed fitted values
full <- SuperLearner(Y = y[folds == 1], X = x[folds == 1, ],</pre>
SL.library = learners, cvControl = list(V = 2))
full.fit <- predict(full)$pred</pre>
reduced <- SuperLearner(Y = y[folds == 2], X = x[folds == 2, -2, drop = FALSE],
SL.library = learners, cvControl = list(V = 2))
red.fit <- predict(reduced)$pred</pre>
est <- vim(Y = y, f1 = full.fit, f2 = red.fit,
            indx = 2, run_regression = FALSE, alpha = 0.05, folds = folds,
            type = "accuracy")
```

Description

A unified framework for valid statistical inference on algorithm-agnostic measures of variable importance. You provide the data, a method for estimating the conditional mean of the outcome given the covariates, choose a variable importance measure, and specify variable(s) of interest; 'vimp' takes care of the rest.

Author(s)

Maintainer: Brian Williamson http://bdwilliamson.github.io

Methodology authors:

- Brian D. Williamson
- Peter B. Gilbert
- Noah R. Simon
- Marco Carone

See Also

Preprints:

- http://biostats.bepress.com/uwbiostat/paper422/ (R-squared-based variable importance)
- http://arxiv.org/abs/2004.03683 (general variable importance)
- https://arxiv.org/abs/2006.09481 (general Shapley-based variable importance)

Other useful links:

- http://bdwilliamson.github.io/vimp
- http://github.com/bdwilliamson/vimp
- Report bugs at http://github.com/bdwilliamson/vimp/issues

Imports

The packages that we import either make the internal code nice (dplyr, magrittr, tibble, rlang, MASS), are directly relevant to estimating the conditional mean (SuperLearner) or predictiveness measures (ROCR), or are necessary for hypothesis testing (stats).

We suggest several other packages: xgboost, ranger, gam, glmnet, and quadprog allow a flexible library of candidate learners in the Super Learner; ggplot2, cowplot, and forcats help with plotting variable importance estimates; testthat and covr help with unit tests; and knitr, rmarkdown, and RCurl help with the vignettes and examples.

vimp

vimp_accuracy

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracybased variable importance. This is a wrapper function for cv_vim, with type = "accuracy".

Usage

```
vimp_accuracy(
 Υ,
 Χ,
 f1 = NULL,
 f2 = NULL,
  indx = 1,
  V = 10,
 weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
 folds = NULL,
 stratified = TRUE,
 scale = "identity",
  . . .
)
```

Υ	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V , where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)

run_regression	if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95\% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
scale	scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
	other arguments to the estimation tool, see "See also".

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

Value

An object of classes vim and vim_accuracy. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
## apply the function to the x's
f \le function(x) 0.5 + 0.3 \times x[1] + 0.2 \times x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
## generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,</pre>
            alpha = 0.05, run_regression = TRUE,
            SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_anova

Nonparametric Variable Importance Estimates: ANOVA

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracybased variable importance. This is a wrapper function for cv_vim, with type = "anova".

Usage

```
vimp_anova(
 Y,
 X,
 f1 = NULL,
 f2 = NULL,
 indx = 1,
 V = 10,
 weights = rep(1, length(Y)),
 run_regression = TRUE,
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
```

32

vimp_anova

```
alpha = 0.05,
delta = 0,
na.rm = FALSE,
scale = "identity",
folds,
stratified = FALSE,
...
```

Arguments

Y	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique re- gressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression	if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
scale	scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
	other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

vimp_anova

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- · update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y \leq smooth + stats::rnorm(n, 0, 1)
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_anova(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
```

```
SL.library = learners, V = 2, cvControl = list(V = 2))
```

```
vimp_auc
```

```
Nonparametric Variable Importance Estimates: AUC
```

Description

Compute estimates of and confidence intervals for nonparametric difference in AUC-based variable importance. This is a wrapper function for cv_vim , with type = "auc".

Usage

```
vimp_auc(
 Υ,
 Х,
 f1 = NULL,
 f2 = NULL,
  indx = 1,
 V = 10,
 weights = rep(1, length(Y)),
 run_regression = TRUE,
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
  folds = NULL,
 stratified = TRUE,
 scale = "identity",
  . . .
)
```

Υ	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)

run_regression	if outcome Y and covariates X are passed to cv_vim , and $run_regression$ is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
scale	scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
	other arguments to the estimation tool, see "See also".

AUC for each regression (full and reduced) is computed using performance. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

Value

An object of classes vim and vim_auc. See Details for more information.

vimp_ci

See Also

SuperLearner for specific usage of the SuperLearner function and package, and performance for specific usage of the ROCR package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
## apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))</pre>
## generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_auc(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, V = 2, cvControl = list(V = 2))
```

```
vimp_ci
```

```
Confidence intervals for variable importance
```

Description

Compute confidence intervals for the true variable importance parameter.

Usage

```
vimp_ci(est, se, scale = "identity", level = 0.95)
```

est	estimate of variable importance, e.g., from a call to vimp_point_est.
se	estimate of the standard error of est, e.g., from a call to vimp_se.
scale	scale to compute interval estimate on (defaults to "identity": compute SE and CI on log scale and back-transform).
level	confidence interval type (defaults to 0.95).

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.

vimp_deviance Nonparametric Variable Importance Estimates: Deviance

Description

Compute estimates of and confidence intervals for nonparametric deviance-based variable importance. This is a wrapper function for cv_vim , with type = "deviance".

Usage

```
vimp_deviance(
 Υ,
 Χ,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
 V = 10,
 weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 alpha = 0.05,
 delta = 0,
  na.rm = FALSE,
  folds = NULL,
  stratified = TRUE,
  scale = "identity",
  . . .
)
```

Y	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique re- gressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.

indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression	if outcome Y and covariates X are passed to cv_vim , and $run_regression$ is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
scale	scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
	other arguments to the estimation tool, see "See also".

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

An object of classes vim and vim_deviance. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))</pre>
## apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]</pre>
smooth <- apply(x, 1, function(z) f(z))</pre>
## generate Y ~ Normal (smooth, 1)
y <- matrix(stats::rbinom(n, size = 1, prob = smooth))</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_deviance(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
            SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_hypothesis_test Perform a hypothesis test against the null hypothesis of δ importance

Description

Perform a hypothesis test against the null hypothesis of zero importance by: (i) for a user-specified level α , compute a $(1 - \alpha) \times 100\%$ confidence interval around the predictiveness for both the full and reduced regression functions (these must be estimated on independent splits of the data); (ii) if the intervals do not overlap, reject the null hypothesis.

Usage

```
vimp_hypothesis_test(
  full,
  reduced,
  y,
```

vimp_hypothesis_test

```
folds,
delta = 0,
weights = rep(1, length(y)),
type = "r_squared",
alpha = 0.05,
cv = FALSE,
scale = "identity",
na.rm = FALSE
```

)

Arguments

full	either (i) fitted values from a regression of the outcome on the full set of co- variates from a first independent split of the data (if $cv = FALSE$) or (ii) a list of predicted values from a cross-validated procedure (if $cv = TRUE$).
reduced	fitted values from a regression either (1) of the outcome on the reduced set of covariates, or (2) of the predicted values from the full regression on the reduced set of covariates; either (i) a single set of predictions (if $cv = FALSE$) fit on an independent split of the data from full or (ii) a list of predicted values from a cross-validated procedure (if $cv = TRUE$).
У	the outcome.
folds	the folds used for splitting. If $cv = FALSE$, assumed to be a vector with 1 for the full regression and 2 for the reduced regression (if $V = 2$). If $cv = TRUE$, assumed to be a list with first element the outer folds (for hypothesis testing) and second element a list with the inner cross-validation folds.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to r_squared, for difference in R-squared-based variable importance)?
alpha	the desired type I error rate (defaults to 0.05).
cv	was V-fold cross-validation used to estimate the predictiveness (TRUE) or was the sample split in two (FALSE); defaults to FALSE.
scale	scale to compute CI on ("identity" for identity scale, "logit" for logit scale and back-transform)
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

TRUE if the null hypothesis is rejected (i.e., if the confidence intervals do not overlap); otherwise, FALSE.

vimp_point_est

Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

```
vimp_point_est(
  full,
  reduced,
  y,
  folds,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

Arguments

full	fitted values from a regression of the outcome on the full set of covariates.
reduced	fitted values from a regression of the fitted values from the full regression on the reduced set of covariates.
У	the outcome.
folds	the folds for hypothesis testing
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.

vimp_regression

Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based variable importance. This is a wrapper function for cv_vim , with type = "anova". This function is deprecated in vimp version 2.0.0.

Usage

```
vimp_regression(
 Υ,
 Χ,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
  V = 10,
 weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  folds,
  stratified = FALSE,
  . . .
)
```

Υ	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique re- gressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression	if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.

SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance < δ); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to $FALSE)$
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
	other arguments to the estimation tool, see "See also".

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data
- est the estimated variable importance
- naive the naive estimator of variable importance
- · update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

vimp_rsquared

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2</pre>
## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_regression(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_rsquared Nonparamet	c Variable Importance Estimates: \$R^2\$
--------------------------	--

Description

Compute estimates of and confidence intervals for nonparametric R^2 -based variable importance. This is a wrapper function for cv_vim, with type = "r_squared".

Usage

```
vimp_rsquared(
    Y,
    X,
    f1 = NULL,
    f2 = NULL,
    indx = 1,
    V = 10,
    weights = rep(1, length(Y)),
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha = 0.05,
    delta = 0,
    na.rm = FALSE,
    folds = NULL,
```

```
stratified = FALSE,
...
```

Arguments

Υ	the outcome.
Х	the covariates.
f1	the predicted values on validation data from a flexible estimation technique re- gressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2	the predicted values on validation data from a flexible estimation technique re- gressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx	the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V	the number of folds for cross-validation, defaults to 10.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression	if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha	the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta	the value of the δ -null (i.e., testing if importance $< \delta$); defaults to 0.
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
folds	the folds to use, if f1 and f2 are supplied.
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
	other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call the call to vim
- s the column(s) to calculate variable importance for
- SL.library the library of learners passed to SuperLearner
- full_fit the fitted values of the chosen method fit to the full data
- red_fit the fitted values of the chosen method fit to the reduced data

- est the estimated variable importance
- naive the naive estimator of variable importance
- update the influence curve-based update
- se the standard error for the estimated variable importance
- ci the $(1 \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha the level, for confidence interval calculation
- y the outcome

Value

An object of classes vim and vim_rsquared. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))</pre>
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)</pre>
## set up a library for SuperLearner
learners <- "SL.ranger"</pre>
## estimate (with a small number of folds, for illustration only)
est <- vimp_rsquared(y, x, indx = 2,</pre>
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_se

Description

Compute standard error estimates for estimates of variable importance.

Usage

```
vimp_se(
    est,
    update,
    denom = NULL,
    n = length(update),
    scale = "log",
    na.rm = FALSE
)
```

Arguments

est	the estimate of variable importance.
update	the influence curve-based update.
denom	a list of point estimate and influence curve for the denominator (if any) to make the measure of predictiveness interpretable.
n	the sample size.
scale	the scale to compute SEs on (either "log", for log-scale, or "identity", for same scale as point estimate).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.

vimp_update

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

```
vimp_update(
  full,
  reduced,
  y,
  folds = folds,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)
```

Arguments

full	fitted values from a regression of the outcome on the full set of covariates.
reduced	fitted values from a regression either (1) of the outcome on the reduced set of covariates, or (2) of the fitted values from the full regression on the reduced set of covariates.
У	the outcome.
folds	the folds for hypothesis testing.
weights	weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type	which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.

Index

```
average_vim, 3
cv_predictiveness_point_est, 4
cv_predictiveness_update, 5
cv_vim, 6
cv_vimp_point_est, 10
cv_vimp_update, 11
format.vim, 12
measure_accuracy, 13
measure_auc, 13
measure_cross_entropy, 14
measure_deviance, 14
measure_mse, 15
measure_r_squared, 15
merge_vim, 16
performance, 36, 37
predictiveness_ci, 17
predictiveness_point_est, 18
predictiveness_se, 19
predictiveness_update, 19
print.vim, 20
sample_subsets, 21
sp_vim, 23
spvim_ics, 21, 23
spvim_se, 22
SuperLearner, 9, 25, 28, 32, 34, 37, 40, 44, 47
vim, 25
vimp, 29
vimp_accuracy, 30
vimp_anova, 32
vimp_auc, 35
vimp_ci, 37
vimp_deviance, 38
vimp_hypothesis_test, 40
vimp_point_est, 42
vimp_regression, 43
```

vimp_rsquared, 45
vimp_se, 48
vimp_update, 49