Package 'vein'

June 11, 2020

Type Package

Title Vehicular Emissions Inventories

Version 0.8.9

Date 2020-06-11

Description Elaboration of vehicular emissions inventories,

consisting in four stages, pre-processing activity data, preparing emissions factors, estimating the emissions and post-processing of emissions in maps and databases. More details in Ibarra-Espinosa et al (2018) <doi:10.5194/gmd-11-2209-2018>.

Before using VEIN you need to know the vehicular composition of your study area, in other words, the combination of of type of vehicles, size and fuel of the fleet. Then, it is recommended to start with the project to download a template to create a structure of directories and scripts.

License MIT + file LICENSE

URL https://gitlab.com/ibarraespinosa/vein

BugReports https://gitlab.com/ibarraespinosa/vein/-/issues

LazyData no

Depends R (>= 3.5.0)

Imports sf, data.table, units, graphics, stats, methods

Suggests knitr, rmarkdown, testthat, covr, lwgeom, cptcity

RoxygenNote 7.0.2 Encoding UTF-8

NeedsCompilation yes

Author Sergio Ibarra-Espinosa [aut, cre] (https://orcid.org/0000-0002-3162-1905)

Maintainer Sergio Ibarra-Espinosa < sergio.ibarra@usp.br>

Repository CRAN

Date/Publication 2020-06-11 16:30:03 UTC

R topics documented:

add_lkm
add_polid
adt
age
age_hdv
age_ldv
age_moto
aw
celsius
cold_mileage
ef_cetesb
ef_china
ef_evap
ef_fun
ef_hdv_scaled
ef_hdv_speed
ef_im
ef_ive
ef_ldv_cold
ef_ldv_cold_list
ef_ldv_scaled
ef_ldv_speed
ef_local
ef_nitro
ef_wear
ef_whe
emis
EmissionFactors
EmissionFactorsList
Emissions
EmissionsArray
emis_chem
emis_cold
emis_cold_td
emis_det
emis_dist
emis_evap
emis_evap2
emis_grid
emis_hot_td
emis_merge
emis_order
emis_order2
emis_paved
emis_post
emis source.

add_lkm 3

add_]	Lkm Construction function to add unit km
Index	114
	wide_to_long
	vkm
	vein_notes
	Vehicles
	to_latex
	temp_fact
	split_emis
	Speed
	speciate
	remove_units
	profiles
	pollutants
	pc profile
	pc cold
	netspeed
	net
	make_grid
	\mathcal{E}
	inventory
	invcop
	grid_emis
	GriddedEmissionsArray
	get_project
	fuel_corr
	fkm
	fe2015
	emis_wear
	emis_to_streets

Description

add_1km just add unit 'km' to different R objects

Usage

 $add_1km(x)$

Arguments

x Object with class "data.frame", "matrix", "numeric" or "integer"

4 add_polid

Value

Objects of class "data.frame" or "units"

Examples

```
## Not run:
a <- add_lkm(rnorm(100)*10)
plot(a)
b <- add_lkm(matrix(rnorm(100)*10, ncol = 10))
print(head(b))
## End(Not run)</pre>
```

add_polid

Add polygon id to lines road network

Description

Sometimes you need to add polygon id into your streets road network. add_polid add add_polid id into your road network cropping your network by.

For instance, you have open street maps road network the you have the polygon of your regions. This function adds the id of your polygon as a new column in the streets network.

Usage

```
add_polid(polyg, street, by)
```

Arguments

polyg sf object POLYGON or sp street streets road network class sf or sp

by Character indicating the column with the id in polyg

See Also

```
emis_to_streets
```

```
## Not run:
data(net)
nets <- sf::st_as_sf(net)
bb <- sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(nets)))
bb$id <- "a"
a <- add_polid(polyg = bb, street = nets, by = "id")
## End(Not run)</pre>
```

adt 5

adt

Average daily traffic (ADT) from hourly traffic data.

Description

adt calculates ADT based on hourly traffic data.

Usage

```
adt(
 рc,
  lcv,
 hgv,
 bus,
 mc,
 p_pc,
 p_lcv,
 p_hgv,
 p_bus,
 p_mc,
  feq_pc = 1,
  feq_lcv = 1.5,
  feq_hgv = 2,
  feq_bus = 2,
  feq_mc = 0.5
)
```

Arguments

рс	numeric vector for passenger cars
lcv	numeric vector for light commercial vehicles
hgv	numeric vector for heavy good vehicles or trucks
bus	numeric vector for bus
mc	numeric vector for motorcycles
p_pc	data-frame profile for passenger cars, 24 hours only.
p_lcv	data-frame profile for light commercial vehicles, 24 hours only.
p_hgv	data-frame profile for heavy good vehicles or trucks, 24 hours only.
p_bus	data-frame profile for bus, 24 hours only.
p_mc	data-frame profile for motorcycles, 24 hours only.
feq_pc	Numeric, factor equivalence
feq_lcv	Numeric, factor equivalence
feq_hgv	Numeric, factor equivalence
feq_bus	Numeric, factor equivalence
feq_mc	Numeric, factor equivalence

6 age

Value

numeric vector of total volume of traffic per link as ADT

Examples

```
## Not run:
data(net)
data(pc_profile)
p1 <- pc_profile[, 1]</pre>
adt1 \leftarrow adt(pc = net$ldv*0.75,
             lcv = net$ldv*0.1,
             hgv = net hdv,
             bus = net$hdv*0.1,
             mc = net$ldv*0.15,
             p_pc = p1,
             p_1cv = p1,
             p_hgv = p1,
             p_bus = p1,
             p_mc = p1)
head(adt1)
## End(Not run)
```

age

Applies a survival rate to numeric new vehicles

Description

age returns survived vehicles

Usage

```
age(x, type = "weibull", a = 14.46, b = 4.79, agemax, verbose = FALSE)
```

Arguments

X	Numeric; numerical vector of sales or registrations for each year
type	Character; any of "gompertz", "double_logistic", "weibull" and "weibull2"
a	Numeric; parameter of survival equation
b	Numeric; parameter of survival equation
agemax	Integer; age of oldest vehicles for that category
verbose	Logical; message with average age and total numer of vehicles regions or streets.

Value

dataframe of age distrubution of vehicles

age 7

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using these functions is:

1. If you know the distribution of the vehicles by age of use, use: my_age 2. If you know the sales of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this curve. 4. You can use/merge/transform/dapt any of these functions.

gompertz: 1 - exp(-exp(a + b*time)), defaults PC: b = -0.137, a = 1.798, LCV: b = -0.141, a = 1.618 MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia. This curve is also used by Guo and Wang (2012, 2015) in the form: V*exp(alpha*exp(beta*E)) where V is the saturation car ownership level and E GDP per capita Huo, H., & Wang, M. (2012). Modeling future vehicle sales and stock in China. Energy Policy, 43, 17–29. doi:10.1016/j.enpol.2011.09.063 Huo, Hong, et al. "Vehicular air pollutant emissions in China: evaluation of past control policies and future perspectives." Mitigation and Adaptation Strategies for Global Change 20.5 (2015): 719-733.

double_logistic: 1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b))), defaults PC: b = 21, a = 0.19, LCV: b = 15.3, a = 0.17, HGV: b = 17, a = 0.1, BUS: b = 19.1, a = 0.16 MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia.

weibull: exp(-(time/a)^b), defaults PC: b = 4.79, a = 14.46, Taxi: b = +inf, a = 5, Government and business: b = 5.33, a = 13.11 Non-operating vehicles: b = 5.08, a = 11.53 Bus: b = +inf, a = 9, non-transit bus: b = +inf, a = 5.5 Heavy HGV: b = 5.58, a = 12.8, Medium HGV: b = 5.58, a = 10.09, Light HGV: b = 5.58, a = 8.02 Hao, H., Wang, H., Ouyang, M., & Cheng, F. (2011). Vehicle survival patterns in China. Science China Technological Sciences, 54(3), 625-629.

weibull2: exp(-((time + b)/a)^b), defaults b = 11, a = 26 Zachariadis, T., Samaras, Z., Zierock, K. H. (1995). Dynamic modeling of vehicle populations: an engineering approach for emissions calculations. Technological Forecasting and Social Change, 50(2), 135-149. Cited by Huo and Wang (2012)

See Also

```
Other age: age_hdv(), age_ldv(), age_moto()
```

8 age_hdv

```
col = c("black", "red", "blue", "green"),
      1ty=c(1,1),
      lwd=c(2.5, 2.5, 2.5, 2.5))
      #lets put some numbers
vehLIA <- c(65400, 79100, 80700, 85300, 86700, 82000, 74500, 67700, 60600, 62500,
84700, 62600, 47900, 63900, 41800, 37492, 34243, 30995, 27747, 24499, 21250,
18002, 14754, 11506, 8257)
PV_Minia \leftarrow age(x = vehLIA)
PV_Minib \leftarrow age(x = vehLIA, type = "weibull2", b = 11, a = 26)
PV_Minic <- age(x = vehLIA, type = "double_logistic", b = 21, a = 0.19)
PV_Minid \leftarrow age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
plot(PV_Minia, type = "b", pch = 16)
lines(PV_Minib, type = "b", pch = 16, col = "red")
lines(PV_Minic, type = "b", pch = 16, col = "blue")
lines(PV_Minid, type = "b", pch = 16, col = "green")
legend(x = 20, y = 80000,
      legend = c("weibull", "weibull2", "double_logistic", "gompertz"),
      col = c("black", "red", "blue", "green"),
      lty=c(1,1),
      lwd=c(2.5, 2.5, 2.5, 2.5))
## End(Not run)
```

age_hdv

Returns amount of vehicles at each age

Description

age_hdv returns amount of vehicles at each age

Usage

```
age_hdv(
    x,
    name = "age",
    a = 0.2,
    b = 17,
    agemin = 1,
    agemax = 50,
    k = 1,
    bystreet = F,
    net,
    verbose = FALSE,
    namerows,
    time
)
```

age_hdv 9

Arguments

X	Numeric; numerical vector of vehicles with length equal to lines features of road network
name	Character; of vehicle assigned to columns of dataframe
a	Numeric; parameter of survival equation
b	Numeric; parameter of survival equation
agemin	Integer; age of newest vehicles for that category
agemax	Integer; age of oldest vehicles for that category
k	Numeric; multiplication factor. If its length is > 1 , it must match the length of x
bystreet	Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to x
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose	Logical; message with average age and total numer of vehicles
namerows	Any vector to be change row.names. For instance, name of regions or streets.
time	Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles at each street

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

```
Other age: age_ldv(), age_moto(), age()
```

```
## Not run:
data(net)
LT_B5 <- age_hdv(x = net$hdv,name = "LT_B5")
plot(LT_B5)
LT_B5 <- age_hdv(x = net$hdv, name = "LT_B5", net = net)
plot(LT_B5)
## End(Not run)</pre>
```

10 age_ldv

 ${\sf age_ldv}$

Returns amount of vehicles at each age

Description

age_ldv returns amount of vehicles at each age

Usage

```
age_ldv(
    x,
    name = "age",
    a = 1.698,
    b = -0.2,
    agemin = 1,
    agemax = 50,
    k = 1,
    bystreet = F,
    net,
    verbose = FALSE,
    namerows,
    time
)
```

Arguments

X	Numeric; numerical vector of vehicles with length equal to lines features of road network
name	Character; of vehicle assigned to columns of dataframe
a	Numeric; parameter of survival equation
b	Numeric; parameter of survival equation
agemin	Integer; age of newest vehicles for that category
agemax	Integer; age of oldest vehicles for that category
k	Numeric; multiplication factor. If its length is > 1 , it must match the length of x
bystreet	Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to $\boldsymbol{\boldsymbol{x}}$
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose	Logical; message with average age and total numer of vehicles
namerows	Any vector to be change row.names. For instance, name of regions or streets.
time	Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles

age_moto 11

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

It consists in a Gompertz equation with default parameters from 1 national emissions inventory for green housegases in Brazil, MCT 2006

See Also

```
Other age: age_hdv(), age_moto(), age()
```

Examples

```
## Not run:
data(net)
PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")
plot(PC_E25_1400)
PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
plot(PC_E25_1400)
## End(Not run)</pre>
```

age_moto

Returns amount of vehicles at each age

Description

age_moto returns amount of vehicles at each age

Usage

```
age_moto(
    x,
    name = "age",
    a = 0.2,
    b = 17,
    agemin = 1,
    agemax = 50,
    k = 1,
    bystreet = FALSE,
    net,
    verbose = FALSE,
    namerows,
```

12 age_moto

```
time
```

Arguments

X	Numeric; numerical vector of vehicles with length equal to lines features of road network
name	Character; of vehicle assigned to columns of dataframe
a	Numeric; parameter of survival equation
b	Numeric; parameter of survival equation
agemin	Integer; age of newest vehicles for that category
agemax	Integer; age of oldest vehicles for that category
k	Numeric; multiplication factor. If its length is > 1 , it must match the length of x
bystreet	Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to x
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose	Logical; message with average age and total numer of vehicles
namerows	Any vector to be change row.names. For instance, name of regions or streets.

time Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

```
Other age: age_hdv(), age_ldv(), age()
```

```
## Not run:
data(net)
MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4)
plot(MOTO_E25_500)
MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4, net = net)
plot(MOTO_E25_500)
## End(Not run)</pre>
```

aw 13

aw

Average Weight from hourly traffic data.

Description

aw average weight form traffic.

Usage

```
aw(
  pc,
 lcv,
 hgv,
 bus,
 mc,
 p_pc,
 p_lcv,
 p_hgv,
 p_bus,
 p\_mc,
 w_pc = 1,
 w_1cv = 3.5,
 w_hgv = 20,
 w_bus = 20,
 w_{mc} = 0.5,
 net
)
```

Arguments

рс	numeric vector for passenger cars
lcv	numeric vector for light commercial vehicles
hgv	numeric vector for heavy good vehicles or trucks
bus	numeric vector for bus
mc	numeric vector for motorcycles
p_pc	data-frame profile for passenger cars, 24 hours only.
p_lcv	data-frame profile for light commercial vehicles, 24 hours only.
p_hgv	data-frame profile for heavy good vehicles or trucks, 24 hours only.
p_bus	data-frame profile for bus, 24 hours only.
p_mc	data-frame profile for motorcycles, 24 hours only.
w_pc	Numeric, factor equivalence
w_lcv	Numeric, factor equivalence
w_hgv	Numeric, factor equivalence

14 celsius

w_bus	Numeric, factor equivalence
w_mc	Numeric, factor equivalence
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

Value

data.frame with with average weight

Examples

```
## Not run:
data(net)
data(pc_profile)
p1 <- pc_profile[, 1]</pre>
aw1 \leftarrow aw(pc = net$ldv*0.75,
             lcv = net$ldv*0.1,
             hgv = net hdv,
             bus = net$hdv*0.1,
             mc = net$ldv*0.15,
             p_pc = p1,
             p_lcv = p1,
             p_hgv = p1,
             p_bus = p1,
             p_mc = p1)
head(aw1)
## End(Not run)
```

celsius

Construction function for Celsius temperature

Description

celsius just add unit celsius to different R objects

Usage

```
celsius(x)
```

Arguments

x Object with class "data.frame", "matrix", "numeric" or "integer"

Value

Objects of class "data.frame" or "units"

cold_mileage 15

Examples

```
## Not run:
a <- celsius(rnorm(100)*10)
plot(a)
b <- celsius(matrix(rnorm(100)*10, ncol = 10))
print(head(b))
## End(Not run)</pre>
```

cold_mileage

Fraction of mileage driven with a cold engine or catalizer below normal temperature

Description

This function depends length of trip and on ambient temperature. From the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage

```
cold_mileage(ltrip, ta)
```

Arguments

1trip Numeric; Length of trip. It must be in 'units' km.

ta Numeric or data.frame; average monthly temperature Celsius. It if is a data.frame,

it is convenient that each column is each month.

Note

This function is set so that values vaires between 0 and 1.

```
## Not run:
lkm <- units::set_units(1:10, km)
ta <- celsius(matrix(0:9, ncol = 12, nrow = 10))
a <- cold_mileage(lkm, rbind(ta, ta))
(a)
filled.contour(as.matrix(a), col = cptcity::lucky(n = 16))
## End(Not run)</pre>
```

ef_cetesb

Description

ef_cetesb returns a vector or data.frame of Brazilian emission factors.

Usage

```
ef_cetesb(
  p,
  veh,
  year = 2017,
  agemax = 40,
  sppm,
  full = FALSE,
  project = "constant",
  verbose = FALSE
)
```

Arguments

р	Character;
	Pollutants: "CO", "HC", "NMHC", "CH4", "NOx", "CO2", "RCHO", "ETOH",
	"PM", "N2O", "KML", "FC", "NO2", "NO", "gD/KWH", "gCO2/KWH", "RCHO",
	"CO_0km", "HC_0km", "NMHC_0km", "NOx_0km", "NO2_0km", "NO_0km",
	"RCHO_0km" and "ETOH_0km", "FS" (fuel sales) (g/km). Evaporative emis-
	sions at average temperature ranges: "D_20_35", "S_20_35", "R_20_35", "D_10_25",
	"S_10_25", "R_10_25", "D_0_15", "S_0_15" and "R_0_15" where D means di-
	urnal (g/day), S hot/warm soak (g/trip) and R hot/warm running losses (g/trip).
veh	Character; Vehicle categories: "PC_G", "PC_FG", "PC_FE", "PC_E", "LCV_G",
	"LCV_FG", "LCV_FE", "LCV_E", "LCV_D", "TRUCKS_SL", "TRUCKS_L",
	"TRUCKS_M", "TRUCKS_SH", "TRUCKS_H", "BUS_URBAN", "BUS_MICRO",
	"BUS_COACH", "BUS_ARTIC", "MC_G_150", "MC_G_150_500", "MC_G_500",
	"MC_FG_150", "MC_FG_150_500", "MC_FG_500", "MC_FE_150", "MC_FE_150_500",
	"MC_FE_500" "CICLOMOTOR", "GNV"
year	Numeric; Filter the emission factor to start from a specific base year. If project
	is 'constant' values above 2017 and below 1980 will be repeated
agemax	Integer; age of oldest vehicles for that category
sppm	Numeric, sulfur (sulphur) in ppm in fuel.
full	Logical; To return a data frame instead or a vector adding Age, Year, Brazilian
	emissions standards and its euro equivalents.
project	haracter showing the method for projecting emission factors in future. Currently
	the only value is "constant"
verbose	Logical; To show more information

ef_cetesb 17

Value

A vector of Emission Factor or a data.frame

Note

The new convention for vehicles names are translated from CETESB report:

veh	description
PC_G	Passenger Car Gasohol (Gasoline + 27perc of anhydrous ethanol)
PC_E	Passenger Car Ethanol (hydrous ethanol)
PC_FG	Passenger Car Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
PC_FE	Passenger Car Flex Ethanol (hydrous ethanol)
LCV_G	Light Commercial Vehicle Gasohol (Gasoline + 27perc of anhydrous ethanol)
LCV_E	Light Commercial Vehicle Ethanol (hydrous ethanol)
LCV_FG	Light Commercial Vehicle Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
LCV_FE	Light Commercial Vehicle Flex Ethanol (hydrous ethanol)
LCV_D	Light Commercial Vehicle Diesel (5perc bio-diesel)
TRUCKS_SL_D	Trucks Semi Light Diesel (5perc bio-diesel)
TRUCKS_L_D	Trucks Light Diesel (5perc bio-diesel)
TRUCKS_M_D	Trucks Medium Diesel (5perc bio-diesel)
TRUCKS_SH_D	Trucks Semi Heavy Diesel (5perc bio-diesel)
TRUCKS_H_D	Trucks Heavy Diesel (5perc bio-diesel)
BUS_URBAN_D	Urban Bus Diesel (5perc bio-diesel)
BUS_MICRO_D	Micro Urban Bus Diesel (5perc bio-diesel)
BUS_COACH_D	Coach (inter-state) Bus Diesel (5perc bio-diesel)
BUS_ARTIC_D	Articulated Urban Bus Diesel (5perc bio-diesel)
MC_150_G	Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_500_G	Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_500_G	Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_FG	Flex Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_500_FG	Flex Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_500_FG	Flex Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_FE	Flex Motorcycle engine less than 150cc Ethanol (hydrous ethanol)
MC_150_500_FE	Flex Motorcycle engine 150-500cc Ethanol (hydrous ethanol)
MC_500_FE	Flex Motorcycle greater than 500cc Ethanol (hydrous ethanol)

The percentage varies of bioduels varies by law.

This emission factors are not exactly the same as the report of CETESB.

- 1) In this emission factors, there is also NO and NO2 based on split by published in the EMEP/EEA air pollutant emission inventory guidebook.
- 2) Also, the emission factors were extended till 50 years of use, repeating the oldest value.
- 3) CNG emission factors were expanded to other pollutants by comparison of US.EPA-AP42 emission factor: Section 1.4 Natural Gas Combustion.

In the previous versions I used the letter 'd' for deteriorated. I removed the letter 'd' internally to not break older code.

18 ef_cetesb

If by mistake, the user inputs one of veh names from the old convention, they are internally changed to the new convention: "SLT", "LT", "MT", "SHT", "HT", "UB", "SUB", "COACH", "ARTIC", "M_G_150", "M_G_150_500", "M_G_500", "M_FG_150", "M_FG_150_500", "M_FG_500", "M_FE_150", "M_FE_150_500", "M_FE_500",

If pollutant is "SO2", it needs sppm. It is designed when veh has length 1, if it has length 2 or more, it will show a warning

Emission factor for vehicles older than the reported by CETESB were filled as the moving average of 2:

- Range EF from PC and LCV otto: 2018 1982. EF for 1981 and older as movign average.
- Range LCV diesel: 2018 2006. EF for 2005 and older as movign average.
- Range Trucks and Buse: 2018 1998. EF for 1997 and older as movign average.
- Range MC Gasoline: 2018 2003. EF for 2002 and older as movign average.
- Range MC Flex 150-500cc and >500cc: 2018 2012. EF for 2011 and older as movign average.

Currently, 2020, there are not any system for recovery of fuel vapors in Brazil. Hence, the FS takes into account the vapour that comes from the fuel tank inside the car and released into the atmosphere when injecting new fuel. There are discussions about incrementing implementing stage I and II and/or ORVR thesedays. The ef FS is calculated by transforming g FC/km into (L/KM)*g/L with g/L 1.14 fgor gasoline and 0.37 for ethanol (CETESB, 2016). The density considered is 0.75425 for gasoline and 0.809 for ethanol (t/m^3)

CETESB emission factors did not cover evaporative emissions from motorcycles, which occure. Therefore, in the abscence of better data, it was assumed the same ratio from passenger cars.

Li, Lan, et al. "Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends." Science of the Total Environment 502 (2015): 627-631.

References

Emissoes Veiculares no Estado de Sao Paulo 2016. Technical Report. url: https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/.

```
## Not run:
a <- ef_cetesb("CO", "PC_G")
a <- ef_cetesb("R_10_25", "PC_G")
a <- ef_cetesb("CO", c("PC_G", "PC_FE"))
ef_cetesb(p = "CO", veh = "PC_G", year = 2018, agemax = 40)
ef_cetesb(p = "CO", veh = "PC_G", year = 1970, agemax = 40)
ef_cetesb(p = "CO", veh = "PC_G", year = 2030, agemax = 40)
ef_cetesb(p = "CO", veh = "TRUCKS_L_D", year = 2018)
ef_cetesb(p = "CO", veh = "SLT", year = 2018) # olds names
ef_cetesb(p = "SO2", veh = "PC_G", year = 2030, agemax = 40, sppm = 300)
ef_cetesb(p = "SO2", veh = "PC_FE", year = 2030, agemax = 40, sppm = 300)
## End(Not run)</pre>
```

ef_china 19

ef_china Emissions factors from Chinese emissions guidelines

Description

ef_china returns emission factors as vector or data.frames. The emission factors comes from the chinese emission guidelines (v3) from the Chinese Ministry of Ecology and Environment http://www.mee.gov.cn/gkml/hbb/bg

Usage

```
ef_china(
  v = "PV",
  t = "Small",
  f = "G"
  standard,
 k = 1,
  ta = celsius(15),
 humidity = 0.5,
 altitude = 1000,
  speed = Speed(30),
 baseyear_det = 2016,
  sulphur = 50,
  load_factor = 0.5,
 details = FALSE,
  correction_only = FALSE
)
```

Arguments

V	Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
t	Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small", "Medium", "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus", "3-Wheel". Trucks: "Mini", "Light", "Medium", "Heavy"
f	Character;fuel: "G", "D"
standard	Character or data.frame; "PRE", "I", "II", "III", "IV", "V". When it is a data.frame, it each row is a different region and ta, humidity, altitud, speed, sulphur and load_factor lengths have the same as the number of rows.
p	Character; pollutant: "CO", "NOx", "HC", "PM", "Evaporative_driving" or "Evaporative_parking"
k	Numeric; multiplication factor
ta	Numeric; temperature of ambient in celcius degrees. When standard is a data.frame, the length must be equal to the number of rows of standard.
humidity	Numeric; relative humidity. When standard is a data.frame, the length must be equal to the number of rows of standard.

20 ef_china

altitude Numeric; altitude in meters. When standard is a data.frame, the length must be

equal to the number of rows of standard.

speed Numeric; altitude in km/h When standard is a data.frame, the length must be

equal to the number of rows of standard.

baseyear_det Integer; any of 2014, 2015, 2016, 2017, 2018

sulphur Numeric; sulphur in ppm. When standard is a data.frame, the length must be

equal to the number of rows of standard.

load_factor Numeric; When standard is a data.frame, the length must be equal to the number

of rows of standard.

details Logical; When TRUE, it shows a description of the vehicle in chinese and en-

f

glish. Only when length standard is 1.

correction_only

Logical; When TRUE, return only correction factors.

Value

An emission factor

Note

Combination of vehicles:

•	•	-
PV	Mini	G
PV	Small	G
PV	Medium	G
PV	Large	G
PV	Taxi	G
PV	Bus	G
PV	Motorcycles	G
PV	Moped	G
PV	Mini	D
PV	Small	D
PV	Mediumbus	D
PV	Largebus	D
PV	Bus	D
PV	3-Wheel	D
PV	Small	ALL
PV	Mediumbus	ALL
PV	Largebus	ALL
PV	Taxi	ALL
PV	Bus	ALL
Trucks	Bus	G
Trucks	Light	G
Trucks	Medium	G
Trucks	Heavy	G
Trucks	Light	D
Trucks	Medium	D

t

ef_china 21

Trucks Heavy D Trucks Low Speed D Trucks Mini D

See Also

```
ef_ldv_speed emis_hot_td
```

```
## Not run:
# when standard is 'character'
# Checking
df_st <- rev(c(as.character(as.roman(5:1)), "PRE"))</pre>
ef_china(t = "Mini", f = "G", standard = df_st, p = "CO")
ef_china(t = "Mini", f = "G", standard = df_st, p = "HC")
ef_china(t = "Mini", f = "G", standard = df_st, p = "NOx")
ef_china(t = "Mini", f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Mini", f = "G", standard = df_st, p = "PM10")
ef_china(t = "Small", f = "G", standard = df_st, p = "CO")
ef_china(t = "Small", f = "G", standard = df_st, p = "HC")
ef_china(t = "Small", f = "G", standard = df_st, p = "NOx")
ef_china(t = "Small", f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Small", f = "G", standard = df_st, p = "PM10")
ef_china(t = "Mini",
        standard = c("PRE"),
        p = "CO",
        k = 1,
        ta = celsius(15),
        humidity = 0.5,
        altitude = 1000,
        speed = Speed(30),
        baseyear_det = 2014,
        sulphur = 50,
        load_factor = 0.5,
        details = FALSE)
ef_china(standard = c("PRE", "I"), p = "CO", correction_only = TRUE)
# when standard is 'data.frame'
df_st <- matrix(c("V", "IV", "III", "III", "II", "I", "PRE"), nrow = 2, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)</pre>
a <- ef_china(standard = df_st,
              p = "PM10",
              ta = rep(celsius(15), 2),
              altitude = rep(1000, 2),
              speed = rep(Speed(30), 2),
              sulphur = rep(50, 2))
dim(a)
```

22 ef_evap

```
dim(df_st)
ef_china(standard = df_st, p = "PM2.5", ta = rep(celsius(20), 2),
altitude = rep(1501, 2), speed = rep(Speed(29), 2), sulphur = rep(50, 2))
# when standard, temperature and humidity are data.frames
# assuming 10 regions
df_st <- matrix(c("V", "IV", "III", "III", "II", "PRE"), nrow = 10, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)</pre>
df_t \leftarrow matrix(21:30, nrow = 10, ncol = 12, byrow = TRUE)
df_t <- as.data.frame(df_t)</pre>
for(i in 1:12) df_t[, i] <- celsius(df_t[, i])</pre>
# assuming 10 regions
df_h \leftarrow matrix(seq(0.4, 0.5, 0.05), nrow = 10, ncol = 12, byrow = TRUE)
df_h <- as.data.frame(df_h)</pre>
a <- ef_china(standard = df_st, p = "CO", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a <- ef_china(standard = df_st, p = "PM2.5", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a <- ef_china(standard = df_st, p = "PM10", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
dim(a)
## End(Not run)
```

ef_evap

Evaporative emission factor

Description

ef_evap is a lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guide-lines

Usage

```
ef_evap(
    ef,
    v,
    cc,
    dt,
    ca,
    pollutant = "NMHC",
    k = 1,
    ltrip,
    kmday,
```

ef_evap 23

```
show = FALSE,
verbose = FALSE
)
```

Arguments

ef	Name of evaporative emission factor as *eshotc*: mean hot-soak with carburator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean hot-soak with fuel injection, *erhotc*: mean hot running losses with carburator, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot running losses with fuel injection. Length of ef 1.
V	Type of vehicles, "PC", "Motorcycle", "Motorcycle_2S" and "Moped"
сс	Size of engine in cc. PC "<=1400", "1400_2000" and ">2000" Motorcycle_2S: "<=50". Motorcyces: ">50", "<=250", "250_750" and ">750". Only engines of >750 has canister.
dt	Character or Numeric: Average monthly temperature variation: "-5_10", "0_15", "10_25" and "20_35". This argument can vector with several elements. dt can also be data.frame, but it is recommended that the number of columns are each month. So that dt varies in each row and each column.
ca	Size of canister: "no" meaning no canister, "small", "medium" and "large".
pollutant	Character indicating any of the covered pollutants: "NMHC", "ethane", "propane", "i-butane", "n-butane", "i-pentane", "2-methylpentane", "3-methylpentane", "n-hexane", "n-heptane", "trans-2-butene", "isobutene", "cis-2-butene", "1,3-butadiene", "trans-2-pentene", "cis-2-pentene", "isoprene", "propyne", "acetylene", "benzene", "toluene", "ethylbenzene", "m-xylene", "o-xylene", "1,2,4-trimethylbenzene" and "1,3,5-trimethylbenzene". Default is "NMHC"
k	multiplication factor
ltrip	Numeric; Length of trip. Experimental feature to conter g/trip and g/proced (assuming proced similar to trip) in g/km.
kmday	Numeric; average daily mileage. Experimental option to convert g/day in g/km. it is an information more solid than to know the average number of trips per day.
show	when TRUE shows row of table with respective emission factor.
verbose	Logical; To show more information

Value

emission factors in g/trip or g/proced. The object has class (g) but it order to know it is g/trip or g/proceed the argument show must by T

Note

Diurnal loses occur with daily temperature variations. Running loses occur during vehicles use. Hot soak emission occur following vehicles use.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

24 ef_fun

Examples

```
## Not run:
# Do not run
a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
pollutant = "cis-2-pentene")
a <- ef_evap(ef = "ed", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
a \leftarrow ef_{evap}(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
dt = "0_15", ca = "no",
show = TRUE)
a <- ef_evap(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
dt = "0_15", ca = "no",
show = FALSE)
a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
temps <- 10:20
a <- ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = temps, ca = "no",
show = TRUE)
dt <- matrix(rep(1:24,5), ncol = 12) # 12 months
dt <- celsius(dt)</pre>
a \leftarrow ef_{evap}(ef = "erhotc", v = "PC", cc = " <= 1400",
dt = dt, ca = "no")
lkm <- units::set_units(10, km)</pre>
a <- ef_evap(ef ="erhotc", v = "PC", cc = "<=1400", ltrip = lkm,
dt = dt, ca = "no")
## End(Not run)
```

ef_fun

Experimental: Returns a function of Emission Factor by age of use

Description

ef_fun returns amount of vehicles at each age

Usage

```
ef_fun(
    ef,
    type = "logistic",
    x = 1:length(ef),
    x0 = mean(ef),
    k = 1/4,
    L = max(ef)
)
```

ef_hdv_scaled 25

Arguments

ef	f Numeric; numeric vector of emission factors.	
type	Character; "logistic" by default so far.	
x	Numeric; vector for ages of use.	
x0	Numeric; the x-value of the sigmoid's midpoint,	
k	Numeric; the steepness of the curve.	
L	Integer; the curve's maximum value.	

Value

dataframe of age distrubution of vehicles at each street.

References

https://en.wikipedia.org/wiki/Logistic_function

Examples

```
## Not run:
data(fe2015)
CO <- vein::EmissionFactors(fe2015[fe2015$Pollutant == "CO", "PC_G"])
ef_logit <- ef_fun(ef = CO, x0 = 27, k = 0.4, L = 33)
plot(ef_logit, type = "b", pch = 16)
lines(ef_logit, pch = 16, col = "blue")
## End(Not run)</pre>
```

ef_hdv_scaled

Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

ef_hdv_scaled creates a list of scaled functions of emission factors. A scaled emission factor which at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe with local emission factors with a columns with the name "Euro_HDV" indicating the Euro equivalence standard, assuming that there are available local emission factors for several consecutive years.

Usage

```
ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr = 0, l = 0.5, p)
```

26 ef_hdv_scaled

Arguments

df	deprecated
dfcol	Column of the dataframe with the local emission factors eg df\$dfcol
SDC	Speed of the driving cycle
v	Category vehicle: "Coach", "Trucks" or "Ubus"
t	Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g	Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5", ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
eu	Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"
gr	Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1	Load of the vehicle: 0.0, 0.5 or 1.0
p	Pollutant: "CO", "FC", "NOx" or "HC"

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

```
## Not run:
# Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
lef <- ef_hdv_scaled(dfcol = co1$LT, v = "Trucks", t = "RT",
g = "<=7.5", eu = co1$Euro_HDV, gr = 0, l = 0.5, p = "CO")
length(lef)
plot(x = 0:150, y = lef[[36]](0:150), col = "red", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of oldest vehicle")
plot(x = 0:150, y = lef[[1]](0:150), col = "blue", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of newest vehicle")
## End(Not run)</pre>
```

ef_hdv_speed 27

ef_hdv_speed

Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emepeea-air-pollutant-emission-inventory-guidebook

Usage

```
ef_hdv_speed(
    v,
    t,
    g,
    eu,
    x,
    gr = 0,
    1 = 0.5,
    p,
    k = 1,
    show.equation = FALSE,
    speed,
    fcorr = rep(1, 8)
)
```

Arguments

V	Category vehicle: "Coach", "Trucks" or "Ubus"
t	Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g	Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5", ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32", ">32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
eu	Euro emission standard: "PRE", "I", "II", "IV", "IV", "V". Also "II+CRDPF", "III+CRDPF", "IV+CRDPF", "III+SCR", "III+SCR" and "V+SCR" for pollutants Number of particles and Active Surface.
х	Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in fuel in ppm.
gr	Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1	Load of the vehicle: 0.0, 0.5 or 1.0
p	Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC", "CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs), and Number of particles and Active Surface.

28 ef_hdv_speed

k Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function. It needs

units in km/h

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.

The order from first to last is "PRE", "I", "III", "III", "IV", "V", VI, "VIc". De-

fault is 1

Value

an emission factor function which depends of the average speed V g/km

Note

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb".

Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): "indeno(1,2,3-cd)pyrene", "benzo(k)fluoranthene", "benzo(ghi)perylene",

"fluoranthene", "benzo(a)pyrene", "pyrene", "perylene", "anthanthrene", "benzo(b)fluorene", "benzo(e)pyrene",

"triphenylene", "3,6-dimethyl-phenanthrene", "benzo(a) anthracene", "phenanthrene", "napthalene", "benzo(a) anthracene", "phenanthrene", "napthalene", "na

"anthracene"

Dioxins and furans (g equivalent toxicity / km): "PCDD", "PCDF" and "PCB".

Metals (g/km): "As", "Cd", "Cr", "Cu", "Hg", "Ni", "Pb", "Se", "Zn" (g/km). NMHC (g/km):

ALKANES (g/km): "ethane", "propane", "butane", "isobutane", "pentane", "isopentane", "heptane", "octane", "2-methylhexane", "2-methylhexane", "decane", "3-methylheptane", "alkanes C10 C12"

CYCLOALKANES (g/km): "cycloalkanes".

ALKENES (g/km): "ethylene", "propylene", "isobutene", "2-butene", "1,3-butadiene"

ALKYNES (g/km): "acetylene".

ALDEHYDES (g/km): "formaldehyde", "acetaldehyde", "acrolein", "benzaldehyde", "crotonalde-

hyde", "methacrolein", "butyraldehyde", "propionaldehyde", "i-valeraldehyde"

KETONES (g/km): "acetone"

AROMATICS (*g/km*): "toluene", "ethylbenzene", "m-xylene", "p-xylene", "o-xylene", "1,2,3-trimethylbenzene", "1,2,4-trimethylbenzene", "Styrene", "benzene", "C9".

Active Surface (cm2/km) (gr = 0 and l = 0.5): "AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km) (gr = 0 and l = 0.5): "N_urban", "N_rural", "N_highway", "N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway".

The available standards for Active Surface or number of particles are: Euro II and III Euro II and III + CRDPF Euro II and III + SCR Euro IV + CRDPF Euro V + SCR

The categories Pre Euro and Euro I were assigned with the factors of Euro II and Euro III The categories euro IV and euro V were assigned with euro III + SCR

See Also

fuel_corr emis ef_ldv_cold

ef_hdv_speed 29

```
## Not run:
# Quick view
pol <- c("C0", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2",
"AS_urban", "AS_rural", "AS_highway",
"N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
f <- sapply(1:length(pol), function(i){</pre>
print(pol[i])
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = pol[i], x = 10)(30)
})
# PAH POP
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = "napthalene", x = 10)(30)
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = "fluoranthene", x = 10)(30)
# Dioxins and Furans
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = "PCB", x = 10)(30)
# NMHC
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = "heptane", x = 10)(30)
V <- 0:130
ef1 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1 = 0.5, p = "HC"
plot(1:130, ef1(1:130), pch = 16, type = "b")
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("III", 5),
          rep("I", 5), rep("PRE", 15))
lef <- lapply(1:30, function(i) {</pre>
ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = euro[i], 1 = 0.5, p = "NOx",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'</pre>
plot(efs, xlab = "age")
lines(efs, type = "1")
a \leftarrow ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = euro, 1 = 0.5, p = "NOx", speed = Speed(0:125))
a$speed <- NULL
filled.contour(as.matrix(a), col = cptcity::lucky(n = 24),
xlab = "Speed", ylab = "Age")
persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Age",
zlab = "NOx [g/km]", col = cptcity::lucky(), phi = 25)
aa <- ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = rbind(euro, euro), l = 0.5, p = "NOx", speed = Speed(0:125))
## End(Not run)
```

30 ef_im

Emission factors deoending on accumulated mileage

Description

ef_im calculate the theoretical emission factors of vehicles. The approache is different from including deterioration factors (emis_det) but similar, because they represent how much emits a vehicle with a normal deterioration, but that it will pass the Inspection and Manteinance program.

Usage

```
ef_im(ef, tc, amileage, max_amileage, max_ef, verbose = TRUE)
```

Arguments

ef Numeric; emission factors of vehicles with **0 mileage** (new vehicles).

tc Numeric; rate of growth of emissions by year of use.

amileage Numeric; Accumulated mileage by age of use.

max_amileage Numeric; Max accumulated mileage. This means that after this value, mileage

is constant.

max_ef Numeric; Max ef. This means that after this value, ef is constant.

verbose Logical; if you want detailed description.

Value

An emission factor of a deteriorated vehicle under normal conditions which would be approved in a inspection and mantainence program.

```
## Not run:
# Do not run
# Passenger Cars PC
data(fkm)
# cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:10))
ef_im(ef = seq(0.1, 2, 0.2), seq(0.1, 1, 0.1), mil)
## End(Not run)</pre>
```

ef_ive 31

ef_ive Base emissions factors from International Vehicle Emissions (IVE) model

Description

ef_ive returns the base emission factors from the the IVE model. This function depend on vectorized mileage, which means your can enter with the mileage by age of use and the name of the pollutant.

Usage

```
ef_ive(
  description = "Auto/Sml Truck",
  fuel = "Petrol",
  weight = "Light",
  air_fuel_control = "Carburetor",
  exhaust = "None",
  evaporative = "PCV",
  mileage,
  pol,
  details = FALSE
)
```

Arguments

```
Character; "Auto/Sml Truck" "Truck/Bus" or "Sml Engine".
description
                  Character; "Petrol", "NG Retrofit", "Natural Gas", "Prop Retro.", "Propane",
fuel
                  "EthOH Retrofit", "OEM Ethanol", "Diesel", "Ethanol" or "CNG/LPG".
                  Character; "Light", "Medium", "Heavy", "Lt", "Med" or "Hvy"
weight
air_fuel_control
                  Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
                  Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection", "2-Cycle",
                  "2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle"
                  Character: "None", "2-Way", "2-Way/EGR", "3-Way", "3-Way/EGR", "None/EGR",
exhaust
                  "LEV", "ULEV", "SULEV", "EuroI", "EuroII", "EuroIII", "EuroIV", "Hybrid",
                  "Improved", "EGR+Improv", "Particulate", "Particulate/NOx", "EuroV", "High
                  Tech" or "Catalyst"
                  Character: "PCV", "PCV/Tank" or "None".
evaporative
mileage
                  Numeric; mileage of vehicle by age of use km.
pol
                  Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
                  Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection", "2-Cycle",
                  "2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle" #'
   "VOC_gkm"
                           "CO_gkm"
                                                  "NOx_gkm"
                                                                           "PM_gkm"
```

32 ef_ldv_cold

```
"Pb_gkm"
                          "SO2_gkm"
                                                 "NH3_gkm"
                                                                    "1,3-butadiene_gkm"
"formaldehyde_gkm"
                      "acetaldehyde_gkm"
                                               "benzene_gkm"
                                                                       "EVAP_gkm"
    "CO2_gkm"
                                                                       "VOC_gstart"
                          "N20 gkm"
                                                 "CH4_gkm"
    "CO_gstart"
                          "NOx_gstart"
                                                 "PM_gstart"
                                                                         "Pb_gstart"
                                            "1,3-butadiene_gstart"
   "SO2_gstart"
                          "NH3_gstart"
                                                                    "formaldehyde_gstart"
"acetaldehyde_gstart"
                        "benzene_gstart"
                                                "EVAP_gstart"
                                                                        "CO2_gstart"
   "N20 gstart"
                          "CH4_gstart"
```

details

Logical; option to see or not more information about vehicle.

Value

An emission factor by annual mileage.

References

Nicole Davis, James Lents, Mauricio Osses, Nick Nikkila, Matthew Barth. 2005. Development and Application of an International Vehicle Emissions Model. Transportation Research Board, 81st Annual Meeting, January 2005, Washington, D.C.

Examples

```
## Not run:
# Do not run
# Passenger Cars PC
data(fkm)
# cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:50))
ef_ive("Truck/Bus", mileage = mil, pol = "CO_gkm")
ef_ive(mileage = mil, pol = "CO_gkm", details = TRUE)
## End(Not run)</pre>
```

ef_ldv_cold

Cold-Start Emissions factors for Light Duty Vehicles

Description

ef_ldv_cold returns speed functions or data.frames which depends on ambient temperature average speed. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

ef_ldv_cold 33

Usage

```
ef_ldv_cold(
    v = "LDV",
    ta,
    cc,
    f,
    eu,
    p,
    k = 1,
    show.equation = FALSE,
    speed,
    fcorr = rep(1, 8)
)
```

Arguments

V	Character; Category vehicle: "LDV"
ta	Numeric vector or data.frame; Ambient temperature. Monthly mean can be used. When ta is a data.frame, one option is that the number of rows should be the number of rows of your Vehicles data.frame. This is convenient for top-down approach when each simple feature can be a polygon, with a monthly average temperature for each simple feature. In this case, the number of columns can be the 12 months.
СС	Character; Size of engine in cc: "<=1400", "1400_2000" or ">2000"
f	Character; Type of fuel: "G", "D" or "LPG"
eu	Character or data.frame of Characters; Euro standard: "PRE", "I", "III", "IV", "V", "V" or "VIc". When 'eu' is a data.frame and 'ta' is also a data.frame both has to have the same number of rows. For instance, When you want that each simple feature or region has a different emission standard.
р	Character; Pollutant: "CO", "FC", "NOx", "HC" or "PM"
k	Numeric; Multiplication factor
show.equation	Option to see or not the equation parameters
speed	Numeric; Speed to return Number of emission factor and not a function.
fcorr	Numeric; Correction by fuel properties by euro technology. See fuel_corr. The order from first to last is "PRE", "I", "III", "III", "IV", "V", VI, "VIc". Default is 1

Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

See Also

```
fuel_corr
```

34 ef_ldv_cold_list

Examples

```
## Not run:
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
show.equation = TRUE)
ef1(10)
speed <- Speed(10)</pre>
ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO", speed = speed)
# lets create a matrix of ef cold at different speeds and temperatures
te <- -50:50
lf <- sapply(1:length(te), function(i){</pre>
ef_ldv_cold(ta = te[i], cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0:120))
filled.contour(lf, col= cptcity::lucky())
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")</pre>
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(0))
lf <- ef_ldv_cold(ta = 10, cc = "<=1400", f = "G", eu = euros, p = "CO", speed = Speed(0:120))
dt <- matrix(rep(2:25,5), ncol = 12) # 12 months
ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0))
ef_ldv_cold(ta = dt, cc = " <= 1400", f = "G", eu = euros, p = "CO", speed = Speed(34))
euros2 <- c("V", "V", "V", "IV", "IV", "IV", "III", "III")
dfe <- rbind(euros, euros2)</pre>
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0))
ef_ldv_cold(ta = dt[1:2,], cc = " <= 1400", f = "G", eu = dfe, p = "CO", speed = Speed(0))
# Fuel corrections
fcorr < c(0.5,1,1,1,0.9,0.9,0.9,0.9)
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f = "G", eu = "PRE", p = "CO",
show.equation = TRUE, fcorr = fcorr)
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0),
fcorr = fcorr)
## End(Not run)
```

ef_ldv_cold_list

List of cold start emission factors of Light Duty Vehicles

Description

This function creates a list of functions of cold start emission factors considering different euro emission standard to the elements of the list.

Usage

```
ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)
```

Arguments

df Dataframe with local emission factor

v Category vehicle: "LDV"

ef_ldv_scaled 35

ta	ambient temperature. Montly average van be used
сс	Size of engine in cc: <=1400", "1400_2000" and ">2000"
f	Type of fuel: "G" or "D"
eu	character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or "VIc".
р	Pollutant: "CO", "FC", "NOx", "HC" or "PM"

Value

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

```
## Not run:
# Do not run
df <- data.frame(age1 = c(1,1), age2 = c(2,2))
eu = c("I", "PRE")
l <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",
eu = "I", p = "CO")
l_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "CO")
length(l_cold)
## End(Not run)</pre>
```

ef_ldv_scaled

Scaling constant with speed emission factors of Light Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which at a speed of the driving cycle (SDC) gives a desired value.

Usage

```
ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t = "4S", cc, f, eu, p)
```

36 ef_ldv_scaled

Arguments

df	deprecated
dfcol	Column of the dataframe with the local emission factors eg df\$dfcol
SDC	Speed of the driving cycle
V	Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t	Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504", "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"
cc	Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750". Moped: "<=50". LCV: "<3.5" for gross weight.
f	Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
eu	Euro standard: "PRE", "I", "III", "III", "III+DPF", "IV", "V", "VI", "VIc"
p	Pollutant: "CO", "FC", "NOx", "HC" or "PM". If your pollutant dfcol is based on fuel, use "FC", if it is based on "HC", use "HC".

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission factor by the respective speed emissions factor at the speed representative of the local emission factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12 km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle. Thanks to Glauber Camponogara for the help.

See Also

```
ef_ldv_seed
```

```
## Not run:
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO", ]
lef <- ef_ldv_scaled(dfcol = co1$PC_G, v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = co1$Euro_LDV, p = "CO")
length(lef)
lef[[1]](40) # First element of the lit of speed functions at 40 km/h
lef[[36]](50) # 36th element of the lit of speed functions at 50 km/h
plot(x = 0:150, y = lef[[36]](0:150), col = "red", type = "b", ylab = "[g/km]",</pre>
```

```
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of oldest vehicle")
plot(x = 0:150, y = lef[[1]](0:150), col = "blue", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of newest vehicle")
## End(Not run)
```

ef_ldv_speed

Emissions factors for Light Duty Vehicles and Motorcycles

Description

ef_ldv_speed returns speed dependent emission factors, data.frames or list of emission factors. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage

```
ef_ldv_speed(
    v,
    t = "4S",
    cc,
    f,
    eu,
    p,
    x,
    k = 1,
    speed,
    show.equation = FALSE,
    fcorr = rep(1, 8)
)
```

Arguments

V	Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t	Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504", "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"
СС	Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750". Moped: "<=50". LCV: "<3.5" for gross weight.
f	Character; type of fuel: "G", "D", "LPG" or "FH" (Gasoline Full Hybrid). Full hybrid vehicles cannot be charged from the grid and recharge; only its own engine may recharge tis batteries.

eu	Character or data.frame of characters; euro standard: "PRE", "I", "III", "III", "III+DPF", "IV", "V", "VI" or "VIc". When the pollutan is active surface or number of particles, eu can also be "III+DISI"
p	Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC", "CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs), and Number of particles and Active Surface.
х	Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in fuel in ppm.
k	Numeric; multiplication factor
speed	Numeric; Speed to return Number of emission factor and not a function.
show.equation	Logical; option to see or not the equation parameters.
fcorr	Numeric; Correction by fuel properties by euro technology. See fuel_corr. The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". Default is 1

Details

The argument of this functions have several options which results in different combinations that returns emission factors. If a combination of any option is wrong it will return an empty value. Therefore, it is important ti know the combinations.

Value

An emission factor function which depends of the average speed V g/km

Note

t = "ALL" and cc == "ALL" works for several pollutants because emission fators are the same. Some exceptions are with NOx and FC because size of engine.

Hybrid cars: the only cover "PC" and according to EMEP/EEA air pollutant emission inventory guidebook 2016 (Ntziachristos and Samaras, 2016) only for euro IV. When new literature is available, I will update these factors.

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb", "FC".

Black Carbon and Organic Matter (g/km): "BC", "OM"

 $\label{eq:partial_potential} \textbf{PAH and POP (g/km): "indeno(1,2,3-cd)pyrene", "benzo(k)fluoranthene", "benzo(b)fluoranthene", "benzo(ghi)perylene", "fluoranthene", "benzo(a)pyrene", "pyrene", "perylene", "anthanthrene", "benzo(b)fluorene", "benzo(e)pyrene", "triphenylene", "benzo(j)fluoranthene", "dibenzo(a,j)anthacene", "dibenzo(a,l)pyrene", "3,6-dimethyl-phenanthrene", "benzo(a)anthracene", "acenaphthylene", "acenapthene", "chrysene", "phenanthrene", "napthalene", "anthracene", "coronene", "dibenzo(ah)anthracene".$

Dioxins and furans(g equivalent toxicity / km): "PCDD", "PCDF" and "PCB".

Metals (g/km): "As", "Cd", "Cr", "Cu", "Hg", "Ni", "Pb", "Se", "Zn". NMHC (g/km):

```
ALKANES (g/km): "ethane", "propane", "butane", "isobutane", "pentane", "isopentane", "hexane", "heptane", "octane", "2-methylhexane", "nonane", "2-methylheptane", "3-methylhexane", "decane", "3-methylheptane", "alkanes_C10_C12", "alkanes_C13".
```

CYCLOALKANES (g/km): "cycloalkanes".

ALKENES (g/km): "ethylene", "propylene", "propadiene", "1-butene", "isobutene", "2-butene", "1,3-butadiene", "1-pentene", "2-pentene", "1-hexene", "dimethylhexene".

ALKYNES (g/km):"1-butyne", "propyne", "acetylene".

ALDEHYDES (*g/km*): "formaldehyde", "acetaldehyde", "acrolein", "benzaldehyde", "crotonaldehyde", "methacrolein", "butyraldehyde", "isobutanaldehyde", "propionaldehyde", "hexanal", "ivaleraldehyde", "valeraldehyde", "o-tolualdehyde", "m-tolualdehyde", "p-tolualdehyde".

KETONES (g/km): "acetone", "methylethlketone".

AROMATICS (*g/km*): "toluene", "ethylbenzene", "m-xylene", "p-xylene", "o-xylene", "1,2,3-trimethylbenzene", "1,2,4-trimethylbenzene", "C10", "C10", "C13".

Active Surface (cm2/km): "AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km): "N_urban", "N_rural", "N_highway", "N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway".

The available standards for Active Surface or number of particles are Euro I, II, III, III+DPF dor diesle and III+DISI for gasoline. Pre euro vehicles has the value of Euro I and euro IV, V, VI and VIc the value of euro III.

See Also

```
fuel_corr emis ef_ldv_cold
```

```
## Not run:
# Passenger Cars PC
# Emission factor function
V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "CO"
efs <- EmissionFactors(ef1(1:150))</pre>
plot(Speed(1:150), efs, xlab = "speed[km/h]", type = "b", pch = 16, col = "blue")
# Quick view
pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2",
"1-butyne", "propyne")
f <- sapply(1:length(pol), function(i){</pre>
ef_ldv_speed("PC", "4S", "<=1400", "G", "PRE", pol[i], x = 10)(30)
# PM Characteristics
pol <- c("AS_urban", "AS_rural", "AS_highway",</pre>
"N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
f <- sapply(1:length(pol), function(i){</pre>
ef_ldv_speed("PC", "4S", "<=1400", "D", "PRE", pol[i], x = 10)(30)
```

```
})
# PAH POP
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "indeno(1,2,3-cd)pyrene")(10)
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "napthalene")(10)
# Dioxins and Furans
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "PCB")(10)
# NMHC
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "hexane")(10)
# List of Copert emission factors for 40 years fleet of Passenger Cars.
# Assuming a euro distribution of euro V, IV, III, II, and I of
# 5 years each and the rest 15 as PRE euro:
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("III", 5),
          rep("I", 5), rep("PRE", 15))
speed <- 25
lef <- lapply(1:40, function(i) {</pre>
ef_1dv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
          eu = euro[i], p = "CO")
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
          eu = euro[i], p = "CO", show.equation = FALSE)(25) })
# to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'</pre>
plot(efs, xlab = "age")
lines(efs, type = "1")
euros <- c("VI", "V", "IV", "III", "II")</pre>
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
          eu = euros, p = "CO")
a \leftarrow ef_{1}dv_{peed}(v = "PC", t = "4S", cc = "<=1400", f = "G",
          eu = euros, p = "CO", speed = Speed(0:120))
filled.contour(as.matrix(a)[1:10, 1:length(euros)], col = cptcity::cpt(n = 18))
filled.contour(as.matrix(a)[110:120, 1:length(euros)], col = cptcity::cpt(n = 16))
filled.contour(as.matrix(a)[, 1:length(euros)], col = cptcity::cpt(n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_viridis", n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_magma", n = 21))
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 0)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 45)
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 90)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 90+45)
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 180)
new_euro <- c("VI", "VI", "V", "V", "V")</pre>
euro <- c("V", "V", "IV", "III", "II")</pre>
old_euro <- c("III", "II", "I", "PRE", "PRE")
meuros <- rbind(new_euro, euro, old_euro)</pre>
```

ef_local 41

```
aa \leftarrow ef_ldv_speed(v = "PC", t = "4S", cc = "\leftarrow1400", f = "G",
          eu = meuros, p = "CO", speed = Speed(10:11))
# Light Commercial Vehicles
V <- 0:150
ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
p = "CO"
efs <- EmissionFactors(ef1(1:150))</pre>
plot(Speed(1:150), efs, xlab = "speed[km/h]")
lef <- lapply(1:5, function(i) {</pre>
ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",
          eu = euro[i], p = "CO", show.equation = FALSE)(25) })
# to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'</pre>
plot(efs, xlab = "age")
lines(efs, type = "l")
# Motorcycles
V <- 0:150
ef1 <- ef_ldv_speed(v = "Motorcycle",t = "4S", cc = "<=250", f = "G",
eu = "PRE", p = "CO", show.equation = TRUE)
efs <- EmissionFactors(ef1(1:150))</pre>
plot(Speed(1:150), efs, xlab = "speed[km/h]")
# euro for motorcycles
eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))</pre>
lef <- lapply(1:30, function(i) {</pre>
ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
eu = eurom[i], p = "CO",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'</pre>
plot(efs, xlab = "age")
lines(efs, type = "1")
a \leftarrow ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
eu = eurom, p = "CO", speed = Speed(0:125))
a$speed <- NULL
filled.contour(as.matrix(a), col = cptcity::lucky(),
xlab = "Speed", ylab = "Age")
persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Euros",
zlab = "CO [g/km]", col = cptcity::lucky(), phi = 25)
## End(Not run)
```

ef_local

Local Emissions factors

Description

ef_local process an data.frame delivered by the user, but adding similar funcionality and arguments as ef_cetesb, which are classification, filtering and projections

ef_local

Usage

```
ef_local(
  p,
  veh,
  year = 2017,
  agemax = 40,
  ef,
  full = FALSE,
  project = "constant",
  verbose = TRUE
)
```

Arguments

p	Character; pollutant delivered by the user. the name of the column of the data.frame must be Pollutant .
veh	Character; Vehicle categories available in the data.frame provided by the user
year	Numeric; Filter the emission factor to start from a specific base year. If project is 'constant' values above 2017 and below 1980 will be repeated
agemax	Integer; age of oldest vehicles for that category
ef	data.frame, for local the emission factors. The names of the ef must be 'Age' 'Year' 'Pollutant' and all the vehicle categories
full	Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian emissions standards and its euro equivalents.
project	Character showing the method for projecting emission factors in future. Currently the only value is "constant"
verbose	Logical; To show more information

Details

returns a vector or data.frame of Brazilian emission factors.

Value

A vector of Emission Factor or a data.frame

Note

The names of the ef must be 'Age' 'Year' 'Pollutant' and all the vehicle categories...

See Also

```
ef_cetesb
```

ef_nitro 43

Examples

```
## Not run:
#do not run
## End(Not run)
```

ef_nitro

Emissions factors of N2O and NH3

Description

ef_nitro returns emission factors as a functions of acondumulated mileage. The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emeea-air-pollutant-emission-inventory-guidebook

Usage

```
ef_nitro(
    v,
    t = "Hot",
    cond = "Urban",
    cc,
    f,
    eu,
    p = "NH3",
    S = 10,
    cumileage,
    k = 1,
    show.equation = FALSE,
    fcorr = rep(1, 8)
)
```

Arguments

```
Category vehicle: "PC", "LCV", "Motorcycles_2S", "Motorcycles", "Trucks",
٧
                  "Trucks-A", "Coach" and "BUS"
                 Type: "Cold" or "Hot"
t
                  "Urban", "Rural", "Highway"
cond
                 PC: "<=1400", "1400_2000", ">2000". LCV: "<3.5". Motorcycles: ">=50",
CC
                 Motorcycles_2S, "<50", ">=50". Trucks: ">3.5", "7.5_12", "12_28", "28_34".
                 Trucks_A: ">34". BUS: "<=15", ">15 & <= 18". Coach: "<=18", ">18"
f
                 Type of fuel: "G", "D" or "LPG"
                 Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI", "VIc"
eu
                 Pollutant: "N2O", "NH3"
S
                 Sulphur (ppm). Number.
```

44 ef_wear

cumileage Numeric; Acondumulated mileage to return number of emission factor and not a function.

k Multiplication factor

show.equation Option to see or not the equation parameters fcorr Numeric; Correction by by euro technology.

Value

an emission factor function which depends on the acondumulated mileage, or an EmissionFactor

Note

if length of eu is bigger than 1, cumileage can have values of length 1 or length equal to length of eu

Examples

```
## Not run:
efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10,
show.equation = FALSE)
efe50 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 50,
show.equation = TRUE)
efe10(10)
efe50(10)
efe50(10)
efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10, cumileage = units::set_units(25000, "km"))
## End(Not run)</pre>
```

ef_wear

Emissions factors from tyre, break and road surface wear

Description

ef_wear estimates wear emissions. The sources are tyres, breaks and road surface.

```
ef_wear(wear, type, pol = "TSP", speed, load = 0.5, axle = 2)
```

ef_whe 45

Arguments

wear	Character; type of wear: "tyre", "break" and "road"	
type	Character; type of vehicle: "2W", "PC", "LCV", 'HDV"	
pol	Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PM0	
speed	Data.frame of speeds	
load	Load of the HDV	
axle	Number of axle of the HDV	

Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

Examples

```
## Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
ef <- ef_wear(wear = "tyre", type = "PC", pol = "PM10", speed = df)
## End(Not run)</pre>
```

ef_whe

Emission factor that incorporates the effect of high emitters

Description

ef_whe return weighted emission factors of vehicles considering that one part of the fleet has a normal deterioration and another has a deteriorated fleet that would be rejected in a inspection and mantainence program but it is still in circulation. This emission factor might be applicable in cities without a inspection and mantainence program and with Weighted emission factors considering that part of the fleet are high emitters.

```
ef_whe(efhe, phe, ef)
```

Arguments

efhe Numeric; Emission factors of high emitters vehicles. This vehicles would be rejected in a inspection and mantainnence program.

phe Numeric; Percentage of high emitters.

ef Numeric; Emission factors deteriorated vehicles under normal conditions. These vehicles would be approved in a inspection and mantainence program.

Value

An emission factor by annual mileage.

Examples

```
## Not run:
# Do not run
# Let's say high emitter is 5 times the normal ef.
co_efhe <- ef_cetesb(p = "COd", "PC_G") * 5
# Let's say that the perfil of high emitters increases linearly
# till 30 years and after that percentage is constant
perc <- c(seq(0.01, 0.3, 0.01), rep(0.3, 20))
# Now, lets use our ef with normal deterioration
co_ef_normal <- ef_cetesb(p = "COd", "PC_G")
efd <- ef_whe(efhe = co_efhe, phe = perc, ef = co_ef_normal)
# now, we can plot the three ef
plot(co_efhe)
lines(co_ef_normal, pch = 16, col = "red")
lines(efd, pch = 16, col = "blue")
## End(Not run)</pre>
```

emis

Estimation of emissions

Description

emis estimates vehicular emissions as the product of the vehicles on a road, length of the road, emission factor avaliated at the respective speed. E = VEH * LENGTH * EF(speed)

```
emis(
  veh,
  lkm,
  ef,
  speed,
  agemax = ifelse(is.data.frame(veh), ncol(veh), ncol(veh[[1]])),
  profile,
```

```
simplify = FALSE,
fortran = FALSE,
hour = nrow(profile),
day = ncol(profile),
verbose = FALSE
)
```

Arguments

veh	"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as number of columns matching the age distribution of that ype of vehicle. The number of rows is equal to the number of streets link. If this is a list, the length of the list is the vehicles for each hour.
lkm	Length of each link in km
ef	List of functions of emission factors
speed	Speed data-frame with number of columns as hours. The default value is 34km/h
agemax	Age of oldest vehicles for that category
profile	Dataframe or Matrix with nrows equal to 24 and ncol 7 day of the week
simplify	Logical; to determine if EmissionsArray should les dimensions, being streets, vehicle categories and hours or default (streets, vehicle categories, hours and days). Default is FALSE to avoid break old code, but the recommendation is that new estimations use this parameter as TRUE
fortran	Logical; to try the fortran calculation when speed is not used. I will add fortran for EmissionFactorsList soon.
hour	Number of considered hours in estimation. Default value is number of rows of argument profile
day	Number of considered days in estimation
verbose	Logical; To show more information

Value

If the user applies a top-down approach, the resulting units will be according its own data. For instance, if the vehicles are veh/day, the units of the emissions implicitly will be g/day.

Note

Hour and day will be deprecated because they can be infered from the profile matrix.

```
## Not run:
# Do not run
data(net)
data(pc_profile)
data(profiles)
data(fe2015)
data(fkm)
```

```
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
           133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
           84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
           1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pc1 \leftarrow my\_age(x = net\$ldv, y = PC\_G, name = "PC")
# Estimation for morning rush hour and local emission factors and speed
speed <- data.frame(S8 = net$ps)</pre>
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))</pre>
system.time(E_CO <- emis(veh = pc1,1km = net$1km, ef = lef, speed = speed))</pre>
system.time(E_CO_2 < -emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, simplify = TRUE))
identical(E_CO, E_CO_2)
# Estimation for morning rush hour and local emission factors without speed
lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))</pre>
system.time(E_CO \leftarrow emis(veh = pc1, lkm = net$lkm, ef = lef))
system.time(E_CO_2 < -\text{emis}(\text{veh} = \text{pc1}, 1\text{km} = \text{net} 1\text{km}, \text{ ef} = 1\text{ef}, \text{ fortran} = \text{TRUE})
identical(E_CO, E_CO_2)
# Estimation for 168 hour and local factors and speed
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))</pre>
system.time(
E_CO \leftarrow emis(veh = pc1,
              1km = net$1km,
              ef = lef,
              speed = speed,
              profile = profiles$PC_JUNE_2014))
system.time(
E_CO_2 \leftarrow emis(veh = pc1,
              1km = net$1km,
              ef = lef,
              speed = speed,
              profile = profiles$PC_JUNE_2014,
              simplify = TRUE))
# Estimation for 168 hour and local factors and without speed
lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))</pre>
system.time(
E_CO \leftarrow emis(veh = pc1,
              1km = net$1km,
              ef = lef,
              profile = profiles$PC_JUNE_2014)) ; sum(E_CO)
system.time(
E_CO_2 \leftarrow emis(veh = pc1,
              lkm = net$lkm,
              ef = lef,
              profile = profiles$PC_JUNE_2014,
              fortran = TRUE)) ; sum(E_CO)
system.time(
E_CO_3 \leftarrow emis(veh = pc1,
              1km = net$1km,
```

```
ef = lef,
             profile = profiles$PC_JUNE_2014,
             simplify = TRUE)) ; sum(E_CO)
system.time(
E_CO_4 \leftarrow emis(veh = pc1,
             lkm = net$lkm,
             ef = lef,
             profile = profiles$PC_JUNE_2014,
             simplify = TRUE,
             fortran = TRUE)) ; sum(E_CO)
identical(round(E_CO, 2), round(E_CO_2, 2))
identical(round(E_CO_3, 2), round(E_CO_4, 2))
identical(round(E_CO_3[,,1], 2), round(E_CO_4[,,1], 2))
dim(E_CO_3)
dim(E_CO_4)
# but
a <- unlist(lapply(1:41, function(i){</pre>
           unlist(lapply(1:168, function(j) {
           identical(E_CO_3[, i, j], E_CO_4[, i, j])
           }))))))
unique(a)
#Estimation with list of vehicles
lpc <- list(pc1, pc1)</pre>
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))</pre>
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed)</pre>
# top down
veh <- age_ldv(x = netldv[1:4], name = "PC_E25_1400", agemax = 4)
mil \leftarrow fkm$KM_PC_E25(1:4)
ef <- ef_cetesb("COd", "PC_G")[1:4]</pre>
emis(veh, units::set_units(mil, "km"), ef)
# group online
bus1 <- age_hdv(30, agemax = 4)
veh = bus1
lkm = units::set_units(400, "km")
speed = 40
efco <- ef_cetesb("COd", "UB", agemax = 4)</pre>
lef <- ef_hdv_scaled(dfcol = as.numeric(efco),</pre>
                      v = "Ubus",
                      t = "Std",
                      g = ">15 \& <=18"
                      eu = rep("IV", 4),
                      gr = 0,
                      1 = 0.5,
                      p = "CO")
for(i in 1:length(lef)) print(lef[[i]](10))
(a <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE))
(b <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE, fortran = TRUE))
## End(Not run)
```

50 EmissionFactors

EmissionFactors

Construction function for class "EmissionFactors"

Description

EmissionFactors returns a tranformed object with class "EmissionFactors" and units g/km.

Usage

```
EmissionFactors(x, ...)
## S3 method for class 'EmissionFactors'
print(x, ...)
## S3 method for class 'EmissionFactors'
summary(object, ...)
## S3 method for class 'EmissionFactors'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"... ignoredobject With class "EmissionFactors"
```

Value

Objects of class "EmissionFactors" or "units"

```
## Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactors(df)
class(ef1)
summary(ef1)
plot(ef1)
print(ef1)
## End(Not run)</pre>
```

EmissionFactorsList 51

 ${\tt EmissionFactorsList} \quad \textit{Construction function for class "EmissionFactorsList"}$

Description

EmissionFactorsList returns a tranformed object with class"EmissionsFactorsList".

Usage

```
EmissionFactorsList(x, ...)
## S3 method for class 'EmissionFactorsList'
print(x, ..., default = FALSE)
## S3 method for class 'EmissionFactorsList'
summary(object, ...)
## S3 method for class 'EmissionFactorsList'
plot(x, ...)
```

Arguments

х	Object with class "list"
	ignored
default	Logical value. When TRUE prints default list, when FALSE prints messages with description of list
object	Object with class "EmissionFactorsList"

Value

Objects of class "EmissionFactorsList"

```
## Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)
class(ef1)
length(ef1)
length(ef1[[1]])
summary(ef1)
ef1
## End(Not run)</pre>
```

52 Emissions

Emissions

Construction function for class "Emissions"

Description

Emissions returns a tranformed object with class "Emissions". The type of objects supported are of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function returns a dataframe.

Usage

```
Emissions(x, time, ...)
## S3 method for class 'Emissions'
print(x, ...)
## S3 method for class 'Emissions'
summary(object, ...)
## S3 method for class 'Emissions'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
time Character to be the time units as denominator, eg "1/h"
... ignored
object object with class "Emissions"
```

Value

Objects of class "Emissions" or "units"

EmissionsArray 53

```
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::as_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
                      f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
             profile = pc_profile)
dim(E_CO) # streets x vehicle categories x hours x days
class(E_CO)
plot(E_CO)
####
Emissions(1, time = "1/h")
## End(Not run)
```

EmissionsArray

Construction function for class "EmissionsArray"

Description

EmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimensios.

Usage

```
EmissionsArray(x, ...)
## S3 method for class 'EmissionsArray'
print(x, ...)
## S3 method for class 'EmissionsArray'
summary(object, ...)
## S3 method for class 'EmissionsArray'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object object with class "EmissionsArray'
```

Value

Objects of class "EmissionsArray"

54 emis_chem

Note

Future version of this function will return an Array of 3 dimensions.

Examples

```
## Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
           133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
           84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
           1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
                      f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,1km = net$1km, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, simplify = TRUE)
class(E_CO)
summary(E_CO)
E_CO
plot(E_CO)
lpc <- list(pc1, pc1)</pre>
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, hour = 2, day = 1)
## End(Not run)
```

emis_chem

Aggregate emissions by lumped groups in chemical mechanism

Description

emis_chem aggregates emissions by chemical mechanism and convert grams to mol. This function reads all hydrocarbos and respective criteria polluants specified in ef_ldv_speed and ef_hdv_speed.

```
emis_chem(dfe, mechanism, colby, long = FALSE)
```

emis_chem 55

Arguments

dfe	data.frame with column 'emissions' in grams and 'pollutant' in long format. It is supposed that each line is the pollution of some region. Then the 'coldby' argument is for include the name of the region.
mechanism	Character, "RADM2_SORG", "CBMZ_MOSAIC", "CPTEC", "GOCART_CPTEC", "MOZEM", "MOZCEM", "CAMMAM", "MOZMEM", "MOZC_T1_EM", "CB05_OPT1" or "CB05_OPT2"
colby	Character indicating column name for aggregating extra column. For instance,

region or province.

long Logical. Do you want data in long format?

Value

data.frame with lumped groups by chemical mechanism. It transform emissions in grams to mol.

Note

This feature is experimental and the mapping of pollutants and lumped species may change in future. This function is converting the intial data.frame input into data.table. To have a comprehensive speciation is necessary enter with a data.frame with colum 'emission' in long format including another column named 'pollutant' with species of NMHC, CO, NO, NO2, NH3, SO2, PM2.5 and coarse PM10.

Groups derived from gases has units 'mol' and from aersols 'g'. The aersol units for WRF-Chem are ug/m^2/s while for CMAQ and CAMx are g/s. So, leaving the units just in g, allow to make further change while providing flexibility for several models. TODO: Enter with wide data.frame, with each line as a each street, each column for pollutant

See Also

```
ef_ldv_speed ef_hdv_speed speciate ef_evap
```

```
## Not run:
# CO
df <- data.frame(emission = Emissions(1:10))</pre>
df$pollutant = "CO"
emis_chem(df, "CBMZ_MOSAIC")
# hexanal
df$pollutant = "hexanal"
emis_chem(df, "CBMZ_MOSAIC")
# propadiene and NO2
df2 <- df1 <- df
df1$pollutant = "propadiene"
df2$pollutant = "NO2"
(dfe <- rbind(df1, df2))</pre>
emis_chem(dfe, "CBMZ_MOSAIC")
dfe$region <- rep(letters[1:2], 10)</pre>
emis_chem(dfe, "CBMZ_MOSAIC", "region")
```

56 emis_cold

```
emis_chem(dfe, "CBMZ_MOSAIC", "region", TRUE)
## End(Not run)
```

 ${\tt emis_cold}$

Estimation of cold start emissions hourly for the of the week

Description

emis_cold emissions are estimated as the product of the vehicles on a road, length of the road, emission factor avaliated at the respective speed. The estimation considers beta parameter, the fraction of mileage driven

Usage

```
emis_cold(
  veh,
  1km,
  ef,
 efcold,
 beta,
  speed = 34,
  agemax = if (!inherits(x = veh, what = "list")) {
                                                       ncol(veh) } else {
   ncol(veh[[1]]) },
  profile,
  simplify = FALSE,
  hour = nrow(profile),
  day = ncol(profile),
  array = TRUE,
 verbose = FALSE
)
```

Arguments

veh	"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as number of columns matching the age distribution of that ype of vehicle. The number of rows is equal to the number of streets link
lkm	Length of each link
ef	List of functions of emission factors of vehicular categories
efcold	List of functions of cold start emission factors of vehicular categories
beta	Datraframe with the hourly cold-start distribution to each day of the period. Number of rows are hours and columns are days
speed	Speed data-frame with number of columns as hours
agemax	Age of oldest vehicles for that category
profile	Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

emis_cold 57

Logical; to determine if EmissionsArray should les dimensions, being streets, vehicle categories and hours or default (streets, vehicle categories, hours and days). Default is FALSE to avoid break old code, but the recommendation is that new estimations use this parameter as TRUE

hour Number of considered hours in estimation

Array Deprecated! emis_cold returns only arrays. When TRUE and veh is not a list, expects a profile as a dataframe producing an array with dimensions (streets x columns x hours x days)

verbose Logical; To show more information

Value

EmissionsArray g/h

```
## Not run:
# Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
data(pc_cold)
pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_col
pc_cold))
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
                         133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
                         84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
                         1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my\_age(x = net$ldv, y = PC\_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])</pre>
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
                                                   f = "G", p = "CO", eu=co1$Euro_LDV)
# Mohtly average temperature 18 Celcius degrees
lefec <- ef_ldv_cold_list(df = co1, ta = 18, cc = "<=1400", f = "G",
                                                                eu = co1\$Euro\_LDV, p = "CO")
lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],</pre>
                           lefec[length(lefec)], lefec[length(lefec)],
                           lefec[length(lefec)])
length(lefec) == ncol(pc1)
#emis change length of 'ef' to match ncol of 'veh'
class(lefec)
```

58 emis_cold_td

```
PC_CO_COLD <- emis_cold(veh = pc1,
                         1km = net$1km,
                         ef = lef,
                         efcold = lefec,
                         beta = pcf,
                         speed = speed,
                         profile = pc_profile)
class(PC_CO_COLD)
plot(PC_CO_COLD)
lpc <- list(pc1, pc1)</pre>
PC_CO_COLDv2 <- emis_cold(veh = pc1,
                           1km = net$1km,
                           ef = lef,
                           efcold = lefec,
                           beta = pcf,
                           speed = speed,
                           profile = pc_profile,
                           hour = 2,
                           day = 1)
## End(Not run)
```

emis_cold_td

Estimation of cold start emissions with top-down approach

Description

emis_cold_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly temperature. This funcion, as other in this package, adapts to the class of the input data. providing flexibility to the user.

```
emis_cold_td(
  veh,
  lkm,
  ef,
  efcold,
  beta,
  pro_month,
  params,
  verbose = FALSE,
  fortran = FALSE
)
```

59 emis_cold_td

Arguments

veh "Vehicles" data-frame or spatial feature, wwhere columns are the age distribution of that vehicle. and rows each simple feature or region. The number of rows

is equal to the number of streets link

1km Numeric; mileage by the age of use of each vehicle.

ef Numeric; emission factor with

efcold Data.frame. When it is a data.frame, each column is for each type of vehicle by

> age of use, rows are are each simple feature. When you have emission factors for each month, the order should a data.frame ina long format, as rurned by

ef_ldv_cold.

beta Data.frame with the fraction of cold starts. The rows are the fraction for each

spatial feature or subregion, the columns are the age of use of vehicle.

Numeric; montly profile to distribuite annual mileage in each month. pro_month

List of parameters; Add columns with information to returning data.frame params

verbose Logical; To show more information fortran Logical; to try the fortran calculation.

Value

Emissions data.frame

See Also

```
ef_ldv_cold
```

```
## Not run:
# Do not run
veh <- age_ldv(1:10, agemax = 8)
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
dt \leftarrow matrix(rep(2:25,5), ncol = 12, nrow = 10) # 12 months, 10 rows
row.names(dt) <- paste0("Simple_Feature_", 1:10)</pre>
efc \leftarrow ef_{1dv\_cold}(ta = dt, cc = " \leftarrow 1400", f = "G", eu = euros, p = "CO", speed = Speed(34))
efh \leftarrow ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
                     eu = euros, p = "CO", speed = Speed(runif(nrow(veh), 15, 40)))
lkm <- units::as_units(18:11, "km")*1000</pre>
cold_lkm <- cold_mileage(ltrip = units::as_units(20, "km"), ta = celsius(dt))</pre>
names(cold_lkm) <- paste0("Month_", 1:12)</pre>
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(
a <- emis_cold_td(veh = veh,
                   1km = 1km,
                   ef = efh[1, ],
                   efcold = efc[1:10, ],
                   beta = cold_lkm[,1],
                   verbose = TRUE))
system.time(
```

emis_det

```
a2 <- emis_cold_td(veh = veh,
                    1km = 1km,
                    ef = efh[1, ],
                    efcold = efc[1:10, ],
                    beta = cold_lkm[,1],
                    verbose = TRUE,
                    fortran = TRUE)) # emistd2coldf.f95
a$emissions <- round(a$emissions, 8)
a2$emissions <- round(a2$emissions, 8)
identical(a, a2)
# Adding parameters
emis_cold_td(veh = veh,
             1km = 1km,
             ef = efh[1, ],
             efcold = efc[1:10, ],
             beta = cold_lkm[,1],
             verbose = TRUE,
             params = list(paste0("data_", 1:10),
                           "moredata"))
system.time(
aa <- emis_cold_td(veh = veh,</pre>
                    1km = 1km,
                    ef = efh,
                    efcold = efc,
                    beta = cold_lkm,
                    pro_month = veh_month,
                    verbose = TRUE))
system.time(
aa2 <- emis_cold_td(veh = veh,</pre>
                     1km = 1km,
                     ef = efh,
                     efcold = efc,
                     beta = cold_lkm,
                     pro_month = veh_month,
                     verbose = TRUE,
                     fortran = TRUE)) # emistd5coldf.f95
aa$emissions <- round(aa$emissions, 8)</pre>
aa2$emissions <- round(aa2$emissions, 8)</pre>
identical(aa, aa2)
## End(Not run)
```

emis_det

Determine deterioration factors for urban conditions

Description

emis_det returns deterioration factors. The emission factors comes from the guidelines for developing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emeg

emis_det 61

eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emission factors with each argument

Usage

```
emis_det(
  po,
  cc,
  eu,
  speed = Speed(18.9),
  km,
  verbose = FALSE,
  show.equation = FALSE
)
```

Arguments

ро	Character; Pollutant "CO", "NOx" or "HC"
СС	Character; Size of engine in cc converin "<=1400", "1400_2000" or ">2000"
eu	Character; Euro standard: "I", "III", "III", "III", "IV", "V", "V
speed	Numeric; Speed to return Number of emission factor and not a function. It needs units in km/h
km	Numeric; accumulated mileage in km.
verbose	Logical; To show more information
show.equation	Option to see or not the equation parameters

Value

It returns a numeric vector representing the increase in emissions due to normal deterioring

Note

The deterioration factors functions are available for technologies euro "II", "III" and "IV". In order to cover all euro technologies, this function assumes that the deterioration function of "III" and "IV" applies for "V", "VI" and "VIc". However, as these technologies are relative new, accumulated milage is low and hence, deterioration factors small.

```
## Not run:
data(fkm)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
km <- units::set_units(pckma[1:11], km)
# length eu = length km = 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], show.equation = TRUE)
# length eu = length km = 1, length speed > 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], speed = Speed(1:10))
# length km != length eu error
# (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(30),</pre>
```

62 emis_dist

```
\# km = km[4])
# length eu = 1 length km > 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km)</pre>
# length eu = 2, length km = 2 (if different length, error!)
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), km = km[4:5]))</pre>
# length eu = 2, length km = 2, length speed > 1
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(0:130),</pre>
km = km[4:5])
euros <- c("V","V","V", "IV", "IV", "IV", "III", "III", "III", "III")
# length eu = 2, length km = 2, length speed > 1
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, speed = Speed(1:100),</pre>
km = km[1:10])
cod1 <- as.matrix(cod1[, 1:11])</pre>
filled.contour(cod1, col = cptcity::cpt(6277, n = 20))
filled.contour(cod1, col = cptcity::lucky(n = 19))
euro <- c(rep("V", 5), rep("IV", 5), "III")</pre>
euros <- rbind(euro, euro)</pre>
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, km = km))</pre>
## End(Not run)
```

emis_dist

Allocate emissions into spatial objects (street emis to grid)

Description

emis_dist allocates emissions proportionally to each feature. "Spatial" objects are converter to "sf" objects. Currently, 'LINESTRING' or 'MULTILINESTRING' supported. The emissions are distributed in each street.

Usage

```
emis_dist(gy, spobj, pro, osm, verbose = FALSE)
```

Arguments

gy	Numeric; a unique total (top-down)
spobj	A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to "sf".
pro	Matrix or data-frame profiles, for instance, pc_profile.
osm	Numeric; vector of length 5, for instance, c(5, 3, 2, 1, 1). The first element covers 'motorway' and 'motorway_link. The second element covers 'trunk' and 'trunk_link'. The third element covers 'primary' and 'primary_link'. The fourth element covers 'secondary' and 'secondary_link'. The fifth element covers 'tertiary' and 'tertiary_link'.
verbose	Logical; to show more info.

emis_evap 63

Note

When spobj is a 'Spatial' object (class of sp), they are converted into 'sf'.

Examples

```
## Not run:
data(net)
data(pc_profile)
po <- 1000
t1 <- emis_dist(gy = po, spobj = net)
head(t1)
sum(t1$gy)
#t1 <- emis_dist(gy = po, spobj = net, osm = c(5, 3, 2, 1, 1) )
t1 <- emis_dist(gy = po, spobj = net, pro = pc_profile)
## End(Not run)</pre>
```

emis_evap

Estimation of evaporative emissions

Description

emis_evap estimates evaporative emissions from EMEP/EEA emisison guidelines

Usage

```
emis_evap(
  veh,
  x,
  ed,
  hotfi,
  hotc,
  warmc,
  carb = 0,
  p,
  params,
  pro_month,
  verbose = FALSE
)
```

Arguments

veh x Numeric or data.frame of Vehicles with untis 'veh'.

Numeric which can be either, daily mileage by age of use with units 'lkm', number of trips or number of proc. When it has units 'lkm', all the emission factors must be in 'g/km'. When ed is in g/day, x it is the number of days (without units). When hotfi, hotc or warmc are in g/trip, x it is the number of trips (without units). When hotfi, hotc or warmc are in g/proced, x it is the number of proced (without units).

64 emis_evap

average daily evaporative emisisons. If x has units 'lkm', the units of ed must

be 'g/km', other case, this are simply g/day (without units). hotfi average hot running losses or soak evaporative factor for vehicles with fuel injection and returnless fuel systems. If x has units 'lkm', the units of ed must be 'g/km', other case, this are simply g/trip or g/proced hotc average running losses or soak evaporative factor for vehicles with carburator or fuel return system for vehicles with fuel injection and returnless fuel systems. If x has units 'lkm', the units of ed must be 'g/km', average cold and warm running losses or soak evaporative factor for vehicles warmo with carburator or fuel return system for vehicles with fuel injection and returnless fuel systems. If x has units 'lkm', the units of ed must be 'g/km', fraction of gasoline vehicles with carburator or fuel return system. carb Fraction of trips finished with hot engine

params Character; Add columns with information to returning data.frame
pro_month Numeric; montly profile to distribuite annual mileage in each month.

verbose Logical; To show more information

Value

ed

numeric vector of emission estimation in grams

Note

When veh is a "Vehicles" data.frame, emission factors are evaluated till the number of columns of veh. For instance, if the length of the emision factor is 20 but the number of columns of veh is 10, the 10 first emission factors are used.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

See Also

```
ef_evap
```

```
## Not run:
(a <- Vehicles(1:10))
(lkm <- units::as_units(1:10, "km"))
(ef <- EmissionFactors(1:10))
(ev <- emis_evap(veh = a, x = lkm, hotfi = ef))
## End(Not run)</pre>
```

emis_evap2 65

emis_evap2 Estimation of evaporative emissions 2
--

Description

emis_evap performs the estimation of evaporative emissions from EMEP/EEA emisison guidelines with Tier 2.

Usage

```
emis_evap2(
  veh,
  name,
  size,
  fuel,
  aged,
  nd4,
 nd3,
 nd2,
 nd1,
 hs_nd4,
 hs_nd3,
 hs_nd2,
 hs_nd1,
 rl_nd4,
 rl_nd3,
 rl_nd2,
 rl_nd1,
  d_nd4,
 d_nd3,
 d_nd2,
 d_nd1
)
```

Arguments

veh	Total number of vehicles by age of use. If is a lsit of 'Vehicles' data-frames, it will sum the columns of the eight element of the list representing the 8th hour. It was chosen this hour because it is morning rush hour but the user can adapt the data to this function
name	Character of type of vehicle
size	Character of size of vehicle
fuel	Character of fuel of vehicle
aged	Age distribution vector. E.g.: 1:40
nd4	Number of days with temperature between 20 and 35 celcius degrees

emis_evap2

nd3	Number of days with temperature between 10 and 25 celcius degrees
nd2	Number of days with temperature between 0 and 15 celcius degrees
nd1	Number of days with temperature between -5 and 10 celcius degrees
hs_nd4	average daily hot-soak evaporative emissions for days with temperature between 20 and 35 celcius degrees
hs_nd3	average daily hot-soak evaporative emissions for days with temperature between 10 and 25 celcius degrees
hs_nd2	average daily hot-soak evaporative emissions for days with temperature between 0 and 15 celcius degrees
hs_nd1	average daily hot-soak evaporative emissions for days with temperature between -5 and 10 celcius degrees
rl_nd4	average daily running losses evaporative emissions for days with temperature between 20 and 35 celcius degrees
rl_nd3	average daily running losses evaporative emissions for days with temperature between 10 and 25 celcius degrees
rl_nd2	average daily running losses evaporative emissions for days with temperature between 0 and 15 celcius degrees
rl_nd1	average daily running losses evaporative emissions for days with temperature between -5 and 10 celcius degrees
d_nd4	average daily diurnal evaporative emissions for days with temperature between 20 and 35 celcius degrees
d_nd3	average daily diurnal evaporative emissions for days with temperature between 10 and 25 celcius degrees
d_nd2	average daily diurnal evaporative emissions for days with temperature between 0 and 15 celcius degrees
d_nd1	average daily diurnal evaporative emissions for days with temperature between -5 and 10 celcius degrees

Value

dataframe of emission estimation in grams/days

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

emis_grid 67

```
veh <- data.frame(PC_G = PC_G)</pre>
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
ef1 <- ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
dfe <- emis_evap2(veh = pc1,</pre>
                  name = "PC",
                  size = "<=1400",
                  fuel = "G",
                  aged = 1:ncol(pc1),
                  nd4 = 10,
                  nd3 = 4,
                  nd2 = 2,
                  nd1 = 1,
                  hs_nd4 = ef1*1:ncol(pc1),
                  hs_nd3 = ef1*1:ncol(pc1),
                  hs_nd2 = ef1*1:ncol(pc1),
                  hs_nd1 = ef1*1:ncol(pc1),
                  d_nd4 = ef1*1:ncol(pc1),
                  d_nd3 = ef1*1:ncol(pc1),
                  d_nd2 = ef1*1:ncol(pc1),
                  d_nd1 = ef1*1:ncol(pc1),
                  rl_nd4 = ef1*1:ncol(pc1),
                  rl_nd3 = ef1*1:ncol(pc1),
                  rl_nd2 = ef1*1:ncol(pc1),
                  rl_nd1 = ef1*1:ncol(pc1))
lpc <- list(pc1, pc1, pc1, pc1,</pre>
            pc1, pc1, pc1, pc1)
dfe <- emis_evap2(veh = lpc,</pre>
                  name = "PC"
                  size = " <= 1400",
                  fuel = "G",
                  aged = 1:ncol(pc1),
                  nd4 = 10,
                  nd3 = 4,
                  nd2 = 2,
                  nd1 = 1,
                  hs_nd4 = ef1*1:ncol(pc1),
                  hs_nd3 = ef1*1:ncol(pc1),
                  hs_nd2 = ef1*1:ncol(pc1),
                  hs_nd1 = ef1*1:ncol(pc1),
                  d_nd4 = ef1*1:ncol(pc1),
                  d_nd3 = ef1*1:ncol(pc1),
                  d_nd2 = ef1*1:ncol(pc1),
                  d_nd1 = ef1*1:ncol(pc1),
                  rl_nd4 = ef1*1:ncol(pc1),
                  rl_nd3 = ef1*1:ncol(pc1),
                  rl_nd2 = ef1*1:ncol(pc1),
                  rl_nd1 = ef1*1:ncol(pc1))
## End(Not run)
```

68 emis_grid

Description

emis_grid allocates emissions proportionally to each grid cell. The process is performed by intersection between geometries and the grid. It means that requires "sr" according with your location for the projection. It is assumed that spobj is a Spatial*DataFrame or an "sf" with the pollutants in data. This function returns an object of class "sf".

It is

Usage

```
emis_grid(spobj = net, g, sr, type = "lines", FN = "sum", flux = TRUE, k = 1)
```

Arguments

spobj	A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to "sf".
g	A grid with class "SpatialPolygonsDataFrame" or "sf".
sr	Spatial reference e.g: 31983. It is required if spobj and g are not projected. Please, see http://spatialreference.org/.
type	type of geometry: "lines", "points" or "polygons".
FN	Character indicating the function. Default is "sum"
flux	Logical, if TRUE, it return flux (mass / area / time (implicit)) in a polygon grid, if false, mass / time (implicit) as points, in a similar fashion as EDGAR provide data.
k	Numeric to multiply emissions

Note

- 1) If flux = TRUE (default), emissions are flux = mass / area / time (implicit), as polygons. If flux = FALSE, emissions are mass / time (implicit), as points. Time untis are not displayed because each use can have different time units for instance, year, month, hour second, etc.
- 2) Therefore, it is good practice to have time units in 'spobj'. This implies that spobj MUST include units!.
- 3) In order to check the sum of the emissions, you must calculate the grid-area in km² and multiply by each column of the resulting emissions grid, and then sum.

```
## Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
netsf <- sf::st_as_sf(net)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983)
plot(netg["ldv"], axes = TRUE)
plot(netg["hdv"], axes = TRUE)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983, FN = "mean")
plot(netg["ldv"], axes = TRUE)</pre>
```

emis_hot_td 69

```
plot(netg["hdv"], axes = TRUE)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983, flux = FALSE)
plot(netg["ldv"], axes = TRUE, pch = 16,
pal = cptcity::cpt(colorRampPalette= TRUE, rev = TRUE), cex = 3)
## End(Not run)</pre>
```

 $emis_hot_td$

Estimation of hot exhaust emissions with top-down approach

Description

emis_hot_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly temperature. This funcion, as other in this package, adapts to the class of the input data. providing flexibility to the user.

Usage

```
emis_hot_td(veh, lkm, ef, pro_month, params, verbose = FALSE, fortran = FALSE)
```

Arguments

veh	"Vehicles" data-frame or spatial feature, where columns are the age distribution of that vehicle. and rows each simple feature or region.
1km	Numeric; mileage by the age of use of each vehicle.
ef	Numeric or data.frame; emission factors. When it is a data.frame number of rows can be for each region, or also, each region repeated along 12 months. For instance, if you have 10 regions the number of rows of ef can also be 120 (10 * 120). when you have emission factors that varies with month, see ef_china.
pro_month	Numeric or data.frame; montly profile to distribuite annual mileage in each month. When it is a data.frame, each region (row) can have a different monthly profile.
params	List of parameters; Add columns with information to returning data.frame
verbose	Logical; To show more information
fortran	Logical; to try the fortran calculation.

Value

Emissions data.frame

See Also

```
ef_ldv_speed ef_china
```

70 emis_hot_td

```
## Not run:
# Do not run
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
efh \leftarrow ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
          eu = euros, p = "CO", speed = Speed(34))
lkm <- units::as_units(c(20:13), "km")*1000</pre>
veh <- age_ldv(1:10, agemax = 8)
system.time(
a <- emis_hot_td(veh = veh,
                 1km = 1km,
                 ef = EmissionFactors(as.numeric(efh[, 1:8])),
                 verbose = TRUE))
system.time(
a2 <- emis_hot_td(veh = veh,
                   1km = 1km.
                   ef = EmissionFactors(as.numeric(efh[, 1:8])),
                   verbose = TRUE,
                   fortran = TRUE)) #emistd7f.f95
identical(a, a2)
# adding columns
emis_hot_td(veh = veh,
            1km = 1km,
            ef = EmissionFactors(as.numeric(efh[, 1:8])),
            verbose = TRUE,
            params = list(paste0("data_", 1:10), "moredata"))
# monthly profile (numeric) with numeric ef
veh_month \leftarrow c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(
aa <- emis_hot_td(veh = veh,
                   1km = 1km,
                   ef = EmissionFactors(as.numeric(efh[, 1:8])),
                   pro_month = veh_month,
                   verbose = TRUE))
system.time(
aa2 <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = EmissionFactors(as.numeric(efh[, 1:8])),
                   pro_month = veh_month,
                   verbose = TRUE,
                   fortran = TRUE)) #emistd5f.f95
aa$emissions <- round(aa$emissions, 8)</pre>
aa2$emissions <- round(aa2$emissions, 8)</pre>
identical(aa, aa2)
# monthly profile (numeric) with data.frame ef
veh_month \leftarrow c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
def <- matrix(EmissionFactors(as.numeric(efh[, 1:8])),</pre>
nrow = nrow(veh), ncol = ncol(veh), byrow = TRUE)
def <- EmissionFactors(def)</pre>
```

emis_hot_td 71

```
system.time(
aa <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = def,
                   pro_month = veh_month,
                   verbose = TRUE))
system.time(
aa2 <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = def,
                   pro_month = veh_month,
                   verbose = TRUE,
                   fortran = TRUE)) #emistd1f.f95
aa$emissions <- round(aa$emissions, 8)</pre>
aa2$emissions <- round(aa2$emissions, 8)</pre>
identical(aa, aa2)
# monthly profile (data.frame)
dfm \leftarrow matrix(c(rep(8, 1), rep(10, 5), 9, rep(10, 5)), nrow = 10, ncol = 12,
byrow = TRUE)
system.time(
aa <- emis_hot_td(veh = veh,</pre>
                  1km = 1km,
                   ef = EmissionFactors(as.numeric(efh[, 1:8])),
                   pro_month = dfm,
                   verbose = TRUE))
system.time(
aa2 <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = EmissionFactors(as.numeric(efh[, 1:8])),
                   pro_month = dfm,
                   verbose = TRUE,
                   fortran = TRUE)) # emistd6f.f95
aa$emissions <- round(aa$emissions, 2)</pre>
aa2$emissions <- round(aa2$emissions, 2)</pre>
identical(aa, aa2)
# Suppose that we have a EmissionsFactor data.frame with number of rows for each month
# number of rows are 10 regions
# number of columns are 12 months
tem <- runif(n = 6*10, min = -10, max = 35)
temp <- c(rev(tem[order(tem)]), tem[order(tem)])</pre>
plot(temp)
dftemp <- celsius(matrix(temp, ncol = 12))</pre>
dfef <- ef_evap(ef = c(rep("eshotfi", 8)),</pre>
              v = "PC",
              cc = " <= 1400"
              dt = dftemp,
              show = F,
              ca = "small",
              ltrip = units::set_units(10, km),
              pollutant = "NMHC")
dim(dfef) # 120 rows and 9 columns, 8 ef (g/km) and 1 for month
```

72 emis_merge

```
system.time(
aa <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = dfef,
                   pro_month = veh_month,
                   verbose = TRUE))
system.time(
aa2 <- emis_hot_td(veh = veh,</pre>
                    1km = 1km,
                    ef = dfef,
                    pro_month = veh_month,
                    verbose = TRUE,
                    fortran = TRUE)) #emistd3f.f95
aa$emissions <- round(aa$emissions, 2)</pre>
aa2$emissions <- round(aa2$emissions, 2)</pre>
identical(aa, aa2)
plot(aggregate(aa\$emissions, by = list(aa\$month), sum)\$x)
# Suppose that we have a EmissionsFactor data.frame with number of rows for each month
# monthly profile (data.frame)
system.time(
aa <- emis_hot_td(veh = veh,</pre>
                   1km = 1km,
                   ef = dfef,
                   pro_month = dfm,
                   verbose = TRUE))
system.time(
aa2 <- emis_hot_td(veh = veh,</pre>
                    1km = 1km,
                    ef = dfef,
                    pro_month = dfm,
                    verbose = TRUE,
                    fortran = TRUE)) #emistd4f.f95
aa$emissions <- round(aa$emissions, 8)</pre>
aa2$emissions <- round(aa2$emissions, 8)</pre>
identical(aa, aa2)
plot(aggregate(aa\$emissions, by = list(aa\$month), sum)\$x)
## End(Not run)
```

emis_merge

Merge several emissions files returning data-frames or 'sf' of lines

Description

emis_merge reads rds files and returns a data-frame or an object of 'spatial feature' of streets, merging several files.

emis_merge 73

Usage

```
emis_merge(
  pol = "CO",
  what = "STREETS.rds",
  streets = T,
  net,
  FN = "sum",
  ignore,
  path = "emi",
  crs,
  under = "after",
  as_list = FALSE,
  k = 1
)
```

Arguments

pol	Character. Pollutant.
what	Character. Word to search the emissions names, "STREETS", "DF" or whatever name. It is important to include the extension .'rds'. For instance, If you have several files "XX_CO_STREETS.rds", what should be "STREETS.rds"
streets	Logical. If true, <pre>emis_merge</pre> will read the street emissions created with <pre>emis_post</pre> by "streets_wide", returning an object with class 'sf'. If false, it will read the emissions data-frame and rbind them.
net	'Spatial feature' or 'SpatialLinesDataFrame' with the streets. It is expected #' that the number of rows is equal to the number of rows of street emissions. If #' not, the function will stop.
FN	Character indicating the function. Default is "sum"
ignore	Character; Which pollutants or other character would you like to remove?
path	Character. Path where emissions are located
crs	coordinate reference system in numeric format from http://spatialreference.org/ to transform/project spatial data using sf::st_transform
under	"Character"; "after" when you stored your pollutant x as 'X_' "before" when '_X' and "none" for merging directly the files.
as_list	"Logical"; for returning the results as list or not.
k	factor

Value

'Spatial feature' of lines or a dataframe of emissions

```
## Not run:
# Do not run
```

74 emis_order

```
## End(Not run)
```

emis_order

Re-order the emission to match specific hours and days

Description

Emissions are ususally estimated for a year, 24 hours or one week from monday to sunday (with 168 hours). This depends on the availability of traffic data. When an air quality simulation is going to be done, they cover specific periods of time. For instance, WRF Chem emissions files supports periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem simulation scan starts a thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions are in local time and cover only 168 hours starting on monday. This function tries to transform our emissions in local time to the desired utc time, by recycling the local emissions.

Usage

```
emis_order(
  Х,
  lt_emissions,
  start_utc_time,
  desired_length,
  tz_lt = Sys.timezone(),
  k = 1,
 net,
  verbose = TRUE
)
```

Arguments

one of the following:

- Spatial object of class "Spatial". Columns are hourly emissions.
- Spatial Object of class "sf". Columns are hourly emissions.
- "data.frame", "matrix" or "Emissions".

In all cases, columns are hourly emissions.

lt_emissions

Local time of the emissions at first hour. It must be the **before** time of start_utc_time. For instance, if start utc time is 2020-02-02 00:00, and your emissions starts monday at 00:00, your lt_emissions must be 2020-01-27 00:00. The argument tz_lt will detect your current local time zone and do the rest for you.

start_utc_time UTC time for the desired first hour. For instance, the first hour of the namelist.input for WRF.

desired_length Integer; length to recycle or subset local emissions. For instance, the length of the WRF Chem simulations, states at namelist.input.

emis_order 75

tz_lt Character, Time zone of the local emissions. Default value is derived from Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this function will show you a menu to choose one of the 697 time zones available.

k Numeric, factor.

spatialLinesDataFrame or Spatial Feature of "LINESTRING".

verbose Logical, to show more information, default is TRUE.

Value

sf or data.frame

See Also

GriddedEmissionsArray

```
## Not run:
#do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
           133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
           84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
           1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my\_age(x = net\$ldv, y = PC\_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km")</pre>
pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",
                      f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
               profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets", net = net)</pre>
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)</pre>
head(E_CO_g) #class sf
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)
wCO \leftarrow emis\_order(x = E\_CO\_g,
                    lt_emissions = "2020-02-19 00:00";
                    start_utc_time = "2020-02-20 00:00",
```

76 emis_order2

```
desired_length = 241)
## End(Not run)
```

emis_order2

Re-order the emission to match specific hours and days

Description

Emissions are ususally estimated for a year, 24 hours or one week from monday to sunday (with 168 hours). This depends on the availability of traffic data. When an air quality simulation is going to be done, they cover specific periods of time. For instance, WRF Chem emissions files supports periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem simulation scan starts a thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions are in local time and cover only 168 hours starting on monday. This function tries to transform our emissions in local time to the desired utc time, by recycling the local emissions.

Usage

```
emis_order2(
 lt_emissions,
  start_utc_time,
  desired_length,
  tz_lt = Sys.timezone(),
  k = 1,
  net,
  verbose = TRUE
)
```

Arguments

Х

one of the following:

- Spatial object of class "Spatial". Columns are hourly emissions.
- Spatial Object of class "sf". Columns are hourly emissions.
- "data.frame", "matrix" or "Emissions".

In all cases, columns are hourly emissions.

lt_emissions

Local time of the emissions at first hour. It must be the **before** time of start utc time. For instance, if start_utc_time is 2020-02-02 00:00, and your emissions starts monday at 00:00, your lt_emissions must be 2020-01-27 00:00. The argument tz_lt will detect your current local time zone and do the rest for you.

start_utc_time UTC time for the desired first hour. For instance, the first hour of the namelist.input for WRF.

desired_length Integer; length to recycle or subset local emissions. For instance, the length of the WRF Chem simulations, states at namelist.input.

emis_order2 77

tz_lt	Character, Time zone of the local emissions. Default value is derived from Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this
	function will show you a menu to choose one of the 697 time zones available.
k	Numeric, factor.
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING".
verbose	Logical, to show more information, default is TRUE.

Value

sf or data frame

Note

The function emis_order2 will be kept for back compatibility until version 1.0.0, where will be superseded by emis_oder, the same function.

See Also

GriddedEmissionsArray

```
## Not run:
#do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
           133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
           84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
           1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 \leftarrow my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km")</pre>
pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",</pre>
                      f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets", net = net)</pre>
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)</pre>
```

78 emis_paved

emis_paved

Estimation of resuspension emissions from paved roads

Description

emis_paved estimates vehicular emissions from paved roads. The vehicular emissions are estimated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1 Paved roads. It is assumed dry hours and anual aggregation should consider moisture factor. It depends on Average Daily Traffic (ADT)

Usage

```
emis_paved(
  veh,
  adt,
  lkm,
  k = 0.62,
  sL1 = 0.6,
  sL2 = 0.2,
  sL3 = 0.06,
  sL4 = 0.03,
  W,
  net = net
)
```

Arguments

veh	Numeric vector with length of elements equals to number of streets It is an array with dimensions number of streets x hours of day x days of week
adt	Numeric vector of with Average Daily Traffic (ADT)
1km	Length of each link
k	$\label{eq:K_PM30} \begin{split} K_PM30 &= 3.23 \ (g/vkm), \ K_PM15 = 0.77 \ (g/vkm), \ K_PM10 = 0.62 \ (g/vkm) \\ \text{and} \ K_PM2.5 &= 0.15 \ (g/vkm). \end{split}$
sL1	Silt loading (g/m2) for roads with ADT <= 500
sL2	Silt loading (g/m2) for roads with ADT > 500 and $<= 5000$
sL3	Silt loading (g/m2) for roads with ADT > 5000 and $<= 1000$

emis_post 79

sL4	Silt loading (g/m2) for roads with ADT > 10000
W	array of dimensions of veh. It consists in the hourly averaged weight of traffic fleet in each road
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

Value

emission estimation g/h

Note

silt values can vary a lot. For comparison:

ADT	US-EPA g/m2	CENMA (Chile) g/m2
< 500	0.6	2.4
500-5000	0.2	0.7
5000-1000	0.06	0.6
>10000	0.03	0.3

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch CENMA Chile: Actualizacion de inventario de emisiones de contaminntes atmosfericos RM 2020 Universidad de Chile#'

Examples

```
## Not run:
# Do not run
veh <- matrix(1000, nrow = 10,ncol = 10)
W <- veh*1.5
lkm <- 1:10
ADT <-1000:1010
emi <- emis_paved(veh = veh, adt = ADT, lkm = lkm, k = 0.65, W = W)
class(emi)
head(emi)
## End(Not run)</pre>
```

emis_post

Post emissions

Description

emis_post simplify emissions estimated as total per type category of vehicle or by street. It reads EmissionsArray and Emissions classes. It can return an dataframe with hourly emissions at each street, or a data base with emissions by vehicular category, hour, including size, fuel and other characteristics.

80 emis_post

Usage

```
emis_post(arra, veh, size, fuel, pollutant, by = "veh", net, type_emi, k = 1)
```

Arguments

arra Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets

x category of vehicles x hours

veh Character, type of vehicle size Character, size or weight

fuel Character, fuel pollutant Pollutant

by Type of output, "veh" for total vehicular category, "streets_narrow" or "streets".

"streets" returns a dataframe with rows as number of streets and columns the hours as days*hours considered, e.g. 168 columns as the hours of a whole week and "streets repeats the row number of streets by hour and day of the week

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING". Only when by =

'streets_wide'

type_emi Character, type of emissions(exhaust, evaporative, etc)

k Numeric, factor

Note

This function depends on EmissionsArray objests which currently has 4 dimensions. However, a future version of VEIN will produce EmissionsArray with 3 dimensiones and his fungeorge soros drugsction also will change. This change will be made in order to not produce inconsistencies with previous versions, therefore, if the user count with an EmissionsArry with 4 dimension, it will be able to use this function.

```
## Not run:
# Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
          133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
          84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
          1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
# Estimation for morning rush hour and local emission factors
speed <- data.frame(S8 = net$ps)</pre>
p1h <- matrix(1)
lef <- EmissionFactorsList(fe2015[fe2015$Pollutant=="CO", "PC_G"])</pre>
E_CO <- emis(veh = pc1,1km = net$1km, ef = lef, speed = speed,
             profile = p1h)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")</pre>
```

emis_source 81

```
summary(E_CO_STREETS)
E_CO_STREETSsf <- emis_post(arra = E_CO, pollutant = "CO",</pre>
                            by = "streets", net = net)
summary(E_CO_STREETSsf)
plot(E_CO_STREETSsf, main = "CO emissions (g/h)")
# arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
# Estimation 168 hours
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef <- ef_ldv_scaled(dfcol = cod, v = "PC", cc = "<=1400",
                      f = G'', p = CO'', eu=co1$Euro_LDV
E_CO <- emis(veh = pc1,1km = net$1km, ef = lef, speed = speed, agemax = 41,
             profile = pc_profile)
# arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets")</pre>
summary(E_CO_STREETS)
# arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",</pre>
pollutant = "CO", by = "veh")
head(E_CO_DF)
# recreating 24 profile
lpc <-list(pc1*0.2, pc1*0.1, pc1*0.1, pc1*0.2, pc1*0.5, pc1*0.8,
           pc1, pc1*1.1, pc1,
           pc1*0.8, pc1*0.5, pc1*0.5,
           pc1*0.5, pc1*0.5, pc1*0.5, pc1*0.8,
           pc1, pc1*1.1, pc1,
           pc1*0.8, pc1*0.5, pc1*0.3, pc1*0.2, pc1*0.1)
E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed[, 1:24],</pre>
            agemax = 41, hour = 24, day = 1)
plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2,</pre>
                        veh = "PC",
                        size = "<1400"
                        fuel = "G",
                        type_emi = "Exhaust",
                        pollutant = "CO", by = "veh")
head(E_CO_DFv2)
## End(Not run)
```

emis_source

82 emis_to_streets

Description

emis_source source vein scripts

Usage

```
emis_source(
  path = "est",
  pattern = ".R",
  ignore = "~",
  first,
  ask = TRUE,
  recursive = TRUE,
  full.names = TRUE,
  echo = FALSE
)
```

Arguments

path Character; path to source scripts. Default is "est".

Character; extensions of R scripts. Default is ".R".

ignore Character; caracter to be excluded. Default is "~". Sometimes, the OS creates

automatic back-ups, for instance "run.R~", the ideia is to avoid sourcing these

files.

first Character; first script.

ask Logical; Check inputs or not. Default is "FALSE". It allows to stop inputs

recursive Logical; recursive or not. Default is "TRUE" full.names Logical; full.names or not. Default is "TRUE".

echo Source with echo?

Examples

```
## Not run:
# Do not run
## End(Not run)
```

emis_to_streets

Emis to streets distribute top-down emissions into streets

Description

emis_to_streets allocates emissions proportionally to each feature. "Spatial" objects are converter to "sf" objects. Currently, 'LINESTRING' or 'MULTILINESTRING' supported. The emissions are distributed in each street.

emis_to_streets 83

Usage

```
emis_to_streets(streets, dfemis, by = "ID", stpro, verbose = TRUE)
```

Arguments

streets sf object with geometry 'LINESTRING' or 'MULTILINESTRING'. Or Spa-

tialLinesDataFrame

dfemis data.frame with emissions

by Character indicating the columns that must be present in both 'street' and 'dfemis'

stpro data.frame with two columns, category of streets and value. The name of the

first column must be "stpro" and the sf streets must also have a column with the nam "stpro" indicating the category of streets. The second column must have the name "VAL" indicating the associated values to each category of street

verbose Logical; to show more info.

Note

When spobj is a 'Spatial' object (class of sp), they are converted into 'sf'.

See Also

```
add_polid
```

```
## Not run:
data(net)
stpro = data.frame(stpro = as.character(unique(net$tstreet)),
                    VAL = 1:9
dnet <- net["ldv"]</pre>
dnet$stpro <- as.character(net$tstreet)</pre>
dnet$ID <- "A"</pre>
df2 \leftarrow data.frame(BC = 10, CO = 20, ID = "A")
ste <- emis_to_streets(streets = dnet, dfemis = df2)</pre>
sum(ste$ldv)
sum(net$ldv)
sum(ste$BC)
sum(df2$BC)
ste2 <- emis_to_streets(streets = dnet, dfemis = df2, stpro = stpro)</pre>
sum(ste2$ldv)
sum(net$ldv)
sum(ste2$BC)
sum(df2$BC)
## End(Not run)
```

84 emis_wear

emis_wear

Emission estimation from tyre, break and road surface wear

Description

emis_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

```
emis_wear(
  veh,
  lkm,
  ef,
  what = "tyre",
  speed,
  agemax = ncol(veh),
  profile,
  hour = nrow(profile),
  day = ncol(profile)
)
```

Arguments

veh	Object of class "Vehicles"
lkm	Length of the road in km.
ef	list of emission factor functions class "EmissionFactorsList", length equals to hours.
what	Character for indicating "tyre", "break" or "road"
speed	Speed data-frame with number of columns as hours
agemax	Age of oldest vehicles for that category
profile	Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour	Number of considered hours in estimation
day	Number of considered days in estimation

Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

fe2015

Examples

fe2015

Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO

Usage

```
data(fe2015)
```

Format

A data frame with 288 rows and 12 variables:

```
Age Age of use
```

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N2O", "NMHC", "NOx", and "PM"

Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"

t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III", "IV", "V"

Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III", "IV", "V"

Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"

Euro_HDV Euro emission standard equivalence: "PRE", "I", "III", "III", "V"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

CETESB

86 fkm

fkm

List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions depends on the age of use of the vehicle

Usage

data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol

KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol

KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex

KM_PC_B5 Mileage in km of Passenger Cars using Diesel with 5% biodiesel

KM_TRUCKS_B5 Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_B5 Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_B5 Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel

KM_SBUS_B5 Mileage in km of Small Bus using Diesel with 5% biodiesel

KM_ATRUCKS_B5 Mileage in km of Articulated Trucks using Diesel with 5% biodiesel

KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol

KM_LDV_GNV Mileage in km of Light Duty Vehicles using Natural Gas

Source

CETESB

fuel_corr 87

fuel_corr

Correction due Fuel effects

Description

Take into account the effect of better fuels on vehicles with older technology. If the ratio is less than 1, return 1. It means that it is not degradation function.

Usage

```
fuel_corr(
  euro,
  g = c(e100 = 52, aro = 39, o2 = 0.4, e150 = 86, olefin = 10, s = 165),
  d = c(den = 840, pah = 9, cn = 51, t95 = 350, s = 400)
)
```

Arguments

euro	Character; Euro standards ("PRE", "I", "II", "III", "IV", "V", VI, "VIc")
g	Numeric; vector with parameters of gasoline with the names: e100(vol. (sulphur, ppm)
d	Numeric; vector with parameters for diesel with the names: den (density at 15 celcius degrees kg/m3), pah ((Back end distillation in Celcius degrees) and s (sulphur, ppm)

Value

A list with the correction of emission factors.

Note

This function cannot be used to account for deterioration, therefore, it is restricted to values between 0 and 1. Parameters for gasoline (g):

```
O2 = Oxygenates in
```

S = Sulphur content in ppm

ARO = Aromatics content in

OLEFIN = Olefins content in

E100 = Mid range volatility in

E150 = Tail-end volatility in

Parameters for diesel (d):

DEN = Density at 15 C (kg/m3)

S = Sulphur content in ppm

PAH = Aromatics content in

CN = Cetane number

T95 = Back-end distillation in o C.

Examples

```
## Not run:
f <- fuel_corr(euro = "I")
names(f)
## End(Not run)</pre>
```

get_project

Download vein project to a specificor new directory

Description

get_project downloads a project for runnign vein. The projects are available on Github.com/atmoschem/vein/projects

Usage

```
get_project(directory, case = "brasil", approach = "bottom-up")
```

Arguments

directory Character; Path to an existing or a new directory to be created. It needs absolute

path.

case Character; Currently only supports "brasil" (or "brazil").

approach Character; Currently only supports "bottom-up".

Examples

```
## Not run:
#do not run
## End(Not run)
```

 ${\tt GriddedEmissionsArray''} \ \ {\tt Construction\ function\ for\ class\ "GriddedEmissionsArray"}$

Description

GriddedEmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimensios.

Usage

```
GriddedEmissionsArray(x, ..., cols, rows, times = ncol(x), rotate, flip = TRUE)
## S3 method for class 'GriddedEmissionsArray'
print(x, ...)
## S3 method for class 'GriddedEmissionsArray'
summary(object, ...)
## S3 method for class 'GriddedEmissionsArray'
plot(x, ..., times = 1)
```

Arguments

X	Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or "matrix"
	ignored
cols	Number of columns
rows	Number of rows
times	Number of times
rotate	Character, rotate array to "left" or "right"
flip	Logical, To flip vertically the array or not
object	object with class "EmissionsArray'

Value

Objects of class "GriddedEmissionsArray"

```
## Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G \leftarrow c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
           133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
           84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
           1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)</pre>
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")</pre>
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)</pre>
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
pckm <- units::set_units(fkm[[1]](1:24), "km")</pre>
pckma <- cumsum(pckm)</pre>
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])</pre>
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])</pre>
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!</pre>
```

90 grid_emis

```
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])</pre>
lef \leftarrow ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",
                      f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
              profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets",</pre>
                           net = net, k = units::set_units(1, "1/h"))
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)</pre>
plot(E_CO_g["V9"])
gr \leftarrow GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, flip = FALSE)
plot(gr)
# For some cptcity color gradients:
plot(gr, col = cptcity::lucky())
## End(Not run)
```

grid_emis

Allocate emissions gridded emissions into streets (grid to emis street)

Description

grid_emis it is sort of the opposite of emis_grid. It allocates gridded emissions into streets. This function applies emis_dist into each grid cell using lapply. This function is in development and pull request are welcome.

Usage

```
grid_emis(spobj, g, top_down = FALSE, sr, pro, char, verbose = FALSE)
```

Arguments

spobj	A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to "sf".
g	A grid with class "SpatialPolygonsDataFrame" or "sf". This grid includes the total emissions with the column "emission". If profile is going to be used, the column 'emission' must include the sum of the emissions for each profile. For instance, if profile covers the hourly emissions, the column 'emission' bust be the sum of the hourly emissions.
top_down	Logical; requires emissions named 'emissions' and allows to apply profile factors. If your data is hourly emissions or a a spatial grid with several emissions at different hours, being each hour a column, it is better to use top_down = FALSE. In this way all the hourly emissions are considered, however, eah hourly emissions has to have the name "V" and the number of the hour like "V1"
sr	Spatial reference e.g: 31983. It is required if spobj and g are not projected. Please, see http://spatialreference.org/.

grid_emis 91

pro Numeric, Matrix or data-frame profiles, for instance, pc_profile.

Character, name of the first letter of hourly emissions. New variables in R start with letter "V", for your hourly emissions might start with letter "h". This option applies when top_down is FALSE. For instance, if your hourly emissions are: "h1", "h2", "h3"... 'char" can be "h"

verbose Logical; to show more info.

Note

Your gridded emissions might have flux units (mass / area / time(implicit)) You must multiply your emissions with the area to return to the original units.

```
## Not run:
data(net)
data(pc_profile)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
       84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257, 3824, 3068)
pc1 \leftarrow my\_age(x = net\$ldv, y = PC\_G, name = "PC")
# Estimation for morning rush hour and local emission factors
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G"))</pre>
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef,
            profile = 1, speed = Speed(1))
E_CO_STREETS <- emis_post(arra = E_CO, by = "streets", net = net)</pre>
g <- make_grid(net, 1/102.47/2) #500m in degrees</pre>
gCO <- emis_grid(spobj = E_CO_STREETS, g = g)</pre>
gCO$emission <- gCO$V1
area <- sf::st_area(gCO)
area <- units::set_units(area, "km^2") #Check units!
gCO$emission <- gCO$emission*area
#
\dontrun{
#do not run
library(osmdata)
library(sf)
osm <- osmdata_sf(</pre>
add_osm_feature(
opq(bbox = st_bbox(gCO)),
key = 'highway'))$osm_lines[, c("highway")]
st <- c("motorway", "motorway_link", "trunk", "trunk_link",</pre>
"primary", "primary_link", "secondary", "secondary_link",
"tertiary", "tertiary_link")
osm <- osm[osm$highway %in% st, ]</pre>
plot(osm, axes = T)
# top_down requires name `emissions` into gCO`
xnet <- grid_emis(osm, gCO, top_down = TRUE)</pre>
```

92 invcop

```
plot(xnet, axes = T)
# bottom_up requires that emissions are named `V` plus the hour like `V1`
xnet <- grid_emis(osm, gC0,top_down= FALSE)
plot(xnet["V1"], axes = T)
}
## End(Not run)</pre>
```

invcop

Helper function to copy and zip projects

Description

invcop help to copy and zip projects

Usage

```
invcop(
   in_name = getwd(),
   out_name,
   all = FALSE,
   main = TRUE,
   ef = TRUE,
   est = TRUE,
   network = TRUE,
   veh_rds = FALSE,
   veh_csv = TRUE,
   zip = TRUE
)
```

Arguments

```
in_name
                  Character; Name of current project.
out_name
                  Character; Name of outtput project.
all
                  Logical; copy ALL (and for once) or not.
                  Logical; copy or not.
main
ef
                  Logical; copy or not.
est
                  Logical; copy or not.
network
                  Logical; copy or not.
veh_rds
                  Logical; copy or not.
                  Logical; copy or not.
veh_csv
zip
                  Logical; zip or not.
```

Value

emission estimation g/h

inventory 93

Note

This function was created to copy and zip project without the emis.

Examples

```
## Not run:
# Do not run
## End(Not run)
```

inventory

Inventory function.

Description

inventory produces an structure of directories and scripts in order to run vein. It is required to know the vehicular composition of the fleet.

Usage

```
inventory(
  name,
  vehcomp = c(PC = 1, LCV = 1, HGV = 1, BUS = 1, MC = 1),
  show.main = FALSE,
  scripts = TRUE,
  show.dir = FALSE,
  show.scripts = FALSE,
  clear = TRUE,
  rush.hour = FALSE,
  showWarnings = FALSE
)
```

Arguments

name	Character, path to new main directory for running vein. NO BLANK SPACES
vehcomp	Vehicular composition of the fleet. It is required a named numerical vector with the names "PC", "LCV", "HGV", "BUS" and "MC". In the case that there are no vehiles for one category of the composition, the name should be included with the number zero, for example $PC = 0$. The maximum number allowed is 99 per category.
show.main	Logical; Do you want to see the new main.R file?
scripts	Logical Do you want to generate or no R scripts?
show.dir	Logical value for printing the created directories.
show.scripts	Logical value for printing the created scripts.
clear	Logical value for removing recursively the directory and create another one.
rush.hour	Logical, to create a template for morning rush hour.
showWarnings	Logical, showWarnings?

94 long_to_wide

Value

Structure of directories and scripts for automating compilation of vehicular emissions inventory. The structure can be used with other type of sources of emissions. The structure of the directories is: daily, ef, emi, est, images, network and veh. This structure is a suggestion and the user can use another. 'ef: it is for storing the emission factors data-frame, similar to data(fe2015) but including one column for each of the categories of the vehicular composition. For intance, if PC = 5, there should be 5 columns with emission factors in this file. If LCV = 5, another 5 columns should be present, and so on.

emi: Directory for saving the estimates. It is suggested to use .rds extension instead of .rda.

est: Directory with subdirectories matching the vehicular composition for storing the scripts named input.R.

images: Directory for saving images.

network: Directory for saving the road network with the required attributes. This file will includes the vehicular flow per street to be used by age* functions.

veh: Directory for storing the distribution by age of use of each category of the vehicular composition. Those are data-frames with number of columns with the age distribution and number of rows as the number of streets. The class of these objects is "Vehicles". Future versions of vein will generate Vehicles objects with the explicit spatial component.

The name of the scripts and directories are based on the vehicular composition, however, there is included a file named main.R which is just an R script to estimate all the emissions. It is important to note that the user must add the emission factors for other pollutants. Also, this function creates the scripts input.R where the user must specify the inputs for the estimation of emissions of each category. Also, there is a file called traffic.R to generates objects of class "Vehicles". The user can rename these scripts.

Examples

```
## Not run:
name = file.path(tempdir(), "YourCity")
inventory(name = name)
## End(Not run)
```

long_to_wide

Transform data.frame from long to wide format

Description

long_to_wide transform data.frame from long to wide format

make_grid 95

Usage

```
long_to_wide(
   df,
   column_with_new_names = names(df)[1],
   column_with_data = "emission",
   column_fixed,
   net
)
```

Arguments

Value

wide data.frame.

See Also

```
emis_hot_td emis_cold_td wide_to_long
```

Examples

```
## Not run:
df <- data.frame(pollutant = rep(c("CO", "propadiene", "NO2"), 10),
emission = vein::Emissions(1:30),
region = rep(letters[1:2], 15))
df
long_to_wide(df)
long_to_wide(df, column_fixed = "region")
## End(Not run)</pre>
```

make_grid

Creates rectangular grid for emission allocation

Description

make_grid creates a sf grid of polygons. The spatial reference is taken from the spatial object.

96 my_age

Usage

```
make_grid(spobj, width, height = width, polygon, crs = 4326, ...)
```

Arguments

spobj A spatial object of class sp or sf.

width Width of grid cell. It is recommended to use projected values.

height Height of grid cell.

polygon Deprecated! make_grid returns only sf grid of polygons.

crs coordinate reference system in numeric format from http://spatialreference.org/

to transform/project spatial data using sf::st_transform. The default value is

4326

... ignored

Value

A grid of polygons class 'sf'

Examples

```
## Not run:
data(net)
grid <- make_grid(net, width = 0.5/102.47) #500 mts
plot(grid, axes = TRUE) #class sf
## End(Not run)</pre>
```

my_age

Returns amount of vehicles at each age

Description

my_age returns amount of vehicles at each age using a numeric vector.

Usage

```
my_age(
    x,
    y,
    agemax,
    name = "vehicle",
    k = 1,
    pro_street,
    net,
    verbose = FALSE,
    namerows
)
```

my_age 97

Arguments

X	Numeric; vehicles by street (or spatial feature).
у	Numeric or data.frame; when pro_street is not available, y must be 'numeric', else, a 'data.frame'. The names of the columns of this data.frame must be the same of the elements of pro_street and each column must have a profile of age of use of vehicle. When 'y' is 'numeric' the vehicles has the same age distribution to all street. When 'y' is a data.frame, the distribution by age of use varies the streets.
	Bil Octo.

agemax Integer; age of oldest vehicles for that category

name Character; of vehicle assigned to columns of dataframe.

k Integer; multiplication factor. If its length is > 1, it must match the length of x

pro_street Character; each category of profile for each street. The length of this character

vector must be equal to the length of 'x'. The names of the data.frame 'y' must

be have the same content of 'pro_street'

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING" verbose Logical; message with average age and total numer of vehicles.

namerows Any vector to be change row.names. For instance, name of regions or streets.

Value

dataframe of age distrubution of vehicles.

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using these functions is:

- 1. If you know the distribution of the vehicles by age of use, use: my_age 2. If you know the sales of vehicles, or (the regis)*better) the registry of new vehicles, use age to apply a survival function.
- 3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

```
## Not run:
data(net)
dpc <- c(seq(1,20,3), 20:10)
PC_E25_1400 <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400")
class(PC_E25_1400)
plot(PC_E25_1400)
PC_E25_1400sf <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400", net = net)
class(PC_E25_1400sf)
plot(PC_E25_1400sf)
PC_E25_1400nsf <- sf::st_set_geometry(PC_E25_1400sf, NULL)
class(PC_E25_1400nsf)
yy <- data.frame(a = 1:5, b = 5:1)  # perfiles por categoria de calle
pro_street <- c("a", "b", "a")  # categorias de cada calle</pre>
```

98 net

net

Road network of the west part of Sao Paulo city

Description

This dataset is a sf class object with roads from a traffic simulations made by CET Sao Paulo, Brazil

Usage

```
data(net)
```

Format

A Spatial data.frame (sf) with 1796 rows and 1 variables:

```
ldv Light Duty Vehicles (veh/h)
```

hdv Heavy Duty Vehicles (veh/h)

lkm Length of the link (km)

ps Peak Speed (km/h)

ffs Free Flow Speed (km/h)

tstreet Type of street

lanes Number of lanes per link

capacity Capacity of vehicles in each link (1/h)

tmin Time for travelling each link (min)

geometry geometry

Source

```
http://www.cetsp.com.br/
```

netspeed 99

netspeed	Calculate speeds of traffic network	

Description

netspeed Creates a dataframe of speeds fir diferent hours and each link based on morning rush traffic data

Usage

```
netspeed(q = 1, ps, ffs, cap, lkm, alpha = 0.15, beta = 4, net, scheme = FALSE)
```

Arguments

Data-frame of traffic flow to each hour (veh/h)	
Peak speed (km/h)	
Free flow speed (km/h)	
Capacity of link (veh/h)	
Distance of link (km)	
Parameter of BPR curves	
Parameter of BPR curves	
SpatialLinesDataFrame or Spatial Feature of "LINESTRING"	
Logical to create a Speed data-frame with 24 hours and a default profile. It needs ffs and ps:	
00:00-06:00 ffs 06:00-07:00 average between ffs and ps 07:00-10:00 ps 10:00-17:00 average between ffs and ps 17:00-20:00 ps 20:00-22:00 average between ffs and ps 22:00-00:00 ffs	

Value

dataframe speeds with units or sf.

```
## Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)</pre>
```

pc_profile

```
class(df)
plot(df) #plot of the average speed at each hour, +- sd
df <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
dfsf <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE, net = net)
class(dfsf)
head(dfsf)
plot(dfsf) #plot of the average speed at each hour, +- sd
## End(Not run)</pre>
```

pc_cold

Profile of Vehicle start patterns

Description

This dataset is a dataframe with percetage of hourly starts with a lapse of 6 hours with engine turned off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle activity study. ISSRC. www.issrc.org

Usage

```
data(pc_cold)
```

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile

Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is normalized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br)

Usage

```
data(pc_profile)
```

pollutants 101

Format

A data frame with 24 rows and 7 variables:

- V1 24 hours profile for Monday
- V2 24 hours profile for Tuesday
- V3 24 hours profile for Wednesday
- V4 24 hours profile for Thursday
- V5 24 hours profile for Friday
- V6 24 hours profile for Saturday
- V7 24 hours profile for Sunday

pollutants

Data.frame with pollutants names and molar mass used in VEIN

Description

This dataset also includes MIR, MOIR and EBIR is Carter SAPRC07.xls https://www.engr.ucr.edu/~carter/SAPRC/

Usage

data(pollutants)

Format

A data frame with 148 rows and 10 variables:

n Number for each pollutant, from 1 to 132

group1 classification for pollutants including "NMHC", "PAH", "METALS", "PM", "criteria" and "PCDD"

group2 A sub classification for pollutants including "alkenes", "alkynes", "aromatics", "alkanes", "PAH", "aldehydes", "ketones", "METALS", "PM_char", "criteria", "cycloalkanes", "NMHC", "PCDD", "PM10", "PM2.5"

pollutant 1 of the 132 pollutants covered

CAS CAS Registry Number

g mol molar mass

MIR Maximum incremental Reactivity (gm O3 / gm VOC)

MOIR Reactivity (gm O3 / gm VOC)

EBIR Reactivity (gm O3 / gm VOC)

notes Inform some assumption for molar mass

102 profiles

profiles

Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is n a list of data-frames with traffic activity normalized monday 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br) for months January and June and years 2012, 2013 and 2014. The type of vehicles covered are PC, MC, MC and HGV.

Usage

data(pc_profile)

Format

A list of data-frames with 24 rows and 7 variables:

PC_JUNE_2012 168 hours

PC JUNE 2013 168 hours

PC_JUNE_2014 168 hours

LCV_JUNE_2012 168 hours

LCV_JUNE_2013 168 hours

LCV_JUNE_2014 168 hours

MC_JUNE_2012 168 hours

MC_JUNE_2013 168 hours

MC_JUNE_2014 168 hours

HGV_JUNE_2012 168 hours

HGV_JUNE_2013 168 hours

HGV_JUNE_2014 168 hours

PC_JANUARY_2012 168 hours

PC_JANUARY_2013 168 hours

PC JANUARY 2014 168 hours

LCV_JANUARY_2012 168 hours

LCV_JANUARY_2013 168 hours

LCV_JANUARY_2014 168 hours

MC_JANUARY_2012 168 hours

MC_JANUARY_2014 168 hours

HGV_JANUARY_2012 168 hours

HGV_JANUARY_2013 168 hours

HGV_JANUARY_2014 168 hours

remove_units 103

remove_units

Remove units

Description

remove_units Remove units from sf, data.frames, matrix or units.

Usage

```
remove_units(x)
```

Arguments

Χ

Object with class "sf", "data.frame", "matrix" or "units"

Value

```
"sf", data.frame", "matrix" or numeric
```

Examples

```
## Not run:
ef1 <- ef_cetesb(p = "CO", c("PC_G", "PC_FE"))
class(ef1)
sapply(ef1, class)
a <- remove_units(ef1)
## End(Not run)</pre>
```

speciate

Speciation of emissions

Description

speciate separates emissions in different compounds. It covers black carbon and organic matter from particulate matter. Soon it will be added more speciations

Usage

```
speciate(x, spec = "bcom", veh, fuel, eu, show = FALSE, list = FALSE, pmpar)
```

104 speciate

Arguments

X	Emissions	estimation

spec speciation: The speciations are: "bcom", tyre" (or "tire"), "brake", "road", "iag",

"nox" and "nmhc". 'iag' now includes a speciation for use of industrial and building paintings. "bcom" stands for black carbon and organic matter. "pmiag" speciates PM2.5 and requires only argument x of PM2.5 emissions in g/h/km^2 as gridded emissions (flux). It also accepts one of the following pollutants: 'e_eth', 'e_hc3', 'e_hc5', 'e_hc8', 'e_ol2', 'e_olt', 'e_oli', 'e_iso', 'e_tol', 'e_xyl', 'e_c2h5oh', 'e_hcho', 'e_ch3oh', 'e_ket', "e_so4i", "e_so4j", "e_no3i", "e_no3j", "e_pm2.5j", "e_orgi", "e_orgi", "e_eci", "e_ecj". Also

"h2o"

veh Type of vehicle: When spec is "bcom" or "nox" veh can be "PC", "LCV", HDV"

or "Motorcycle". When spec is "iag" veh can take two values depending: when the speciation is for vehicles veh accepts "veh", eu "Evaporative", "Liquid" or "Exhaust" and fuel "G", "E" or "D", when the speciation is for painting, veh is "paint" fuel or eu can be "industrial" or "building" when spec is "nmhc", veh can be "LDV" with fuel "G" or "D" and eu "PRE", "I", "III", "III", "IV", "V", or "VI". when spec is "nmhc", veh can be "HDV" with fuel "D" and eu "PRE", "I", "III", "IV", "V", or "VI". when spec is "nmhc" and fuel is "LPG", veh and

eu must be "ALL"

fuel Fuel. When spec is "bcom" fuel can be "G" or "D". When spec is "iag" fuel can

be "G", "E" or "D". When spec is "nox" fuel can be "G", "D", "LPG", "E85" or "CNG". Not required for "tyre", "brake" or "road". When spec is "nmhc" fuel

can be G, D or LPG.

eu Euro emission standard: "PRE", "ECE_1501", "ECE_1502", "ECE_1503", "I",

"II", "III", "IV", "V", "III-CDFP", "IV-CDFP", "V-CDFP", "III-ADFP", "IV-ADFP", "V-ADFP" and "OPEN_LOOP". When spec is "iag" accept the values "Exhaust"

"Evaporative" and "Liquid". When spec is "nox" eu can be "PRE", "I", "III", "IV", "V", "VI", "VIc", "III-DPF" or "III+CRT". Not required for "tyre",

"brake" or "road"

show when TRUE shows row of table with respective speciation

list when TRUE returns a list with number of elements of the list as the number

species of pollutants

pmpar Numeric vector for PM speciation eg: c(e_so4i = 0.0077, e_so4j = 0.0623,

 $e_no3i = 0.00247$, $e_no3j = 0.01053$, $e_pm2.5i = 0.1$, $e_pm2.5j = 0.3$, $e_orgi = 0.0304$, $e_orgj = 0.1296$, $e_eci = 0.056$, $e_ecj = 0.024$, h2o = 0.277) These are default values. however, when this argument is present, new values are used.

Value

dataframe of speciation in grams or mols

Note

when spec = "iag": veh is only "veh", fuel is "G" (blended with 25% ethanol), "D" (blended with 5% of biodiesel) or "E" (Ethanol 100%). eu is "Evaporative", "Liquid" or "Exhaust",

Speed 105

emissions of "pmiag" speciate pm2.5 into e_so4i, e_so4j, e_no3i, e_no3j, e_mp2.5i, e_mp2.5j, e_orgi, e_orgi, e_eci, e_ecj and h2o. Reference: Rafee, S.: Estudo numerico do impacto das emissoes veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao amazonica, Master thesis, Londrina: Universidade Tecnologica Federal do Parana, 2015.

References

"bcom": Ntziachristos and Zamaras. 2016. Passneger cars, light commercial trucks, heavy-duty vehicles including buses and motor cycles. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "brake" and "road": Ntziachristos and Boulter 2016. Automobile tyre and brake wear and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2016

"iag": Ibarra-Espinosa S. Air pollution modeling in Sao Paulo using bottom-up vehicular emissions inventories. 2017. PhD thesis. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, page 88. Speciate EPA: https://cfpub.epa.gov/speciate/.: K. Sexton, H. Westberg, "Ambient hydrocarbon and ozone measurements downwind of a large automotive painting plant" Environ. Sci. Tchnol. 14:329 (1980).P.A. Scheff, R.A. Schauer, James J., Kleeman, Mike J., Cass, Glen R., Characterization and Control of Organic Compounds Emitted from Air Pollution Sources, Final Report, Contract 93-329, prepared for California Air Resources Board Research Division, Sacramento, CA, April 1998. 2004 NPRI National Databases as of April 25, 2006, http://www.ec.gc.ca/pdb/npri/npri_dat_rep_e.cfm. Memorandum Proposed procedures for preparing composite speciation profiles using Environment Canada s National Pollutant Release Inventory (NPRI) for stationary sources, prepared by Ying Hsu and Randy Strait of E.H. Pechan Associates, Inc. for David Niemi, Marc Deslauriers, and Lisa Graham of Environment Canada, September 26, 2006.

Examples

```
## Not run:
# Do not run
pm <- rnorm(n = 100, mean = 400, sd = 2)
df <- speciate(pm, veh = "PC", fuel = "G", eu = "I")
dfa <- speciate(pm, spec = "e_eth", veh = "veh", fuel = "G", eu = "Exhaust")
dfb <- speciate(pm, spec = "e_tol", veh = "veh", fuel = "G", eu = "Exhaust")
dfc <- speciate(pm, spec = "e_so4i")
## End(Not run)</pre>
```

Speed

Construction function for class "Speed"

Description

Speed returns a tranformed object with class "Speed" and units km/h. This functions includes two arguments, distance and time. Therefore, it is posibel to change the units of the speed to "m" to "s" for example. This function returns a dataframe with units for speed. When this function is applied to numeric vectors it add class "units".

split_emis

Usage

```
Speed(x, ...)
## S3 method for class 'Speed'
print(x, ...)
## S3 method for class 'Speed'
summary(object, ...)
## S3 method for class 'Speed'
plot(x, ...)
```

Arguments

```
x Object with class "data.frame", "matrix" or "numeric"
... ignored
object Object with class "Speed"
```

Value

Constructor for class "Speed" or "units"

See Also

units

Examples

```
## Not run:
data(net)
data(pc_profile)
speed <- Speed(net$ps)
class(speed)
plot(speed, type = "1")
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm)
summary(df)
## End(Not run)</pre>
```

split_emis

Split street emissions based on a grid

Description

split_emis split street emissions into a grid.

temp_fact 107

Usage

```
split_emis(net, distance, add_column, verbose = TRUE)
```

Arguments

net A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to

"sf" with emissions.

distance Numeric distance or a grid with class "sf".

add_column Character indicating name of column of distance. For instance, if distance is an

sf object, and you wand to add one extra column to the resulting object.

verbose Logical, to show more information.

Examples

```
## Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
dim(net)
netsf <- sf::st_as_sf(net)[, "ldv"]
x <- split_emis(netsf, g)
dim(x)
g$A <- rep(letters, length = 20)[1:nrow(g)]
g$B <- rev(g$A)
netsf <- sf::st_as_sf(net)[, c("ldv", "hdv")]
xx <- split_emis(netsf, g, add_column = c("A", "B"))
## End(Not run)</pre>
```

temp_fact

Expansion of hourly traffic data

Description

temp_fact is a matrix multiplication between traffic and hourly expansion data-frames to obtain a data-frame of traffic at each link to every hour

Usage

```
temp_fact(q, pro, net, time)
```

Arguments

q	Numeric; traffic data per each link
pro	Numeric; expansion factors data-frames
net	SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
time	Character to be the time units as denominator, eg "1/h"

to_latex

Value

data-frames of expanded traffic or sf.

Examples

```
## Not run:
# Do not run
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)
pc_weeksf <- temp_fact(net$ldv+net$hdv, pc_profile, net = net)
plot(pc_weeksf)
## End(Not run)</pre>
```

to_latex

creates a .tex a table from a data.frame

Description

to_latex reads a data.frme an dgenerates a .tex table, aiming to replicate the method of tablegenerator.com

Usage

```
to_latex(df, file, caption = "My table", label = "tab:df")
```

Arguments

df data.frame with three column.

file Character, name of new .tex file
caption Character caption of table
label Character, label of table

Value

a text file with extension .tex.

See Also

```
vein_notes long_to_wide
```

Vehicles 109

Examples

Vehicles

Construction function for class "Vehicles"

Description

Vehicles returns a tranformed object with class "Vehicles" and units 'veh'. The type of objects supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it is converted to data.frame. If the object is "numeric" it is converted to class "units".

Usage

```
Vehicles(x, ..., time)
## S3 method for class 'Vehicles'
print(x, ...)
## S3 method for class 'Vehicles'
summary(object, ...)
## S3 method for class 'Vehicles'
plot(x, ..., message = TRUE)
```

Arguments

```
x Object with class "Vehicles"
... ignored
time Character to be the time units as denominator, eg "1/h"
object Object with class "Vehicles"
message message with average age
```

Value

Objects of class "Vehicles" or "units"

vein_notes

Examples

```
## Not run:
lt <- rnorm(100, 300, 10)
class(lt)
vlt <- Vehicles(lt)
class(vlt)
plot(vlt)
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
summary(LT_B5)
plot(LT_B5)
## End(Not run)</pre>
```

vein_notes

vein_notes for writting technical notes about the inventory

Description

vein_notes creates aa text file '.txt' for writting technical notes about this emissions inventory

Usage

```
vein_notes(
  notes,
  file = "README",
  yourname = Sys.info()["login"],
  title = "Notes for this VEIN run",
  approach = "Top Down",
  traffic = "Your traffic information",
  composition = "Your traffic information",
  ef = "Your information about emission factors",
  cold_start = "Your information about cold starts",
  evaporative = "Your information about evaporative emission factors",
  standards = "Your information about standards",
  mileage = "Your information about mileage"
)
```

Arguments

notes	Character; vector of notes.	
file	Character; Name of the file. The function will generate a file with an extension '.txt'.	
yourname	Character; Name of the inventor compiler.	
title	Character; Title of this file. For instance: "Vehicular Emissions Inventory of Region XX, Base year XX"	
approach	Character; vector of notes.	

vkm 111

```
traffic Character; vector of notes.

composition Character; vector of notes.

ef Character; vector of notes.

cold_start Character; vector of notes.

evaporative Character; vector of notes.

standards Character; vector of notes.

mileage Character; vector of notes.
```

Value

Writes a text file.

Examples

```
## Not run:
#do not run
a <- "delete"
f <- vein_notes("notes", file = a)
file.edit(f)
file.remove("delete")
## End(Not run)</pre>
```

vkm

Estimation of VKM

Description

vkm consists in the product of the number of vehicles and the distance driven by these vehicles in km. This function reads hourly vehiles and then extrapolates the vehicles

Usage

```
vkm(
  veh,
  lkm,
  profile,
  hour = nrow(profile),
  day = ncol(profile),
  array = TRUE,
  as_df = TRUE
)
```

112 wide_to_long

Arguments

veh Numeric vector with number of vehicles per street

lkm Length of each link (km)

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects a profile as a dataframe producing an array with dimensions (streets x hours x days)

as_df Logical; when TRUE transform returning array in data.frame (streets x hour*days)

Value

emission estimation of vkm

Examples

```
## Not run:
# Do not run
pc <- lkm <- abs(rnorm(10,1,1))*100
pro <- matrix(abs(rnorm(24*7,0.5,1)), ncol=7, nrow=24)
vkms <- vkm(veh = pc, lkm = lkm, profile = pro)
class(vkms)
dim(vkms)
vkms2 <- vkm(veh = pc, lkm = lkm, profile = pro, as_df = FALSE)
class(vkms2)
dim(vkms2)
## End(Not run)</pre>
```

wide_to_long

Transform data.frame from wide to long format

Description

```
wide_to_long transform data.frame from wide to long format
```

Usage

```
wide_to_long(df, column_with_data = names(df), column_fixed, geometry)
```

Arguments

 $\begin{tabular}{ll} $\tt df$ & data.frame with three column. \\ &\tt column_with_data \\ \end{tabular}$

Character column with data

column_fixed Character, column that will remain fixed

geometry To return a sf

wide_to_long

Value

long data.frame.

See Also

```
emis_hot_td emis_cold_td long_to_wide
```

```
## Not run:
data(net)
net <- sf::st_set_geometry(net, NULL)
df <- wide_to_long(df = net)
head(df)
## End(Not run)</pre>
```

Index

*Topic China	ef_china, 19
ef_china, 19	ef_hdv_scaled, 25
*Topic cold	ef_hdv_speed, 27
cold_mileage, 15	ef_im, 30
ef_ldv_cold, 32	ef_ive, 31
ef_ldv_cold_list,34	ef_ldv_cold, 32
*Topic cumileage	ef_ldv_cold_list, 34
ef_nitro,43	ef_ldv_scaled, 35
*Topic datasets	ef_ldv_speed, 37
fe2015, 85	ef_local, 41
fkm, 86	ef_nitro,43
net, 98	ef_whe, 45
pc_cold, 100	emis_det, 60
pc_profile, 100	*Topic high
pollutants, 101	ef_whe, 45
profiles, 102	*Topic ive
*Topic deterioration	ef_ive, 31
emis_det, 60	*Topic mileage
*Topic ef_china	cold_mileage, 15
ef_china, 19	ef_im, 30
*Topic emission	*Topic speed
ef_cetesb, 16	ef_hdv_scaled, 25
ef_china, 19	ef_hdv_speed, 27
ef_hdv_scaled, 25	ef_ive, 31
ef_hdv_speed, 27	ef_ldv_scaled, 35
ef_im, 30	ef_ldv_speed, 37
ef_ive, 31	*Topic start
ef_ldv_cold, 32	ef_ldv_cold_list, 34
ef_ldv_cold_list, 34	*Topic units
ef_ldv_scaled, 35	remove_units, 103
ef_ldv_speed, 37	
ef_local, 41	add_1km,3
ef_nitro,43	add_polid, 4, 4, 83
ef_whe, 45	adt, 5, 5
emis_det, 60	age, 6, 6, 7, 9, 11, 12, 97
*Topic emitters	age_hdv, 7, 8, 8, 9, 11, 12, 97
ef_whe, 45	age_ldv, 7, 9, 10, 10, 11, 12, 97
*Topic factors	age_moto, 7, 9, 11, 11, 12, 97
ef_cetesb, 16	aw, <i>13</i> , 13
- ,	, ,

INDEX 115

celsius, 14	invcop, 92
<pre>cold_mileage, 15</pre>	inventory, 93
ef_cetesb, 16, 16, 41, 42	long_to_wide, 94, 94, 108, 113
ef_china, 19, 19, 69	201.6_00_11200,>7,>1,100,112
ef_evap, 22, 22, 55, 64	make_grid, 95, 96
ef_fun, 24, 24	my_age, 7, 9, 11, 12, 96, 97
ef_hdv_scaled, 25, 25	30-7-7-7-7-7
ef_hdv_speed, 27, 54, 55	net, 98
ef_im, 30, 30	netspeed, 99
ef_ive, 31, 31	
ef_ldv_cold, 28, 32, 32, 39, 59	pc_cold, 100
ef_ldv_cold_list, 34	pc_profile, 100
ef_ldv_scaled, 35	<pre>plot.EmissionFactors (EmissionFactors),</pre>
ef_ldv_speed, 21, 37, 37, 54, 55, 69	50
ef_local, 41, 41	plot.EmissionFactorsList
ef_nitro, 43, 43	(EmissionFactorsList), 51
ef_wear, 44, 44	plot.Emissions (Emissions), 52
ef_whe, 45, 45	plot.EmissionsArray(EmissionsArray), 53
emis, 28, 39, 46, 46	plot.GriddedEmissionsArray
emis_chem, <i>54</i> , <i>54</i>	(GriddedEmissionsArray), 88
emis_cold, 56, 57	plot.Speed (Speed), 105
emis_cold_td, 58, 58, 95, 113	plot. Vehicles (Vehicles), 109
emis_det, 30, 60, 60	pollutants, 101
emis_dist, 62, 62, 90	<pre>print.EmissionFactors</pre>
emis_evap, 63, 63	(EmissionFactors), 50
emis_evap2, 65	<pre>print.EmissionFactorsList</pre>
emis_grid, 67, 68, 90	(EmissionFactorsList), 51
emis_hot_td, 21, 69, 69, 95, 113	print.Emissions(Emissions), 52
emis_merge, 72, 72, 73	<pre>print.EmissionsArray(EmissionsArray),</pre>
emis_order, 74	53
emis_order2,76	<pre>print.GriddedEmissionsArray</pre>
emis_paved, 78	(GriddedEmissionsArray), 88
emis_post, 73, 79	print.Speed(Speed), 105
emis_source, 81, 82	print. Vehicles (Vehicles), 109
emis_to_streets, 4, 82, 82	profiles, 102
emis_wear, 84	
EmissionFactors, 50	remove_units, <i>103</i> , 103
EmissionFactorsList, 51	
Emissions, 52	speciate, <i>55</i> , 103
EmissionsArray, 53	Speed, 105
	split_emis, <i>106</i> , 106
fe2015, 85	summary.EmissionFactors
fkm, 86	(EmissionFactors), 50
fuel_corr, 28, 33, 38, 39, 87	summary.EmissionFactorsList
	(EmissionFactorsList), 51
get_project, 88,88	summary.Emissions(Emissions), 52
grid_emis, <i>90</i> , <i>90</i>	summary.EmissionsArray
GriddedEmissionsArray, 75, 77, 88	(EmissionsArray), 53

116 INDEX

```
summary.GriddedEmissionsArray
(GriddedEmissionsArray), 88
summary.Speed (Speed), 105
summary.Vehicles (Vehicles), 109

temp_fact, 107
to_latex, 108, 108
units, 106

Vehicles, 109
vein_notes, 108, 110, 110
vkm, 111

weekly (emis_order), 74
wide_to_long, 95, 112, 112
```