
Package ‘vein’
June 11, 2020

Type Package

Title Vehicular Emissions Inventories

Version 0.8.9

Date 2020-06-11

Description Elaboration of vehicular emissions inventories,
consisting in four stages, pre-processing activity data, preparing
emissions factors, estimating the emissions and post-processing of emissions
in maps and databases. More details in Ibarra-Espinosa et al (2018) <doi:10.5194/gmd-11-2209-
2018>.
Before using VEIN you need to know the vehicular composition of your study area, in other words,
the combination of of type of vehicles, size and fuel of the fleet. Then, it is recommended to
start with the project to download a template to create a structure of directories and scripts.

License MIT + file LICENSE

URL https://gitlab.com/ibarraespinosa/vein

BugReports https://gitlab.com/ibarraespinosa/vein/-/issues

LazyData no

Depends R (>= 3.5.0)

Imports sf, data.table, units, graphics, stats, methods

Suggests knitr, rmarkdown, testthat, covr, lwgeom, cptcity

RoxygenNote 7.0.2

Encoding UTF-8

NeedsCompilation yes

Author Sergio Ibarra-Espinosa [aut, cre]
(<https://orcid.org/0000-0002-3162-1905>)

Maintainer Sergio Ibarra-Espinosa <sergio.ibarra@usp.br>

Repository CRAN

Date/Publication 2020-06-11 16:30:03 UTC

1

https://gitlab.com/ibarraespinosa/vein
https://gitlab.com/ibarraespinosa/vein/-/issues

2 R topics documented:

R topics documented:
add_lkm . 3
add_polid . 4
adt . 5
age . 6
age_hdv . 8
age_ldv . 10
age_moto . 11
aw . 13
celsius . 14
cold_mileage . 15
ef_cetesb . 16
ef_china . 19
ef_evap . 22
ef_fun . 24
ef_hdv_scaled . 25
ef_hdv_speed . 27
ef_im . 30
ef_ive . 31
ef_ldv_cold . 32
ef_ldv_cold_list . 34
ef_ldv_scaled . 35
ef_ldv_speed . 37
ef_local . 41
ef_nitro . 43
ef_wear . 44
ef_whe . 45
emis . 46
EmissionFactors . 50
EmissionFactorsList . 51
Emissions . 52
EmissionsArray . 53
emis_chem . 54
emis_cold . 56
emis_cold_td . 58
emis_det . 60
emis_dist . 62
emis_evap . 63
emis_evap2 . 65
emis_grid . 67
emis_hot_td . 69
emis_merge . 72
emis_order . 74
emis_order2 . 76
emis_paved . 78
emis_post . 79
emis_source . 81

add_lkm 3

emis_to_streets . 82
emis_wear . 84
fe2015 . 85
fkm . 86
fuel_corr . 87
get_project . 88
GriddedEmissionsArray . 88
grid_emis . 90
invcop . 92
inventory . 93
long_to_wide . 94
make_grid . 95
my_age . 96
net . 98
netspeed . 99
pc_cold . 100
pc_profile . 100
pollutants . 101
profiles . 102
remove_units . 103
speciate . 103
Speed . 105
split_emis . 106
temp_fact . 107
to_latex . 108
Vehicles . 109
vein_notes . 110
vkm . 111
wide_to_long . 112

Index 114

add_lkm Construction function to add unit km

Description

add_lkm just add unit ’km’ to different R objects

Usage

add_lkm(x)

Arguments

x Object with class "data.frame", "matrix", "numeric" or "integer"

4 add_polid

Value

Objects of class "data.frame" or "units"

Examples

Not run:
a <- add_lkm(rnorm(100)*10)
plot(a)
b <- add_lkm(matrix(rnorm(100)*10, ncol = 10))
print(head(b))

End(Not run)

add_polid Add polygon id to lines road network

Description

Sometimes you need to add polygon id into your streets road network. add_polid add add_polid
id into your road network cropping your network by.

For instance, you have open street maps road network the you have the polygon of your regions.
This function adds the id of your polygon as a new column in the streets network.

Usage

add_polid(polyg, street, by)

Arguments

polyg sf object POLYGON or sp

street streets road network class sf or sp

by Character indicating the column with the id in polyg

See Also

emis_to_streets

Examples

Not run:
data(net)
nets <- sf::st_as_sf(net)
bb <- sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(nets)))
bb$id <- "a"
a <- add_polid(polyg = bb, street = nets, by = "id")

End(Not run)

adt 5

adt Average daily traffic (ADT) from hourly traffic data.

Description

adt calculates ADT based on hourly traffic data.

Usage

adt(
pc,
lcv,
hgv,
bus,
mc,
p_pc,
p_lcv,
p_hgv,
p_bus,
p_mc,
feq_pc = 1,
feq_lcv = 1.5,
feq_hgv = 2,
feq_bus = 2,
feq_mc = 0.5

)

Arguments

pc numeric vector for passenger cars
lcv numeric vector for light commercial vehicles
hgv numeric vector for heavy good vehicles or trucks
bus numeric vector for bus
mc numeric vector for motorcycles
p_pc data-frame profile for passenger cars, 24 hours only.
p_lcv data-frame profile for light commercial vehicles, 24 hours only.
p_hgv data-frame profile for heavy good vehicles or trucks, 24 hours only.
p_bus data-frame profile for bus, 24 hours only.
p_mc data-frame profile for motorcycles, 24 hours only.
feq_pc Numeric, factor equivalence
feq_lcv Numeric, factor equivalence
feq_hgv Numeric, factor equivalence
feq_bus Numeric, factor equivalence
feq_mc Numeric, factor equivalence

6 age

Value

numeric vector of total volume of traffic per link as ADT

Examples

Not run:
data(net)
data(pc_profile)
p1 <- pc_profile[, 1]
adt1 <- adt(pc = net$ldv*0.75,

lcv = net$ldv*0.1,
hgv = net$hdv,
bus = net$hdv*0.1,
mc = net$ldv*0.15,
p_pc = p1,
p_lcv = p1,
p_hgv = p1,
p_bus = p1,
p_mc = p1)

head(adt1)

End(Not run)

age Applies a survival rate to numeric new vehicles

Description

age returns survived vehicles

Usage

age(x, type = "weibull", a = 14.46, b = 4.79, agemax, verbose = FALSE)

Arguments

x Numeric; numerical vector of sales or registrations for each year

type Character; any of "gompertz", "double_logistic", "weibull" and "weibull2"

a Numeric; parameter of survival equation

b Numeric; parameter of survival equation

agemax Integer; age of oldest vehicles for that category

verbose Logical; message with average age and total numer of vehicles regions or streets.

Value

dataframe of age distrubution of vehicles

age 7

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/dapt any of these functions.

gompertz: 1 - exp(-exp(a + b*time)), defaults PC: b = -0.137, a = 1.798, LCV: b = -0.141, a
= 1.618 MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes
Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia. This curve is also used by
Guo and Wang (2012, 2015) in the form: V*exp(alpha*exp(beta*E)) where V is the saturation
car ownership level and E GDP per capita Huo, H., & Wang, M. (2012). Modeling future vehicle
sales and stock in China. Energy Policy, 43, 17–29. doi:10.1016/j.enpol.2011.09.063 Huo, Hong,
et al. "Vehicular air pollutant emissions in China: evaluation of past control policies and future
perspectives." Mitigation and Adaptation Strategies for Global Change 20.5 (2015): 719-733.

double_logistic: 1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b))), defaults PC: b = 21, a =
0.19, LCV: b = 15.3, a = 0.17, HGV: b = 17, a = 0.1, BUS: b = 19.1, a = 0.16 MCT (2006). de
Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes Moveis, no Setor Energético.
Ministerio da Ciencia e Tecnologia.

weibull: exp(-(time/a)^b), defaults PC: b = 4.79, a = 14.46, Taxi: b = +inf, a = 5, Government
and business: b = 5.33, a = 13.11 Non-operating vehicles: b = 5.08, a = 11.53 Bus: b = +inf, a =
9, non-transit bus: b = +inf, a = 5.5 Heavy HGV: b = 5.58, a = 12.8, Medium HGV: b = 5.58, a =
10.09, Light HGV: b = 5.58, a = 8.02 Hao, H., Wang, H., Ouyang, M., & Cheng, F. (2011). Vehicle
survival patterns in China. Science China Technological Sciences, 54(3), 625-629.

weibull2: exp(-((time + b)/a)^b), defaults b = 11, a = 26 Zachariadis, T., Samaras, Z., Zierock,
K. H. (1995). Dynamic modeling of vehicle populations: an engineering approach for emissions
calculations. Technological Forecasting and Social Change, 50(2), 135-149. Cited by Huo and
Wang (2012)

See Also

Other age: age_hdv(), age_ldv(), age_moto()

Examples

Not run:
vehLIA <- rep(1, 25)
PV_Minia <- age(x = vehLIA)
PV_Minib <- age(x = vehLIA, type = "weibull2", b = 11, a = 26)
PV_Minic <- age(x = vehLIA, type = "double_logistic", b = 21, a = 0.19)
PV_Minid <- age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
plot(PV_Minia, type = "b", pch = 16)
lines(PV_Minib, type = "b", pch = 16, col = "red")
lines(PV_Minic, type = "b", pch = 16, col = "blue")
lines(PV_Minid, type = "b", pch = 16, col = "green")
legend(x = 20, y = 0.85,

legend = c("weibull", "weibull2", "double_logistic", "gompertz"),

8 age_hdv

col = c("black", "red", "blue", "green"),
lty=c(1,1),
lwd=c(2.5, 2.5, 2.5, 2.5))
#lets put some numbers

vehLIA <- c(65400, 79100, 80700, 85300, 86700, 82000, 74500, 67700, 60600, 62500,
84700, 62600, 47900, 63900, 41800, 37492, 34243, 30995, 27747, 24499, 21250,
18002, 14754, 11506, 8257)
PV_Minia <- age(x = vehLIA)
PV_Minib <- age(x = vehLIA, type = "weibull2", b = 11, a = 26)
PV_Minic <- age(x = vehLIA, type = "double_logistic", b = 21, a = 0.19)
PV_Minid <- age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
plot(PV_Minia, type = "b", pch = 16)
lines(PV_Minib, type = "b", pch = 16, col = "red")
lines(PV_Minic, type = "b", pch = 16, col = "blue")
lines(PV_Minid, type = "b", pch = 16, col = "green")
legend(x = 20, y = 80000,

legend = c("weibull", "weibull2", "double_logistic", "gompertz"),
col = c("black", "red", "blue", "green"),
lty=c(1,1),
lwd=c(2.5, 2.5, 2.5, 2.5))

End(Not run)

age_hdv Returns amount of vehicles at each age

Description

age_hdv returns amount of vehicles at each age

Usage

age_hdv(
x,
name = "age",
a = 0.2,
b = 17,
agemin = 1,
agemax = 50,
k = 1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time

)

age_hdv 9

Arguments

x Numeric; numerical vector of vehicles with length equal to lines features of road
network

name Character; of vehicle assigned to columns of dataframe

a Numeric; parameter of survival equation

b Numeric; parameter of survival equation

agemin Integer; age of newest vehicles for that category

agemax Integer; age of oldest vehicles for that category

k Numeric; multiplication factor. If its length is > 1, it must match the length of x

bystreet Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

verbose Logical; message with average age and total numer of vehicles

namerows Any vector to be change row.names. For instance, name of regions or streets.

time Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles at each street

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

Other age: age_ldv(), age_moto(), age()

Examples

Not run:
data(net)
LT_B5 <- age_hdv(x = net$hdv,name = "LT_B5")
plot(LT_B5)
LT_B5 <- age_hdv(x = net$hdv, name = "LT_B5", net = net)
plot(LT_B5)

End(Not run)

10 age_ldv

age_ldv Returns amount of vehicles at each age

Description

age_ldv returns amount of vehicles at each age

Usage

age_ldv(
x,
name = "age",
a = 1.698,
b = -0.2,
agemin = 1,
agemax = 50,
k = 1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time

)

Arguments

x Numeric; numerical vector of vehicles with length equal to lines features of road
network

name Character; of vehicle assigned to columns of dataframe

a Numeric; parameter of survival equation

b Numeric; parameter of survival equation

agemin Integer; age of newest vehicles for that category

agemax Integer; age of oldest vehicles for that category

k Numeric; multiplication factor. If its length is > 1, it must match the length of x

bystreet Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

verbose Logical; message with average age and total numer of vehicles

namerows Any vector to be change row.names. For instance, name of regions or streets.

time Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles

age_moto 11

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

It consists in a Gompertz equation with default parameters from 1 national emissions inventory for
green housegases in Brazil, MCT 2006

See Also

Other age: age_hdv(), age_moto(), age()

Examples

Not run:
data(net)
PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")
plot(PC_E25_1400)
PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
plot(PC_E25_1400)

End(Not run)

age_moto Returns amount of vehicles at each age

Description

age_moto returns amount of vehicles at each age

Usage

age_moto(
x,
name = "age",
a = 0.2,
b = 17,
agemin = 1,
agemax = 50,
k = 1,
bystreet = FALSE,
net,
verbose = FALSE,
namerows,

12 age_moto

time
)

Arguments

x Numeric; numerical vector of vehicles with length equal to lines features of road
network

name Character; of vehicle assigned to columns of dataframe
a Numeric; parameter of survival equation
b Numeric; parameter of survival equation
agemin Integer; age of newest vehicles for that category
agemax Integer; age of oldest vehicles for that category
k Numeric; multiplication factor. If its length is > 1, it must match the length of x
bystreet Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with

length equal to x
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose Logical; message with average age and total numer of vehicles
namerows Any vector to be change row.names. For instance, name of regions or streets.
time Character to be the time units as denominator, eg "1/h"

Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

Other age: age_hdv(), age_ldv(), age()

Examples

Not run:
data(net)
MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4)
plot(MOTO_E25_500)
MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4, net = net)
plot(MOTO_E25_500)

End(Not run)

aw 13

aw Average Weight from hourly traffic data.

Description

aw average weight form traffic.

Usage

aw(
pc,
lcv,
hgv,
bus,
mc,
p_pc,
p_lcv,
p_hgv,
p_bus,
p_mc,
w_pc = 1,
w_lcv = 3.5,
w_hgv = 20,
w_bus = 20,
w_mc = 0.5,
net

)

Arguments

pc numeric vector for passenger cars

lcv numeric vector for light commercial vehicles

hgv numeric vector for heavy good vehicles or trucks

bus numeric vector for bus

mc numeric vector for motorcycles

p_pc data-frame profile for passenger cars, 24 hours only.

p_lcv data-frame profile for light commercial vehicles, 24 hours only.

p_hgv data-frame profile for heavy good vehicles or trucks, 24 hours only.

p_bus data-frame profile for bus, 24 hours only.

p_mc data-frame profile for motorcycles, 24 hours only.

w_pc Numeric, factor equivalence

w_lcv Numeric, factor equivalence

w_hgv Numeric, factor equivalence

14 celsius

w_bus Numeric, factor equivalence

w_mc Numeric, factor equivalence

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

Value

data.frame with with average weight

Examples

Not run:
data(net)
data(pc_profile)
p1 <- pc_profile[, 1]
aw1 <- aw(pc = net$ldv*0.75,

lcv = net$ldv*0.1,
hgv = net$hdv,
bus = net$hdv*0.1,
mc = net$ldv*0.15,
p_pc = p1,
p_lcv = p1,
p_hgv = p1,
p_bus = p1,
p_mc = p1)

head(aw1)

End(Not run)

celsius Construction function for Celsius temperature

Description

celsius just add unit celsius to different R objects

Usage

celsius(x)

Arguments

x Object with class "data.frame", "matrix", "numeric" or "integer"

Value

Objects of class "data.frame" or "units"

cold_mileage 15

Examples

Not run:
a <- celsius(rnorm(100)*10)
plot(a)
b <- celsius(matrix(rnorm(100)*10, ncol = 10))
print(head(b))

End(Not run)

cold_mileage Fraction of mileage driven with a cold engine or catalizer below nor-
mal temperature

Description

This function depends length of trip and on ambient temperature. From the guidelines EMEP/EEA
air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-
emission-inventory-guidebook

Usage

cold_mileage(ltrip, ta)

Arguments

ltrip Numeric; Length of trip. It must be in ’units’ km.

ta Numeric or data.frame; average monthly temperature Celsius. It if is a data.frame,
it is convenient that each column is each month.

Note

This function is set so that values vaires between 0 and 1.

Examples

Not run:
lkm <- units::set_units(1:10, km)
ta <- celsius(matrix(0:9, ncol = 12, nrow = 10))
a <- cold_mileage(lkm, rbind(ta, ta))
(a)
filled.contour(as.matrix(a), col = cptcity::lucky(n = 16))

End(Not run)

16 ef_cetesb

ef_cetesb Emissions factors for Environment Company of Sao Paulo, Brazil
(CETESB) 2017

Description

ef_cetesb returns a vector or data.frame of Brazilian emission factors.

Usage

ef_cetesb(
p,
veh,
year = 2017,
agemax = 40,
sppm,
full = FALSE,
project = "constant",
verbose = FALSE

)

Arguments

p Character;
Pollutants: "CO", "HC", "NMHC", "CH4", "NOx", "CO2","RCHO", "ETOH",
"PM", "N2O", "KML", "FC", "NO2", "NO", "gD/KWH", "gCO2/KWH", "RCHO",
"CO_0km", "HC_0km", "NMHC_0km", "NOx_0km", "NO2_0km" ,"NO_0km",
"RCHO_0km" and "ETOH_0km", "FS" (fuel sales) (g/km). Evaporative emis-
sions at average temperature ranges: "D_20_35", "S_20_35", "R_20_35", "D_10_25",
"S_10_25", "R_10_25", "D_0_15", "S_0_15" and "R_0_15" where D means di-
urnal (g/day), S hot/warm soak (g/trip) and R hot/warm running losses (g/trip).

veh Character; Vehicle categories: "PC_G", "PC_FG", "PC_FE", "PC_E", "LCV_G",
"LCV_FG", "LCV_FE", "LCV_E", "LCV_D", "TRUCKS_SL", "TRUCKS_L",
"TRUCKS_M", "TRUCKS_SH", "TRUCKS_H", "BUS_URBAN", "BUS_MICRO",
"BUS_COACH", "BUS_ARTIC", "MC_G_150", "MC_G_150_500", "MC_G_500",
"MC_FG_150", "MC_FG_150_500", "MC_FG_500", "MC_FE_150", "MC_FE_150_500",
"MC_FE_500" "CICLOMOTOR", "GNV"

year Numeric; Filter the emission factor to start from a specific base year. If project
is ’constant’ values above 2017 and below 1980 will be repeated

agemax Integer; age of oldest vehicles for that category
sppm Numeric, sulfur (sulphur) in ppm in fuel.
full Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian

emissions standards and its euro equivalents.
project haracter showing the method for projecting emission factors in future. Currently

the only value is "constant"
verbose Logical; To show more information

ef_cetesb 17

Value

A vector of Emission Factor or a data.frame

Note

The new convention for vehicles names are translated from CETESB report:

veh description
PC_G Passenger Car Gasohol (Gasoline + 27perc of anhydrous ethanol)
PC_E Passenger Car Ethanol (hydrous ethanol)
PC_FG Passenger Car Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
PC_FE Passenger Car Flex Ethanol (hydrous ethanol)
LCV_G Light Commercial Vehicle Gasohol (Gasoline + 27perc of anhydrous ethanol)
LCV_E Light Commercial Vehicle Ethanol (hydrous ethanol)
LCV_FG Light Commercial Vehicle Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
LCV_FE Light Commercial Vehicle Flex Ethanol (hydrous ethanol)
LCV_D Light Commercial Vehicle Diesel (5perc bio-diesel)
TRUCKS_SL_D Trucks Semi Light Diesel (5perc bio-diesel)
TRUCKS_L_D Trucks Light Diesel (5perc bio-diesel)
TRUCKS_M_D Trucks Medium Diesel (5perc bio-diesel)
TRUCKS_SH_D Trucks Semi Heavy Diesel (5perc bio-diesel)
TRUCKS_H_D Trucks Heavy Diesel (5perc bio-diesel)
BUS_URBAN_D Urban Bus Diesel (5perc bio-diesel)
BUS_MICRO_D Micro Urban Bus Diesel (5perc bio-diesel)
BUS_COACH_D Coach (inter-state) Bus Diesel (5perc bio-diesel)
BUS_ARTIC_D Articulated Urban Bus Diesel (5perc bio-diesel)
MC_150_G Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_500_G Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_500_G Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_FG Flex Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_500_FG Flex Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_500_FG Flex Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
MC_150_FE Flex Motorcycle engine less than 150cc Ethanol (hydrous ethanol)
MC_150_500_FE Flex Motorcycle engine 150-500cc Ethanol (hydrous ethanol)
MC_500_FE Flex Motorcycle greater than 500cc Ethanol (hydrous ethanol)

The percentage varies of bioduels varies by law.

This emission factors are not exactly the same as the report of CETESB.

1) In this emission factors, there is also NO and NO2 based on split by published in the EMEP/EEA
air pollutant emission inventory guidebook.

2) Also, the emission factors were extended till 50 years of use, repeating the oldest value.

3) CNG emission factors were expanded to other pollutants by comparison of US.EPA-AP42 emis-
sion factor: Section 1.4 Natural Gas Combustion.

In the previous versions I used the letter ’d’ for deteriorated. I removed the letter ’d’ internally to
not break older code.

18 ef_cetesb

If by mistake, the user inputs one of veh names from the old convention, they are internally changed
to the new convention: "SLT", "LT", "MT", "SHT","HT", "UB", "SUB", "COACH", "ARTIC",
"M_G_150", "M_G_150_500", "M_G_500", "M_FG_150", "M_FG_150_500", "M_FG_500", "M_FE_150",
"M_FE_150_500","M_FE_500",

If pollutant is "SO2", it needs sppm. It is designed when veh has length 1, if it has length 2 or more,
it will show a warning

Emission factor for vehicles older than the reported by CETESB were filled as the moving
average of 2:

• Range EF from PC and LCV otto: 2018 - 1982. EF for 1981 and older as movign average.

• Range LCV diesel : 2018 - 2006. EF for 2005 and older as movign average.

• Range Trucks and Buse: 2018 - 1998. EF for 1997 and older as movign average.

• Range MC Gasoline: 2018 - 2003. EF for 2002 and older as movign average.

• Range MC Flex 150-500cc and >500cc: 2018 - 2012. EF for 2011 and older as movign
average.

Currently, 2020, there are not any system for recovery of fuel vapors in Brazil. Hence, the FS takes
into account the vapour that comes from the fuel tank inside the car and released into the atmosphere
when injecting new fuel. There are discussions about incrementing implementing stage I and II
and/or ORVR thesedays. The ef FS is calculated by transforming g FC/km into (L/KM)*g/L with
g/L 1.14 fgor gasoline and 0.37 for ethanol (CETESB, 2016). The density considered is 0.75425
for gasoline and 0.809 for ethanol (t/m^3)

CETESB emission factors did not cover evaporative emissions from motorcycles, which occure.
Therefore, in the abscence of better data, it was assumed the same ratio from passenger cars.

Li, Lan, et al. "Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline
blends." Science of the Total Environment 502 (2015): 627-631.

References

Emissoes Veiculares no Estado de Sao Paulo 2016. Technical Report. url: https://cetesb.sp.gov.br/veicular/relatorios-
e-publicacoes/.

Examples

Not run:
a <- ef_cetesb("CO", "PC_G")
a <- ef_cetesb("R_10_25", "PC_G")
a <- ef_cetesb("CO", c("PC_G", "PC_FE"))
ef_cetesb(p = "CO", veh = "PC_G", year = 2018, agemax = 40)
ef_cetesb(p = "CO", veh = "PC_G", year = 1970, agemax = 40)
ef_cetesb(p = "CO", veh = "PC_G", year = 2030, agemax = 40)
ef_cetesb(p = "CO", veh = "TRUCKS_L_D", year = 2018)
ef_cetesb(p = "CO", veh = "SLT", year = 2018) # olds names
ef_cetesb(p = "SO2", veh = "PC_G", year = 2030, agemax = 40, sppm = 300)
ef_cetesb(p = "SO2", veh = "PC_FE", year = 2030, agemax = 40, sppm = 300)

End(Not run)

ef_china 19

ef_china Emissions factors from Chinese emissions guidelines

Description

ef_china returns emission factors as vector or data.frames. The emission factors comes from the
chinese emission guidelines (v3) from the Chinese Ministry of Ecology and Environment http://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387895271474.pdf

Usage

ef_china(
v = "PV",
t = "Small",
f = "G",
standard,
p,
k = 1,
ta = celsius(15),
humidity = 0.5,
altitude = 1000,
speed = Speed(30),
baseyear_det = 2016,
sulphur = 50,
load_factor = 0.5,
details = FALSE,
correction_only = FALSE

)

Arguments

v Character; category vehicle: "PV" for Passenger Vehicles or ’Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D"

standard Character or data.frame; "PRE", "I", "II", "III", "IV", "V". When it is a data.frame,
it each row is a different region and ta, humidity, altitud, speed, sulphur and
load_factor lengths have the same as the number of rows.

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

k Numeric; multiplication factor

ta Numeric; temperature of ambient in celcius degrees. When standard is a data.frame,
the length must be equal to the number of rows of standard.

humidity Numeric; relative humidity. When standard is a data.frame, the length must be
equal to the number of rows of standard.

20 ef_china

altitude Numeric; altitude in meters. When standard is a data.frame, the length must be
equal to the number of rows of standard.

speed Numeric; altitude in km/h When standard is a data.frame, the length must be
equal to the number of rows of standard.

baseyear_det Integer; any of 2014, 2015, 2016, 2017, 2018

sulphur Numeric; sulphur in ppm. When standard is a data.frame, the length must be
equal to the number of rows of standard.

load_factor Numeric; When standard is a data.frame, the length must be equal to the number
of rows of standard.

details Logical; When TRUE, it shows a description of the vehicle in chinese and en-
glish. Only when length standard is 1.

correction_only

Logical; When TRUE, return only correction factors.

Value

An emission factor

Note

Combination of vehicles:

v t f
PV Mini G
PV Small G
PV Medium G
PV Large G
PV Taxi G
PV Bus G
PV Motorcycles G
PV Moped G
PV Mini D
PV Small D
PV Mediumbus D
PV Largebus D
PV Bus D
PV 3-Wheel D
PV Small ALL
PV Mediumbus ALL
PV Largebus ALL
PV Taxi ALL
PV Bus ALL

Trucks Bus G
Trucks Light G
Trucks Medium G
Trucks Heavy G
Trucks Light D
Trucks Medium D

ef_china 21

Trucks Heavy D
Trucks Low Speed D
Trucks Mini D

See Also

ef_ldv_speed emis_hot_td

Examples

Not run:
when standard is 'character'
Checking
df_st <- rev(c(as.character(as.roman(5:1)), "PRE"))
ef_china(t = "Mini", f = "G", standard = df_st, p = "CO")
ef_china(t = "Mini", f = "G", standard = df_st, p = "HC")
ef_china(t = "Mini", f = "G", standard = df_st, p = "NOx")
ef_china(t = "Mini", f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Mini", f = "G", standard = df_st, p = "PM10")

ef_china(t = "Small", f = "G", standard = df_st, p = "CO")
ef_china(t = "Small", f = "G", standard = df_st, p = "HC")
ef_china(t = "Small", f = "G", standard = df_st, p = "NOx")
ef_china(t = "Small", f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Small", f = "G", standard = df_st, p = "PM10")

ef_china(t = "Mini",
standard = c("PRE"),
p = "CO",
k = 1,
ta = celsius(15),
humidity = 0.5,
altitude = 1000,
speed = Speed(30),
baseyear_det = 2014,
sulphur = 50,
load_factor = 0.5,
details = FALSE)

ef_china(standard = c("PRE", "I"), p = "CO", correction_only = TRUE)

when standard is 'data.frame'
df_st <- matrix(c("V", "IV", "III", "III", "II", "I", "PRE"), nrow = 2, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)
a <- ef_china(standard = df_st,

p = "PM10",
ta = rep(celsius(15), 2),
altitude = rep(1000, 2),
speed = rep(Speed(30), 2),
sulphur = rep(50, 2))

dim(a)

22 ef_evap

dim(df_st)
ef_china(standard = df_st, p = "PM2.5", ta = rep(celsius(20), 2),
altitude = rep(1501, 2), speed = rep(Speed(29), 2), sulphur = rep(50, 2))
a

when standard, temperature and humidity are data.frames
assuming 10 regions
df_st <- matrix(c("V", "IV", "III", "III", "II", "I", "PRE"), nrow = 10, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)
df_t <- matrix(21:30, nrow = 10, ncol = 12, byrow = TRUE)
df_t <- as.data.frame(df_t)
for(i in 1:12) df_t[, i] <- celsius(df_t[, i])

assuming 10 regions
df_h <- matrix(seq(0.4, 0.5, 0.05), nrow = 10, ncol = 12, byrow = TRUE)
df_h <- as.data.frame(df_h)
a <- ef_china(standard = df_st, p = "CO", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a
a <- ef_china(standard = df_st, p = "PM2.5", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a
a <- ef_china(standard = df_st, p = "PM10", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a
dim(a)

End(Not run)

ef_evap Evaporative emission factor

Description

ef_evap is a lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guide-
lines

Usage

ef_evap(
ef,
v,
cc,
dt,
ca,
pollutant = "NMHC",
k = 1,
ltrip,
kmday,

ef_evap 23

show = FALSE,
verbose = FALSE

)

Arguments

ef Name of evaporative emission factor as *eshotc*: mean hot-soak with carbu-
rator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean
hot-soak with fuel injection, *erhotc*: mean hot running losses with carbura-
tor, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot running
losses with fuel injection. Length of ef 1.

v Type of vehicles, "PC", "Motorcycle", "Motorcycle_2S" and "Moped"
cc Size of engine in cc. PC "<=1400", "1400_2000" and ">2000" Motorcycle_2S:

"<=50". Motorcyces: ">50", "<=250", "250_750" and ">750". Only engines of
>750 has canister.

dt Character or Numeric: Average monthly temperature variation: "-5_10", "0_15",
"10_25" and "20_35". This argument can vector with several elements. dt can
also be data.frame, but it is recommended that the number of columns are each
month. So that dt varies in each row and each column.

ca Size of canister: "no" meaning no canister, "small", "medium" and "large".
pollutant Character indicating any of the covered pollutants: "NMHC", "ethane", "propane",

"i-butane", "n-butane", "i-pentane", "n-pentane", "2-methylpentane", "3-methylpentane",
"n-hexane", "n-heptane", "propene", "trans-2-butene", "isobutene", "cis-2-butene",
"1,3-butadiene", "trans-2-pentene", "cis-2-pentene", "isoprene", "propyne", "acety-
lene", "benzene", "toluene", "ethylbenzene", "m-xylene", "o-xylene", "1,2,4-
trimethylbenzene" and "1,3,5-trimethylbenzene". Default is "NMHC"

k multiplication factor
ltrip Numeric; Length of trip. Experimental feature to conter g/trip and g/proced

(assuming proced similar to trip) in g/km.
kmday Numeric; average daily mileage. Experimental option to convert g/day in g/km.

it is an information more solid than to know the average number of trips per day.
show when TRUE shows row of table with respective emission factor.
verbose Logical; To show more information

Value

emission factors in g/trip or g/proced. The object has class (g) but it order to know it is g/trip or
g/proceed the argument show must by T

Note

Diurnal loses occur with daily temperature variations. Running loses occur during vehicles use.
Hot soak emission occur following vehicles use.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

24 ef_fun

Examples

Not run:
Do not run
a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
pollutant = "cis-2-pentene")
a <- ef_evap(ef = "ed", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
a <- ef_evap(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
dt = "0_15", ca = "no",
show = TRUE)
a <- ef_evap(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
dt = "0_15", ca = "no",

show = FALSE)
a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)
temps <- 10:20
a <- ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = temps, ca = "no",
show = TRUE)
dt <- matrix(rep(1:24,5), ncol = 12) # 12 months
dt <- celsius(dt)
a <- ef_evap(ef ="erhotc", v = "PC", cc = "<=1400",
dt = dt, ca = "no")
lkm <- units::set_units(10, km)
a <- ef_evap(ef ="erhotc", v = "PC", cc = "<=1400", ltrip = lkm,
dt = dt, ca = "no")

End(Not run)

ef_fun Experimental: Returns a function of Emission Factor by age of use

Description

ef_fun returns amount of vehicles at each age

Usage

ef_fun(
ef,
type = "logistic",
x = 1:length(ef),
x0 = mean(ef),
k = 1/4,
L = max(ef)

)

ef_hdv_scaled 25

Arguments

ef Numeric; numeric vector of emission factors.

type Character; "logistic" by default so far.

x Numeric; vector for ages of use.

x0 Numeric; the x-value of the sigmoid’s midpoint,

k Numeric; the steepness of the curve.

L Integer; the curve’s maximum value.

Value

dataframe of age distrubution of vehicles at each street.

References

https://en.wikipedia.org/wiki/Logistic_function

Examples

Not run:
data(fe2015)
CO <- vein::EmissionFactors(fe2015[fe2015$Pollutant == "CO", "PC_G"])
ef_logit <- ef_fun(ef = CO, x0 = 27, k = 0.4, L = 33)
plot(ef_logit, type = "b", pch = 16)
lines(ef_logit, pch = 16, col = "blue")

End(Not run)

ef_hdv_scaled Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

ef_hdv_scaled creates a list of scaled functions of emission factors. A scaled emission factor
which at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe
with local emission factors with a columns with the name "Euro_HDV" indicating the Euro equiv-
alence standard, assuming that there are available local emission factors for several consecutive
years.

Usage

ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr = 0, l = 0.5, p)

26 ef_hdv_scaled

Arguments

df deprecated

dfcol Column of the dataframe with the local emission factors eg df$dfcol

SDC Speed of the driving cycle

v Category vehicle: "Coach", "Trucks" or "Ubus"

t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"

g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

l Load of the vehicle: 0.0, 0.5 or 1.0

p Pollutant: "CO", "FC", "NOx" or "HC"

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

Not run:
Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
lef <- ef_hdv_scaled(dfcol = co1$LT, v = "Trucks", t = "RT",
g = "<=7.5", eu = co1$Euro_HDV, gr = 0, l = 0.5, p = "CO")
length(lef)
plot(x = 0:150, y = lef[[36]](0:150), col = "red", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of oldest vehicle")
plot(x = 0:150, y = lef[[1]](0:150), col = "blue", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of newest vehicle")

End(Not run)

ef_hdv_speed 27

ef_hdv_speed Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guide-
lines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_hdv_speed(
v,
t,
g,
eu,
x,
gr = 0,
l = 0.5,
p,
k = 1,
show.equation = FALSE,
speed,
fcorr = rep(1, 8)

)

Arguments

v Category vehicle: "Coach", "Trucks" or "Ubus"

t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"

g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV", "V". Also "II+CRDPF",
"III+CRDPF", "IV+CRDPF", "II+SCR", "III+SCR" and "V+SCR" for pollu-
tants Number of particles and Active Surface.

x Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in
fuel in ppm.

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

l Load of the vehicle: 0.0, 0.5 or 1.0

p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also
polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs),
and Number of particles and Active Surface.

28 ef_hdv_speed

k Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1

Value

an emission factor function which depends of the average speed V g/km

Note

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb".

Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): "indeno(1,2,3-cd)pyrene", "benzo(k)fluoranthene", "benzo(ghi)perylene",
"fluoranthene", "benzo(a)pyrene", "pyrene", "perylene", "anthanthrene", "benzo(b)fluorene", "benzo(e)pyrene",
"triphenylene", "3,6-dimethyl-phenanthrene", "benzo(a)anthracene", "phenanthrene", "napthalene",
"anthracene"

Dioxins and furans (g equivalent toxicity / km): "PCDD", "PCDF" and "PCB".

Metals (g/km): "As", "Cd", "Cr", "Cu", "Hg", "Ni", "Pb", "Se", "Zn" (g/km). NMHC (g/km):
ALKANES (g/km): "ethane", "propane", "butane", "isobutane", "pentane", "isopentane", "heptane",
"octane", "2-methylhexane", "nonane", "2-methylheptane", "2-methylhexane", "decane", "3-methylheptane",
"alkanes_C10_C12"

CYCLOALKANES (g/km): "cycloalkanes".

ALKENES (g/km): "ethylene", "propylene", "isobutene", "2-butene", "1,3-butadiene"

ALKYNES (g/km): "acetylene".

ALDEHYDES (g/km): "formaldehyde", "acetaldehyde", "acrolein", "benzaldehyde", "crotonalde-
hyde", "methacrolein", "butyraldehyde", "propionaldehyde", "i-valeraldehyde"

KETONES (g/km): "acetone"

AROMATICS (g/km): "toluene", "ethylbenzene", "m-xylene", "p-xylene", "o-xylene", "1,2,3-trimethylbenzene",
"1,2,4-trimethylbenzene", "1,3,5-trimethylbenzene", "styrene", "benzene", "C9".

Active Surface (cm2/km) (gr = 0 and l = 0.5): "AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km) (gr = 0 and l = 0.5): "N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway".

The available standards for Active Surface or number of particles are: Euro II and III Euro II and
III + CRDPF Euro II and III + SCR Euro IV + CRDPF Euro V + SCR

The categories Pre Euro and Euro I were assigned with the factors of Euro II and Euro III The
categories euro IV and euro V were assigned with euro III + SCR

See Also

fuel_corr emis ef_ldv_cold

ef_hdv_speed 29

Examples

Not run:
Quick view
pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2",
"AS_urban", "AS_rural", "AS_highway",
"N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
f <- sapply(1:length(pol), function(i){
print(pol[i])
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = pol[i], x = 10)(30)
})
f
PAH POP
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "napthalene", x = 10)(30)
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "fluoranthene", x = 10)(30)

Dioxins and Furans
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "PCB", x = 10)(30)

NMHC
ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "heptane", x = 10)(30)

V <- 0:130
ef1 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "HC")
plot(1:130, ef1(1:130), pch = 16, type = "b")
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),

rep("I", 5), rep("PRE", 15))
lef <- lapply(1:30, function(i) {
ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = euro[i], l = 0.5, p = "NOx",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")
a <- ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = euro, l = 0.5, p = "NOx", speed = Speed(0:125))
a$speed <- NULL
filled.contour(as.matrix(a), col = cptcity::lucky(n = 24),
xlab = "Speed", ylab = "Age")
persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Age",
zlab = "NOx [g/km]", col = cptcity::lucky(), phi = 25)
aa <- ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = rbind(euro, euro), l = 0.5, p = "NOx", speed = Speed(0:125))

End(Not run)

30 ef_im

ef_im Emission factors deoending on accumulated mileage

Description

ef_im calculate the theoretical emission factors of vehicles. The approache is different from includ-
ing deterioration factors (emis_det) but similar, because they represent how much emits a vehicle
with a normal deterioration, but that it will pass the Inspection and Manteinance program.

Usage

ef_im(ef, tc, amileage, max_amileage, max_ef, verbose = TRUE)

Arguments

ef Numeric; emission factors of vehicles with 0 mileage (new vehicles).

tc Numeric; rate of growth of emissions by year of use.

amileage Numeric; Accumulated mileage by age of use.

max_amileage Numeric; Max accumulated mileage. This means that after this value, mileage
is constant.

max_ef Numeric; Max ef. This means that after this value, ef is constant.

verbose Logical; if you want detailed description.

Value

An emission factor of a deteriorated vehicle under normal conditions which would be approved in
a inspection and mantainence program.

Examples

Not run:
Do not run
Passenger Cars PC
data(fkm)
cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:10))
ef_im(ef = seq(0.1, 2, 0.2), seq(0.1, 1, 0.1), mil)

End(Not run)

ef_ive 31

ef_ive Base emissions factors from International Vehicle Emissions (IVE)
model

Description

ef_ive returns the base emission factors from the the IVE model. This function depend on vec-
torized mileage, which means your can enter with the mileage by age of use and the name of the
pollutant.

Usage

ef_ive(
description = "Auto/Sml Truck",
fuel = "Petrol",
weight = "Light",
air_fuel_control = "Carburetor",
exhaust = "None",
evaporative = "PCV",
mileage,
pol,
details = FALSE

)

Arguments

description Character; "Auto/Sml Truck" "Truck/Bus" or"Sml Engine".

fuel Character; "Petrol", "NG Retrofit", "Natural Gas", "Prop Retro.", "Propane",
"EthOH Retrofit", "OEM Ethanol", "Diesel", "Ethanol" or "CNG/LPG".

weight Character; "Light", "Medium", "Heavy", "Lt", "Med" or "Hvy"
air_fuel_control

Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection", "2-Cycle",
"2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle"

exhaust Character: "None", "2-Way", "2-Way/EGR", "3-Way", "3-Way/EGR", "None/EGR",
"LEV", "ULEV", "SULEV", "EuroI", "EuroII", "EuroIII", "EuroIV", "Hybrid",
"Improved", "EGR+Improv", "Particulate", "Particulate/NOx", "EuroV", "High
Tech" or "Catalyst"

evaporative Character: "PCV", "PCV/Tank" or"None".

mileage Numeric; mileage of vehicle by age of use km.

pol Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection", "2-Cycle",
"2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle" #’

"VOC_gkm" "CO_gkm" "NOx_gkm" "PM_gkm"

32 ef_ldv_cold

"Pb_gkm" "SO2_gkm" "NH3_gkm" "1,3-butadiene_gkm"
"formaldehyde_gkm" "acetaldehyde_gkm" "benzene_gkm" "EVAP_gkm"

"CO2_gkm" "N20_gkm" "CH4_gkm" "VOC_gstart"
"CO_gstart" "NOx_gstart" "PM_gstart" "Pb_gstart"
"SO2_gstart" "NH3_gstart" "1,3-butadiene_gstart" "formaldehyde_gstart"

"acetaldehyde_gstart" "benzene_gstart" "EVAP_gstart" "CO2_gstart"
"N20_gstart" "CH4_gstart"

details Logical; option to see or not more information about vehicle.

Value

An emission factor by annual mileage.

References

Nicole Davis, James Lents, Mauricio Osses, Nick Nikkila, Matthew Barth. 2005. Development
and Application of an International Vehicle Emissions Model. Transportation Research Board, 81st
Annual Meeting, January 2005, Washington, D.C.

Examples

Not run:
Do not run
Passenger Cars PC
data(fkm)
cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:50))
ef_ive("Truck/Bus", mileage = mil, pol = "CO_gkm")
ef_ive(mileage = mil, pol = "CO_gkm", details = TRUE)

End(Not run)

ef_ldv_cold Cold-Start Emissions factors for Light Duty Vehicles

Description

ef_ldv_cold returns speed functions or data.frames which depends on ambient temperature aver-
age speed. The emission factors comes from the guidelines EMEP/EEA air pollutant emission in-
ventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-
guidebook

ef_ldv_cold 33

Usage

ef_ldv_cold(
v = "LDV",
ta,
cc,
f,
eu,
p,
k = 1,
show.equation = FALSE,
speed,
fcorr = rep(1, 8)

)

Arguments

v Character; Category vehicle: "LDV"

ta Numeric vector or data.frame; Ambient temperature. Monthly mean can be
used. When ta is a data.frame, one option is that the number of rows should be
the number of rows of your Vehicles data.frame. This is convenient for top-down
approach when each simple feature can be a polygon, with a monthly average
temperature for each simple feature. In this case, the number of columns can be
the 12 months.

cc Character; Size of engine in cc: "<=1400", "1400_2000" or ">2000"

f Character; Type of fuel: "G", "D" or "LPG"

eu Character or data.frame of Characters; Euro standard: "PRE", "I", "II", "III",
"IV", "V", "VI" or "VIc". When ’eu’ is a data.frame and ’ta’ is also a data.frame
both has to have the same number of rows. For instance, When you want that
each simple feature or region has a different emission standard.

p Character; Pollutant: "CO", "FC", "NOx", "HC" or "PM"

k Numeric; Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function.

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1

Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

See Also

fuel_corr

34 ef_ldv_cold_list

Examples

Not run:
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
show.equation = TRUE)
ef1(10)
speed <- Speed(10)
ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO", speed = speed)
lets create a matrix of ef cold at different speeds and temperatures
te <- -50:50
lf <- sapply(1:length(te), function(i){
ef_ldv_cold(ta = te[i], cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0:120))
})
filled.contour(lf, col= cptcity::lucky())
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(0))
lf <- ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(0:120))
dt <- matrix(rep(2:25,5), ncol = 12) # 12 months
ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0))
ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(34))
euros2 <- c("V", "V", "V", "IV", "IV", "IV", "III", "III")
dfe <- rbind(euros, euros2)
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0))

ef_ldv_cold(ta = dt[1:2,], cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0))
Fuel corrections
fcorr <- c(0.5,1,1,1,0.9,0.9,0.9,0.9)
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
show.equation = TRUE, fcorr = fcorr)
ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0),
fcorr = fcorr)

End(Not run)

ef_ldv_cold_list List of cold start emission factors of Light Duty Vehicles

Description

This function creates a list of functions of cold start emission factors considering different euro
emission standard to the elements of the list.

Usage

ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)

Arguments

df Dataframe with local emission factor

v Category vehicle: "LDV"

ef_ldv_scaled 35

ta ambient temperature. Montly average van be used

cc Size of engine in cc: <=1400", "1400_2000" and ">2000"

f Type of fuel: "G" or "D"

eu character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or
"VIc".

p Pollutant: "CO", "FC", "NOx", "HC" or "PM"

Value

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

Not run:
Do not run
df <- data.frame(age1 = c(1,1), age2 = c(2,2))
eu = c("I", "PRE")
l <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",
eu = "I", p = "CO")
l_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "CO")
length(l_cold)

End(Not run)

ef_ldv_scaled Scaling constant with speed emission factors of Light Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which
at a speed of the driving cycle (SDC) gives a desired value.

Usage

ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t = "4S", cc, f, eu, p)

36 ef_ldv_scaled

Arguments

df deprecated

dfcol Column of the dataframe with the local emission factors eg df$dfcol

SDC Speed of the driving cycle

v Category vehicle: "PC", "LCV", "Motorcycle" or "Moped

t Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504"
, "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S".
LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800",
"<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
Moped: "<=50". LCV : "<3.5" for gross weight.

f Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)

eu Euro standard: "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI", "VIc"

p Pollutant: "CO", "FC", "NOx", "HC" or "PM". If your pollutant dfcol is based
on fuel, use "FC", if it is based on "HC", use "HC".

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission
factor by the respective speed emissions factor at the speed representative of the local emission
factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12
km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle.
Thanks to Glauber Camponogara for the help.

See Also

ef_ldv_seed

Examples

Not run:
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
lef <- ef_ldv_scaled(dfcol = co1$PC_G, v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = co1$Euro_LDV, p = "CO")
length(lef)
lef[[1]](40) # First element of the lit of speed functions at 40 km/h
lef[[36]](50) # 36th element of the lit of speed functions at 50 km/h
plot(x = 0:150, y = lef[[36]](0:150), col = "red", type = "b", ylab = "[g/km]",

ef_ldv_speed 37

pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of oldest vehicle")
plot(x = 0:150, y = lef[[1]](0:150), col = "blue", type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",
main = "Variation of emissions with speed of newest vehicle")

End(Not run)

ef_ldv_speed Emissions factors for Light Duty Vehicles and Motorcycles

Description

ef_ldv_speed returns speed dependent emission factors, data.frames or list of emission factors.
The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guide-
book http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage

ef_ldv_speed(
v,
t = "4S",
cc,
f,
eu,
p,
x,
k = 1,
speed,
show.equation = FALSE,
fcorr = rep(1, 8)

)

Arguments

v Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped

t Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503",
"ECE_1504" , "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S"
or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
"<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750",
">=750". Moped: "<=50". LCV : "<3.5" for gross weight.

f Character; type of fuel: "G", "D", "LPG" or "FH" (Gasoline Full Hybrid). Full
hybrid vehicles cannot be charged from the grid and recharge; only its own
engine may recharge tis batteries.

38 ef_ldv_speed

eu Character or data.frame of characters; euro standard: "PRE", "I", "II", "III",
"III+DPF", "IV", "V", "VI" or "VIc". When the pollutan is active surface or
number of particles, eu can also be "III+DISI"

p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also
polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs),
and Number of particles and Active Surface.

x Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in
fuel in ppm.

k Numeric; multiplication factor

speed Numeric; Speed to return Number of emission factor and not a function.

show.equation Logical; option to see or not the equation parameters.

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1

Details

The argument of this functions have several options which results in different combinations that
returns emission factors. If a combination of any option is wrong it will return an empty value.
Therefore, it is important ti know the combinations.

Value

An emission factor function which depends of the average speed V g/km

Note

t = "ALL" and cc == "ALL" works for several pollutants because emission fators are the same.
Some exceptions are with NOx and FC because size of engine.

Hybrid cars: the only cover "PC" and according to EMEP/EEA air pollutant emission inventory
guidebook 2016 (Ntziachristos and Samaras, 2016) only for euro IV. When new literature is avail-
able, I will update these factors.

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb", "FC".

Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): "indeno(1,2,3-cd)pyrene", "benzo(k)fluoranthene", "benzo(b)fluoranthene",
"benzo(ghi)perylene", "fluoranthene", "benzo(a)pyrene", "pyrene", "perylene", "anthanthrene", "benzo(b)fluorene",
"benzo(e)pyrene", "triphenylene", "benzo(j)fluoranthene", "dibenzo(a,j)anthacene", "dibenzo(a,l)pyrene",
"3,6-dimethyl-phenanthrene", "benzo(a)anthracene", "acenaphthylene", "acenapthene", "chrysene",
"phenanthrene", "napthalene", "anthracene", "coronene", "dibenzo(ah)anthracene".

Dioxins and furans(g equivalent toxicity / km): "PCDD", "PCDF" and "PCB".

Metals (g/km): "As", "Cd", "Cr", "Cu", "Hg", "Ni", "Pb", "Se", "Zn".

NMHC (g/km):

ef_ldv_speed 39

ALKANES (g/km): "ethane", "propane", "butane", "isobutane", "pentane", "isopentane", "hexane",
"heptane", "octane", "2-methylhexane", "nonane", "2-methylheptane", "3-methylhexane", "decane",
"3-methylheptane", "alkanes_C10_C12", "alkanes_C13".

CYCLOALKANES (g/km): "cycloalkanes".

ALKENES (g/km): "ethylene", "propylene", "propadiene", "1-butene", "isobutene", "2-butene",
"1,3-butadiene", "1-pentene", "2-pentene", "1-hexene", "dimethylhexene".

ALKYNES (g/km):"1-butyne", "propyne", "acetylene".

ALDEHYDES (g/km): "formaldehyde", "acetaldehyde", "acrolein", "benzaldehyde", "crotonalde-
hyde", "methacrolein", "butyraldehyde", "isobutanaldehyde", "propionaldehyde", "hexanal", "i-
valeraldehyde", "valeraldehyde", "o-tolualdehyde", "m-tolualdehyde", "p-tolualdehyde".

KETONES (g/km): "acetone", "methylethlketone".

AROMATICS (g/km): "toluene", "ethylbenzene", "m-xylene", "p-xylene", "o-xylene", "1,2,3-trimethylbenzene",
"1,2,4-trimethylbenzene", "1,3,5-trimethylbenzene", "styrene", "benzene", "C9", "C10", "C13".

Active Surface (cm2/km): "AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km): "N_urban", "N_rural", "N_highway", "N_50nm_urban", "N_50_100nm_rural",
"N_100_1000nm_highway".

The available standards for Active Surface or number of particles are Euro I, II, III, III+DPF dor
diesle and III+DISI for gasoline. Pre euro vehicles has the value of Euro I and euro IV, V, VI and
VIc the value of euro III.

See Also

fuel_corr emis ef_ldv_cold

Examples

Not run:
Passenger Cars PC
Emission factor function
V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "CO")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]", type = "b", pch = 16, col = "blue")

Quick view
pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2",
"1-butyne", "propyne")
f <- sapply(1:length(pol), function(i){
ef_ldv_speed("PC", "4S", "<=1400", "G", "PRE", pol[i], x = 10)(30)
})
f
PM Characteristics
pol <- c("AS_urban", "AS_rural", "AS_highway",
"N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
f <- sapply(1:length(pol), function(i){
ef_ldv_speed("PC", "4S", "<=1400", "D", "PRE", pol[i], x = 10)(30)

40 ef_ldv_speed

})
f
PAH POP
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "indeno(1,2,3-cd)pyrene")(10)
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "napthalene")(10)

Dioxins and Furans
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "PCB")(10)

NMHC
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "hexane")(10)

List of Copert emission factors for 40 years fleet of Passenger Cars.
Assuming a euro distribution of euro V, IV, III, II, and I of
5 years each and the rest 15 as PRE euro:
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),

rep("I", 5), rep("PRE", 15))
speed <- 25
lef <- lapply(1:40, function(i) {
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euro[i], p = "CO")
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euro[i], p = "CO", show.equation = FALSE)(25) })
to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")
euros <- c("VI", "V", "IV", "III", "II")
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euros, p = "CO")
a <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euros, p = "CO", speed = Speed(0:120))
head(a)
filled.contour(as.matrix(a)[1:10, 1:length(euros)], col = cptcity::cpt(n = 18))
filled.contour(as.matrix(a)[110:120, 1:length(euros)], col = cptcity::cpt(n = 16))
filled.contour(as.matrix(a)[, 1:length(euros)], col = cptcity::cpt(n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_viridis", n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_magma", n = 21))
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 0)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 45)
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 90)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 90+45)
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 180)
new_euro <- c("VI", "VI", "V", "V", "V")
euro <- c("V", "V", "IV", "III", "II")
old_euro <- c("III", "II", "I", "PRE", "PRE")
meuros <- rbind(new_euro, euro, old_euro)

ef_local 41

aa <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = meuros, p = "CO", speed = Speed(10:11))

Light Commercial Vehicles
V <- 0:150
ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
p = "CO")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
lef <- lapply(1:5, function(i) {
ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",

eu = euro[i], p = "CO", show.equation = FALSE)(25) })
to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")

Motorcycles
V <- 0:150
ef1 <- ef_ldv_speed(v = "Motorcycle",t = "4S", cc = "<=250", f = "G",
eu = "PRE", p = "CO",show.equation = TRUE)
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
euro for motorcycles
eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))
lef <- lapply(1:30, function(i) {
ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
eu = eurom[i], p = "CO",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")
a <- ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
eu = eurom, p = "CO", speed = Speed(0:125))
a$speed <- NULL
filled.contour(as.matrix(a), col = cptcity::lucky(),
xlab = "Speed", ylab = "Age")
persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Euros",
zlab = "CO [g/km]", col = cptcity::lucky(), phi = 25)

End(Not run)

ef_local Local Emissions factors

Description

ef_local process an data.frame delivered by the user, but adding similar funcionality and argu-
ments as ef_cetesb, which are classification, filtering and projections

42 ef_local

Usage

ef_local(
p,
veh,
year = 2017,
agemax = 40,
ef,
full = FALSE,
project = "constant",
verbose = TRUE

)

Arguments

p Character; pollutant delivered by the user. the name of the column of the data.frame
must be Pollutant.

veh Character; Vehicle categories available in the data.frame provided by the user

year Numeric; Filter the emission factor to start from a specific base year. If project
is ’constant’ values above 2017 and below 1980 will be repeated

agemax Integer; age of oldest vehicles for that category

ef data.frame, for local the emission factors. The names of the ef must be ‘Age‘
‘Year‘ ‘Pollutant‘ and all the vehicle categories...

full Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian
emissions standards and its euro equivalents.

project Character showing the method for projecting emission factors in future. Cur-
rently the only value is "constant"

verbose Logical; To show more information

Details

returns a vector or data.frame of Brazilian emission factors.

Value

A vector of Emission Factor or a data.frame

Note

The names of the ef must be ‘Age‘ ‘Year‘ ‘Pollutant‘ and all the vehicle categories...

See Also

ef_cetesb

ef_nitro 43

Examples

Not run:
#do not run

End(Not run)

ef_nitro Emissions factors of N2O and NH3

Description

ef_nitro returns emission factors as a functions of acondumulated mileage. The emission factors
comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_nitro(
v,
t = "Hot",
cond = "Urban",
cc,
f,
eu,
p = "NH3",
S = 10,
cumileage,
k = 1,
show.equation = FALSE,
fcorr = rep(1, 8)

)

Arguments

v Category vehicle: "PC", "LCV", "Motorcycles_2S", "Motorcycles", "Trucks",
"Trucks-A", "Coach" and "BUS"

t Type: "Cold" or "Hot"

cond "Urban", "Rural", "Highway"

cc PC: "<=1400", "1400_2000", ">2000". LCV: "<3.5". Motorcycles: ">=50",
Motorcycles_2S, "<50", ">=50". Trucks: ">3.5", "7.5_12", "12_28", "28_34".
Trucks_A: ">34". BUS: "<=15", ">15 & <= 18". Coach: "<=18", ">18"

f Type of fuel: "G", "D" or "LPG"

eu Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI", "VIc"

p Pollutant: "N2O", "NH3"

S Sulphur (ppm). Number.

44 ef_wear

cumileage Numeric; Acondumulated mileage to return number of emission factor and not
a function.

k Multiplication factor

show.equation Option to see or not the equation parameters

fcorr Numeric; Correction by by euro technology.

Value

an emission factor function which depends on the acondumulated mileage, or an EmissionFactor

Note

if length of eu is bigger than 1, cumileage can have values of length 1 or length equal to length of
eu

Examples

Not run:
efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10,
show.equation = FALSE)
efe50 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 50,
show.equation = TRUE)
efe10(10)
efe50(10)
efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10, cumileage = units::set_units(25000, "km"))

End(Not run)

ef_wear Emissions factors from tyre, break and road surface wear

Description

ef_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

ef_wear(wear, type, pol = "TSP", speed, load = 0.5, axle = 2)

ef_whe 45

Arguments

wear Character; type of wear: "tyre", "break" and "road"

type Character; type of vehicle: "2W", "PC", "LCV", ’HDV"

pol Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PM0.1"

speed Data.frame of speeds

load Load of the HDV

axle Number of axle of the HDV

Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

Examples

Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, alpha = 1)
ef <- ef_wear(wear = "tyre", type = "PC", pol = "PM10", speed = df)

End(Not run)

ef_whe Emission factor that incorporates the effect of high emitters

Description

ef_whe return weighted emission factors of vehicles considering that one part of the fleet has a
normal deterioration and another has a deteriorated fleet that would be rejected in a inspection and
mantainence program but it is still in circulation. This emission factor might be applicable in cities
without a inspection and mantainence program and with Weighted emission factors considering that
part of the fleet are high emitters.

Usage

ef_whe(efhe, phe, ef)

46 emis

Arguments

efhe Numeric; Emission factors of high emitters vehicles. This vehicles would be
rejected in a inspection and mantainnence program.

phe Numeric; Percentage of high emitters.

ef Numeric; Emission factors deteriorated vehicles under normal conditions. These
vehicles would be approved in a inspection and mantainence program.

Value

An emission factor by annual mileage.

Examples

Not run:
Do not run
Let's say high emitter is 5 times the normal ef.
co_efhe <- ef_cetesb(p = "COd", "PC_G") * 5
Let's say that the perfil of high emitters increases linearly
till 30 years and after that percentage is constant
perc <- c(seq(0.01, 0.3, 0.01), rep(0.3, 20))
Now, lets use our ef with normal deterioration
co_ef_normal <- ef_cetesb(p = "COd", "PC_G")
efd <- ef_whe(efhe = co_efhe, phe = perc, ef = co_ef_normal)
now, we can plot the three ef
plot(co_efhe)
lines(co_ef_normal, pch = 16, col = "red")
lines(efd, pch = 16, col = "blue")

End(Not run)

emis Estimation of emissions

Description

emis estimates vehicular emissions as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed. E = V EH ∗ LENGTH ∗ EF (speed)

Usage

emis(
veh,
lkm,
ef,
speed,
agemax = ifelse(is.data.frame(veh), ncol(veh), ncol(veh[[1]])),
profile,

emis 47

simplify = FALSE,
fortran = FALSE,
hour = nrow(profile),
day = ncol(profile),
verbose = FALSE

)

Arguments

veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link. If this is a list, the length of the
list is the vehicles for each hour.

lkm Length of each link in km

ef List of functions of emission factors

speed Speed data-frame with number of columns as hours. The default value is 34km/h

agemax Age of oldest vehicles for that category

profile Dataframe or Matrix with nrows equal to 24 and ncol 7 day of the week

simplify Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

fortran Logical; to try the fortran calculation when speed is not used. I will add fortran
for EmissionFactorsList soon.

hour Number of considered hours in estimation. Default value is number of rows of
argument profile

day Number of considered days in estimation

verbose Logical; To show more information

Value

If the user applies a top-down approach, the resulting units will be according its own data. For
instance, if the vehicles are veh/day, the units of the emissions implicitly will be g/day.

Note

Hour and day will be deprecated because they can be infered from the profile matrix.

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(profiles)
data(fe2015)
data(fkm)

48 emis

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")

Estimation for morning rush hour and local emission factors and speed
speed <- data.frame(S8 = net$ps)
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
system.time(E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed))
system.time(E_CO_2 <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, simplify = TRUE))
identical(E_CO, E_CO_2)

Estimation for morning rush hour and local emission factors without speed
lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))
system.time(E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef))
system.time(E_CO_2 <- emis(veh = pc1,lkm = net$lkm, ef = lef, fortran = TRUE))
identical(E_CO, E_CO_2)

Estimation for 168 hour and local factors and speed
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
system.time(
E_CO <- emis(veh = pc1,

lkm = net$lkm,
ef = lef,
speed = speed,
profile = profiles$PC_JUNE_2014))

system.time(
E_CO_2 <- emis(veh = pc1,

lkm = net$lkm,
ef = lef,
speed = speed,
profile = profiles$PC_JUNE_2014,
simplify = TRUE))

Estimation for 168 hour and local factors and without speed
lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))
system.time(
E_CO <- emis(veh = pc1,

lkm = net$lkm,
ef = lef,
profile = profiles$PC_JUNE_2014)) ; sum(E_CO)

system.time(
E_CO_2 <- emis(veh = pc1,

lkm = net$lkm,
ef = lef,
profile = profiles$PC_JUNE_2014,
fortran = TRUE)) ; sum(E_CO)

system.time(
E_CO_3 <- emis(veh = pc1,

lkm = net$lkm,

emis 49

ef = lef,
profile = profiles$PC_JUNE_2014,
simplify = TRUE)) ; sum(E_CO)

system.time(
E_CO_4 <- emis(veh = pc1,

lkm = net$lkm,
ef = lef,
profile = profiles$PC_JUNE_2014,
simplify = TRUE,
fortran = TRUE)) ; sum(E_CO)

identical(round(E_CO, 2), round(E_CO_2, 2))
identical(round(E_CO_3, 2), round(E_CO_4, 2))
identical(round(E_CO_3[,,1], 2), round(E_CO_4[,,1], 2))
dim(E_CO_3)
dim(E_CO_4)
but
a <- unlist(lapply(1:41, function(i){

unlist(lapply(1:168, function(j) {
identical(E_CO_3[, i, j], E_CO_4[, i, j])
}))}))

unique(a)

#Estimation with list of vehicles
lpc <- list(pc1, pc1)
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed)

top down
veh <- age_ldv(x = net$ldv[1:4], name = "PC_E25_1400", agemax = 4)
mil <- fkm$KM_PC_E25(1:4)
ef <- ef_cetesb("COd", "PC_G")[1:4]
emis(veh, units::set_units(mil, "km"), ef)

group online
bus1 <- age_hdv(30, agemax = 4)
veh = bus1
lkm = units::set_units(400, "km")
speed = 40
efco <- ef_cetesb("COd", "UB", agemax = 4)
lef <- ef_hdv_scaled(dfcol = as.numeric(efco),

v = "Ubus",
t = "Std",
g = ">15 & <=18",
eu = rep("IV", 4),
gr = 0,
l = 0.5,
p = "CO")

for(i in 1:length(lef)) print(lef[[i]](10))
(a <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE))
(b <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE, fortran = TRUE))

End(Not run)

50 EmissionFactors

EmissionFactors Construction function for class "EmissionFactors"

Description

EmissionFactors returns a tranformed object with class "EmissionFactors" and units g/km.

Usage

EmissionFactors(x, ...)

S3 method for class 'EmissionFactors'
print(x, ...)

S3 method for class 'EmissionFactors'
summary(object, ...)

S3 method for class 'EmissionFactors'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object Object with class "EmissionFactors"

Value

Objects of class "EmissionFactors" or "units"

Examples

Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactors(df)
class(ef1)
summary(ef1)
plot(ef1)
print(ef1)

End(Not run)

EmissionFactorsList 51

EmissionFactorsList Construction function for class "EmissionFactorsList"

Description

EmissionFactorsList returns a tranformed object with class"EmissionsFactorsList".

Usage

EmissionFactorsList(x, ...)

S3 method for class 'EmissionFactorsList'
print(x, ..., default = FALSE)

S3 method for class 'EmissionFactorsList'
summary(object, ...)

S3 method for class 'EmissionFactorsList'
plot(x, ...)

Arguments

x Object with class "list"

... ignored

default Logical value. When TRUE prints default list, when FALSE prints messages
with description of list

object Object with class "EmissionFactorsList"

Value

Objects of class "EmissionFactorsList"

Examples

Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)
class(ef1)
length(ef1)
length(ef1[[1]])
summary(ef1)
ef1

End(Not run)

52 Emissions

Emissions Construction function for class "Emissions"

Description

Emissions returns a tranformed object with class "Emissions". The type of objects supported are
of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function
returns a dataframe.

Usage

Emissions(x, time, ...)

S3 method for class 'Emissions'
print(x, ...)

S3 method for class 'Emissions'
summary(object, ...)

S3 method for class 'Emissions'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

time Character to be the time units as denominator, eg "1/h"

... ignored

object object with class "Emissions"

Value

Objects of class "Emissions" or "units"

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

EmissionsArray 53

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::as_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)
dim(E_CO) # streets x vehicle categories x hours x days
class(E_CO)
plot(E_CO)
####
Emissions(1, time = "1/h")

End(Not run)

EmissionsArray Construction function for class "EmissionsArray"

Description

EmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimensios.

Usage

EmissionsArray(x, ...)

S3 method for class 'EmissionsArray'
print(x, ...)

S3 method for class 'EmissionsArray'
summary(object, ...)

S3 method for class 'EmissionsArray'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object object with class "EmissionsArray’

Value

Objects of class "EmissionsArray"

54 emis_chem

Note

Future version of this function will return an Array of 3 dimensions.

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)
class(E_CO)
summary(E_CO)
E_CO
plot(E_CO)
lpc <- list(pc1, pc1)
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 2, day = 1)

End(Not run)

emis_chem Aggregate emissions by lumped groups in chemical mechanism

Description

emis_chem aggregates emissions by chemical mechanism and convert grams to mol. This function
reads all hydrocarbos and respective criteria polluants specified in ef_ldv_speed and ef_hdv_speed.

Usage

emis_chem(dfe, mechanism, colby, long = FALSE)

emis_chem 55

Arguments

dfe data.frame with column ‘emissions‘ in grams and ‘pollutant‘ in long format. It
is supposed that each line is the pollution of some region. Then the ‘coldby‘
argument is for include the name of the region.

mechanism Character, "RADM2_SORG", "CBMZ_MOSAIC", "CPTEC", "GOCART_CPTEC",
"MOZEM", "MOZCEM", "CAMMAM", "MOZMEM", "MOZC_T1_EM", "CB05_OPT1"
or "CB05_OPT2"

colby Character indicating column name for aggregating extra column. For instance,
region or province.

long Logical. Do you want data in long format?

Value

data.frame with lumped groups by chemical mechanism. It transform emissions in grams to mol.

Note

This feature is experimental and the mapping of pollutants and lumped species may change in fu-
ture. This function is converting the intial data.frame input into data.table. To have a comprehensive
speciation is necessary enter with a data.frame with colum ’emission’ in long format including an-
other column named ’pollutant’ with species of NMHC, CO, NO, NO2, NH3, SO2, PM2.5 and
coarse PM10.

Groups derived from gases has units ’mol’ and from aersols ’g’. The aersol units for WRF-Chem
are ug/m^2/s while for CMAQ and CAMx are g/s. So, leaving the units just in g, allow to make
further change while providing flexibility for several models. TODO: Enter with wide data.frame,
with each line as a each street, each column for pollutant

See Also

ef_ldv_speed ef_hdv_speed speciate ef_evap

Examples

Not run:
CO
df <- data.frame(emission = Emissions(1:10))
df$pollutant = "CO"
emis_chem(df, "CBMZ_MOSAIC")
hexanal
df$pollutant = "hexanal"
emis_chem(df, "CBMZ_MOSAIC")
propadiene and NO2
df2 <- df1 <- df
df1$pollutant = "propadiene"
df2$pollutant = "NO2"
(dfe <- rbind(df1, df2))
emis_chem(dfe, "CBMZ_MOSAIC")
dfe$region <- rep(letters[1:2], 10)
emis_chem(dfe, "CBMZ_MOSAIC", "region")

56 emis_cold

emis_chem(dfe, "CBMZ_MOSAIC", "region", TRUE)

End(Not run)

emis_cold Estimation of cold start emissions hourly for the of the week

Description

emis_cold emissions are estimated as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed.The estimation considers beta parameter, the frac-
tion of mileage driven

Usage

emis_cold(
veh,
lkm,
ef,
efcold,
beta,
speed = 34,
agemax = if (!inherits(x = veh, what = "list")) { ncol(veh) } else {
ncol(veh[[1]]) },

profile,
simplify = FALSE,
hour = nrow(profile),
day = ncol(profile),
array = TRUE,
verbose = FALSE

)

Arguments

veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link

lkm Length of each link

ef List of functions of emission factors of vehicular categories

efcold List of functions of cold start emission factors of vehicular categories

beta Datraframe with the hourly cold-start distribution to each day of the period.
Number of rows are hours and columns are days

speed Speed data-frame with number of columns as hours

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

emis_cold 57

simplify Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

hour Number of considered hours in estimation

day Number of considered days in estimation

array Deprecated! emis_cold returns only arrays. When TRUE and veh is not a list,
expects a profile as a dataframe producing an array with dimensions (streets x
columns x hours x days)

verbose Logical; To show more information

Value

EmissionsArray g/h

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
data(pc_cold)
pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,
pc_cold))
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
Mohtly average temperature 18 Celcius degrees
lefec <- ef_ldv_cold_list(df = co1, ta = 18, cc = "<=1400", f = "G",

eu = co1$Euro_LDV, p = "CO")
lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],

lefec[length(lefec)], lefec[length(lefec)],
lefec[length(lefec)])

length(lefec) == ncol(pc1)
#emis change length of 'ef' to match ncol of 'veh'
class(lefec)

58 emis_cold_td

PC_CO_COLD <- emis_cold(veh = pc1,
lkm = net$lkm,
ef = lef,
efcold = lefec,
beta = pcf,
speed = speed,
profile = pc_profile)

class(PC_CO_COLD)
plot(PC_CO_COLD)
lpc <- list(pc1, pc1)
PC_CO_COLDv2 <- emis_cold(veh = pc1,

lkm = net$lkm,
ef = lef,
efcold = lefec,
beta = pcf,
speed = speed,
profile = pc_profile,
hour = 2,
day = 1)

End(Not run)

emis_cold_td Estimation of cold start emissions with top-down approach

Description

emis_cold_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row
of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This funcion, as other in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage

emis_cold_td(
veh,
lkm,
ef,
efcold,
beta,
pro_month,
params,
verbose = FALSE,
fortran = FALSE

)

emis_cold_td 59

Arguments

veh "Vehicles" data-frame or spatial feature, wwhere columns are the age distribu-
tion of that vehicle. and rows each simple feature or region. The number of rows
is equal to the number of streets link

lkm Numeric; mileage by the age of use of each vehicle.

ef Numeric; emission factor with

efcold Data.frame. When it is a data.frame, each column is for each type of vehicle by
age of use, rows are are each simple feature. When you have emission factors
for each month, the order should a data.frame ina long format, as rurned by
ef_ldv_cold.

beta Data.frame with the fraction of cold starts. The rows are the fraction for each
spatial feature or subregion, the columns are the age of use of vehicle.

pro_month Numeric; montly profile to distribuite annual mileage in each month.

params List of parameters; Add columns with information to returning data.frame

verbose Logical; To show more information

fortran Logical; to try the fortran calculation.

Value

Emissions data.frame

See Also

ef_ldv_cold

Examples

Not run:
Do not run
veh <- age_ldv(1:10, agemax = 8)
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
dt <- matrix(rep(2:25,5), ncol = 12, nrow = 10) # 12 months, 10 rows
row.names(dt) <- paste0("Simple_Feature_", 1:10)
efc <- ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(34))
efh <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euros, p = "CO", speed = Speed(runif(nrow(veh), 15, 40)))
lkm <- units::as_units(18:11, "km")*1000
cold_lkm <- cold_mileage(ltrip = units::as_units(20, "km"), ta = celsius(dt))
names(cold_lkm) <- paste0("Month_", 1:12)
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(
a <- emis_cold_td(veh = veh,

lkm = lkm,
ef = efh[1,],
efcold = efc[1:10,],
beta = cold_lkm[,1],
verbose = TRUE))

system.time(

60 emis_det

a2 <- emis_cold_td(veh = veh,
lkm = lkm,
ef = efh[1,],
efcold = efc[1:10,],
beta = cold_lkm[,1],
verbose = TRUE,
fortran = TRUE)) # emistd2coldf.f95

a$emissions <- round(a$emissions, 8)
a2$emissions <- round(a2$emissions, 8)
identical(a, a2)

Adding parameters
emis_cold_td(veh = veh,

lkm = lkm,
ef = efh[1,],
efcold = efc[1:10,],
beta = cold_lkm[,1],
verbose = TRUE,
params = list(paste0("data_", 1:10),

"moredata"))
system.time(
aa <- emis_cold_td(veh = veh,

lkm = lkm,
ef = efh,
efcold = efc,
beta = cold_lkm,
pro_month = veh_month,
verbose = TRUE))

system.time(
aa2 <- emis_cold_td(veh = veh,

lkm = lkm,
ef = efh,
efcold = efc,
beta = cold_lkm,
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE)) # emistd5coldf.f95

aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

End(Not run)

emis_det Determine deterioration factors for urban conditions

Description

emis_det returns deterioration factors. The emission factors comes from the guidelines for develop-
ing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-

emis_det 61

eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emis-
sion factors with each argument

Usage

emis_det(
po,
cc,
eu,
speed = Speed(18.9),
km,
verbose = FALSE,
show.equation = FALSE

)

Arguments

po Character; Pollutant "CO", "NOx" or "HC"

cc Character; Size of engine in cc converin "<=1400", "1400_2000" or ">2000"

eu Character; Euro standard: "I", "II", "III", "III", "IV", "V", "VI", "VIc"

speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h

km Numeric; accumulated mileage in km.

verbose Logical; To show more information

show.equation Option to see or not the equation parameters

Value

It returns a numeric vector representing the increase in emissions due to normal deterioring

Note

The deterioration factors functions are available for technologies euro "II", "III" and "IV". In order
to cover all euro technologies, this function assumes that the deterioration function of "III" and
"IV" applies for "V", "VI" and "VIc". However, as these technologies are relative new, accumulated
milage is low and hence, deteerioration factors small.

Examples

Not run:
data(fkm)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
km <- units::set_units(pckma[1:11], km)
length eu = length km = 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], show.equation = TRUE)
length eu = length km = 1, length speed > 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], speed = Speed(1:10))
length km != length eu error
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(30),

62 emis_dist

km = km[4]))
length eu = 1 length km > 1
emis_det(po = "CO", cc = "<=1400", eu = "III", km = km)
length eu = 2, length km = 2 (if different length, error!)
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), km = km[4:5]))
length eu = 2, length km = 2, length speed > 1
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(0:130),
km = km[4:5]))
euros <- c("V","V","V", "IV", "IV", "IV", "III", "III", "III", "III")
length eu = 2, length km = 2, length speed > 1
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, speed = Speed(1:100),
km = km[1:10]))
cod1 <- as.matrix(cod1[, 1:11])
filled.contour(cod1, col = cptcity::cpt(6277, n = 20))
filled.contour(cod1, col = cptcity::lucky(n = 19))
euro <- c(rep("V", 5), rep("IV", 5), "III")
euros <- rbind(euro, euro)
(cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, km = km))

End(Not run)

emis_dist Allocate emissions into spatial objects (street emis to grid)

Description

emis_dist allocates emissions proportionally to each feature. "Spatial" objects are converter to
"sf" objects. Currently, ’LINESTRING’ or ’MULTILINESTRING’ supported. The emissions are
distributed in each street.

Usage

emis_dist(gy, spobj, pro, osm, verbose = FALSE)

Arguments

gy Numeric; a unique total (top-down)

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".

pro Matrix or data-frame profiles, for instance, pc_profile.

osm Numeric; vector of length 5, for instance, c(5, 3, 2, 1, 1). The first element
covers ’motorway’ and ’motorway_link. The second element covers ’trunk’ and
’trunk_link’. The third element covers ’primary’ and ’primary_link’. The fourth
element covers ’secondary’ and ’secondary_link’. The fifth element covers ’ter-
tiary’ and ’tertiary_link’.

verbose Logical; to show more info.

emis_evap 63

Note

When spobj is a ’Spatial’ object (class of sp), they are converted into ’sf’.

Examples

Not run:
data(net)
data(pc_profile)
po <- 1000
t1 <- emis_dist(gy = po, spobj = net)
head(t1)
sum(t1$gy)
#t1 <- emis_dist(gy = po, spobj = net, osm = c(5, 3, 2, 1, 1))
t1 <- emis_dist(gy = po, spobj = net, pro = pc_profile)

End(Not run)

emis_evap Estimation of evaporative emissions

Description

emis_evap estimates evaporative emissions from EMEP/EEA emisison guidelines

Usage

emis_evap(
veh,
x,
ed,
hotfi,
hotc,
warmc,
carb = 0,
p,
params,
pro_month,
verbose = FALSE

)

Arguments

veh Numeric or data.frame of Vehicles with untis ’veh’.
x Numeric which can be either, daily mileage by age of use with units ’lkm’,

number of trips or number of proc. When it has units ’lkm’, all the emission
factors must be in ’g/km’. When ed is in g/day, x it is the number of days
(without units). When hotfi, hotc or warmc are in g/trip, x it is the number of
trips (without units). When hotfi, hotc or warmc are in g/proced, x it is the
number of proced (without units).

64 emis_evap

ed average daily evaporative emisisons. If x has units ’lkm’, the units of ed must
be ’g/km’, other case, this are simply g/day (without units).

hotfi average hot running losses or soak evaporative factor for vehicles with fuel in-
jection and returnless fuel systems. If x has units ’lkm’, the units of ed must be
’g/km’, other case, this are simply g/trip or g/proced

hotc average running losses or soak evaporative factor for vehicles with carburator or
fuel return system for vehicles with fuel injection and returnless fuel systems. If
x has units ’lkm’, the units of ed must be ’g/km’,

warmc average cold and warm running losses or soak evaporative factor for vehicles
with carburator or fuel return system for vehicles with fuel injection and return-
less fuel systems. If x has units ’lkm’, the units of ed must be ’g/km’,

carb fraction of gasoline vehicles with carburator or fuel return system.

p Fraction of trips finished with hot engine

params Character; Add columns with information to returning data.frame

pro_month Numeric; montly profile to distribuite annual mileage in each month.

verbose Logical; To show more information

Value

numeric vector of emission estimation in grams

Note

When veh is a "Vehicles" data.frame, emission factors are evaluated till the number of columns of
veh. For instance, if the length of the emision factor is 20 but the number of columns of veh is 10,
the 10 first emission factors are used.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

See Also

ef_evap

Examples

Not run:
(a <- Vehicles(1:10))
(lkm <- units::as_units(1:10, "km"))
(ef <- EmissionFactors(1:10))
(ev <- emis_evap(veh = a, x = lkm, hotfi = ef))

End(Not run)

emis_evap2 65

emis_evap2 Estimation of evaporative emissions 2

Description

emis_evap performs the estimation of evaporative emissions from EMEP/EEA emisison guidelines
with Tier 2.

Usage

emis_evap2(
veh,
name,
size,
fuel,
aged,
nd4,
nd3,
nd2,
nd1,
hs_nd4,
hs_nd3,
hs_nd2,
hs_nd1,
rl_nd4,
rl_nd3,
rl_nd2,
rl_nd1,
d_nd4,
d_nd3,
d_nd2,
d_nd1

)

Arguments

veh Total number of vehicles by age of use. If is a lsit of ’Vehicles’ data-frames, it
will sum the columns of the eight element of the list representing the 8th hour.
It was chosen this hour because it is morning rush hour but the user can adapt
the data to this function

name Character of type of vehicle

size Character of size of vehicle

fuel Character of fuel of vehicle

aged Age distribution vector. E.g.: 1:40

nd4 Number of days with temperature between 20 and 35 celcius degrees

66 emis_evap2

nd3 Number of days with temperature between 10 and 25 celcius degrees

nd2 Number of days with temperature between 0 and 15 celcius degrees

nd1 Number of days with temperature between -5 and 10 celcius degrees

hs_nd4 average daily hot-soak evaporative emissions for days with temperature between
20 and 35 celcius degrees

hs_nd3 average daily hot-soak evaporative emissions for days with temperature between
10 and 25 celcius degrees

hs_nd2 average daily hot-soak evaporative emissions for days with temperature between
0 and 15 celcius degrees

hs_nd1 average daily hot-soak evaporative emissions for days with temperature between
-5 and 10 celcius degrees

rl_nd4 average daily running losses evaporative emissions for days with temperature
between 20 and 35 celcius degrees

rl_nd3 average daily running losses evaporative emissions for days with temperature
between 10 and 25 celcius degrees

rl_nd2 average daily running losses evaporative emissions for days with temperature
between 0 and 15 celcius degrees

rl_nd1 average daily running losses evaporative emissions for days with temperature
between -5 and 10 celcius degrees

d_nd4 average daily diurnal evaporative emissions for days with temperature between
20 and 35 celcius degrees

d_nd3 average daily diurnal evaporative emissions for days with temperature between
10 and 25 celcius degrees

d_nd2 average daily diurnal evaporative emissions for days with temperature between
0 and 15 celcius degrees

d_nd1 average daily diurnal evaporative emissions for days with temperature between
-5 and 10 celcius degrees

Value

dataframe of emission estimation in grams/days

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

Not run:
data(net)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

emis_grid 67

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
ef1 <- ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
dfe <- emis_evap2(veh = pc1,

name = "PC",
size = "<=1400",
fuel = "G",
aged = 1:ncol(pc1),
nd4 = 10,
nd3 = 4,
nd2 = 2,
nd1 = 1,
hs_nd4 = ef1*1:ncol(pc1),
hs_nd3 = ef1*1:ncol(pc1),
hs_nd2 = ef1*1:ncol(pc1),
hs_nd1 = ef1*1:ncol(pc1),
d_nd4 = ef1*1:ncol(pc1),
d_nd3 = ef1*1:ncol(pc1),
d_nd2 = ef1*1:ncol(pc1),
d_nd1 = ef1*1:ncol(pc1),
rl_nd4 = ef1*1:ncol(pc1),
rl_nd3 = ef1*1:ncol(pc1),
rl_nd2 = ef1*1:ncol(pc1),
rl_nd1 = ef1*1:ncol(pc1))

lpc <- list(pc1, pc1, pc1, pc1,
pc1, pc1, pc1, pc1)

dfe <- emis_evap2(veh = lpc,
name = "PC",
size = "<=1400",
fuel = "G",
aged = 1:ncol(pc1),
nd4 = 10,
nd3 = 4,
nd2 = 2,
nd1 = 1,
hs_nd4 = ef1*1:ncol(pc1),
hs_nd3 = ef1*1:ncol(pc1),
hs_nd2 = ef1*1:ncol(pc1),
hs_nd1 = ef1*1:ncol(pc1),
d_nd4 = ef1*1:ncol(pc1),
d_nd3 = ef1*1:ncol(pc1),
d_nd2 = ef1*1:ncol(pc1),
d_nd1 = ef1*1:ncol(pc1),
rl_nd4 = ef1*1:ncol(pc1),
rl_nd3 = ef1*1:ncol(pc1),
rl_nd2 = ef1*1:ncol(pc1),
rl_nd1 = ef1*1:ncol(pc1))

End(Not run)

emis_grid Allocate emissions into a grid returning point emissions or flux

68 emis_grid

Description

emis_grid allocates emissions proportionally to each grid cell. The process is performed by inter-
section between geometries and the grid. It means that requires "sr" according with your location
for the projection. It is assumed that spobj is a Spatial*DataFrame or an "sf" with the pollutants in
data. This function returns an object of class "sf".

It is

Usage

emis_grid(spobj = net, g, sr, type = "lines", FN = "sum", flux = TRUE, k = 1)

Arguments

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".

g A grid with class "SpatialPolygonsDataFrame" or "sf".

sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.

type type of geometry: "lines", "points" or "polygons".

FN Character indicating the function. Default is "sum"

flux Logical, if TRUE, it return flux (mass / area / time (implicit)) in a polygon grid,
if false, mass / time (implicit) as points, in a similar fashion as EDGAR provide
data.

k Numeric to multiply emissions

Note

1) If flux = TRUE (default), emissions are flux = mass / area / time (implicit), as polygons. If
flux = FALSE, emissions are mass / time (implicit), as points. Time untis are not displayed
because each use can have different time units for instance, year, month, hour second, etc.
2) Therefore, it is good practice to have time units in ’spobj’. This implies that spobj MUST
include units!.
3) In order to check the sum of the emissions, you must calculate the grid-area in km^2 and
multiply by each column of the resulting emissions grid, and then sum.

Examples

Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
netsf <- sf::st_as_sf(net)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983)
plot(netg["ldv"], axes = TRUE)
plot(netg["hdv"], axes = TRUE)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983, FN = "mean")
plot(netg["ldv"], axes = TRUE)

emis_hot_td 69

plot(netg["hdv"], axes = TRUE)
netg <- emis_grid(spobj = netsf[, c("ldv", "hdv")], g = g, sr= 31983, flux = FALSE)
plot(netg["ldv"], axes = TRUE, pch = 16,
pal = cptcity::cpt(colorRampPalette= TRUE, rev = TRUE), cex = 3)

End(Not run)

emis_hot_td Estimation of hot exhaust emissions with top-down approach

Description

emis_hot_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row
of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This funcion, as other in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage

emis_hot_td(veh, lkm, ef, pro_month, params, verbose = FALSE, fortran = FALSE)

Arguments

veh "Vehicles" data-frame or spatial feature, where columns are the age distribution
of that vehicle. and rows each simple feature or region.

lkm Numeric; mileage by the age of use of each vehicle.

ef Numeric or data.frame; emission factors. When it is a data.frame number of
rows can be for each region, or also, each region repeated along 12 months. For
instance, if you have 10 regions the number of rows of ef can also be 120 (10 *
120). when you have emission factors that varies with month, see ef_china.

pro_month Numeric or data.frame; montly profile to distribuite annual mileage in each
month. When it is a data.frame, each region (row) can have a different monthly
profile.

params List of parameters; Add columns with information to returning data.frame

verbose Logical; To show more information

fortran Logical; to try the fortran calculation.

Value

Emissions data.frame

See Also

ef_ldv_speed ef_china

70 emis_hot_td

Examples

Not run:
Do not run
euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
efh <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euros, p = "CO", speed = Speed(34))
lkm <- units::as_units(c(20:13), "km")*1000
veh <- age_ldv(1:10, agemax = 8)
system.time(
a <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
verbose = TRUE))

system.time(
a2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
verbose = TRUE,
fortran = TRUE)) #emistd7f.f95

identical(a, a2)

adding columns
emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
verbose = TRUE,
params = list(paste0("data_", 1:10), "moredata"))

monthly profile (numeric) with numeric ef
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(
aa <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
pro_month = veh_month,
verbose = TRUE))

system.time(
aa2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE)) #emistd5f.f95

aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

monthly profile (numeric) with data.frame ef
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
def <- matrix(EmissionFactors(as.numeric(efh[, 1:8])),
nrow = nrow(veh), ncol = ncol(veh), byrow = TRUE)
def <- EmissionFactors(def)

emis_hot_td 71

system.time(
aa <- emis_hot_td(veh = veh,

lkm = lkm,
ef = def,
pro_month = veh_month,
verbose = TRUE))

system.time(
aa2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = def,
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE)) #emistd1f.f95

aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

monthly profile (data.frame)
dfm <- matrix(c(rep(8, 1), rep(10, 5), 9, rep(10, 5)), nrow = 10, ncol = 12,
byrow = TRUE)
system.time(
aa <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
pro_month = dfm,
verbose = TRUE))

system.time(
aa2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = EmissionFactors(as.numeric(efh[, 1:8])),
pro_month = dfm,
verbose = TRUE,
fortran = TRUE)) # emistd6f.f95

aa$emissions <- round(aa$emissions, 2)
aa2$emissions <- round(aa2$emissions, 2)
identical(aa, aa2)

Suppose that we have a EmissionsFactor data.frame with number of rows for each month
number of rows are 10 regions
number of columns are 12 months
tem <- runif(n = 6*10, min = -10, max = 35)
temp <- c(rev(tem[order(tem)]), tem[order(tem)])
plot(temp)
dftemp <- celsius(matrix(temp, ncol = 12))
dfef <- ef_evap(ef = c(rep("eshotfi", 8)),

v = "PC",
cc = "<=1400",
dt = dftemp,
show = F,
ca = "small",
ltrip = units::set_units(10, km),
pollutant = "NMHC")

dim(dfef) # 120 rows and 9 columns, 8 ef (g/km) and 1 for month

72 emis_merge

system.time(
aa <- emis_hot_td(veh = veh,

lkm = lkm,
ef = dfef,
pro_month = veh_month,
verbose = TRUE))

system.time(
aa2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = dfef,
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE)) #emistd3f.f95

aa$emissions <- round(aa$emissions, 2)
aa2$emissions <- round(aa2$emissions, 2)
identical(aa, aa2)
plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

Suppose that we have a EmissionsFactor data.frame with number of rows for each month
monthly profile (data.frame)
system.time(
aa <- emis_hot_td(veh = veh,

lkm = lkm,
ef = dfef,
pro_month = dfm,
verbose = TRUE))

system.time(
aa2 <- emis_hot_td(veh = veh,

lkm = lkm,
ef = dfef,
pro_month = dfm,
verbose = TRUE,
fortran = TRUE)) #emistd4f.f95

aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)
plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

End(Not run)

emis_merge Merge several emissions files returning data-frames or ’sf’ of lines

Description

emis_merge reads rds files and returns a data-frame or an object of ’spatial feature’ of streets,
merging several files.

emis_merge 73

Usage

emis_merge(
pol = "CO",
what = "STREETS.rds",
streets = T,
net,
FN = "sum",
ignore,
path = "emi",
crs,
under = "after",
as_list = FALSE,
k = 1

)

Arguments

pol Character. Pollutant.

what Character. Word to search the emissions names, "STREETS", "DF" or whatever
name. It is important to include the extension .’rds’. For instance, If you have
several files "XX_CO_STREETS.rds", what should be "STREETS.rds"

streets Logical. If true, emis_merge will read the street emissions created with emis_post
by "streets_wide", returning an object with class ’sf’. If false, it will read the
emissions data-frame and rbind them.

net ’Spatial feature’ or ’SpatialLinesDataFrame’ with the streets. It is expected #’
that the number of rows is equal to the number of rows of street emissions. If #’
not, the function will stop.

FN Character indicating the function. Default is "sum"

ignore Character; Which pollutants or other charavter would you like to remove?

path Character. Path where emissions are located

crs coordinate reference system in numeric format from http://spatialreference.org/
to transform/project spatial data using sf::st_transform

under "Character"; "after" when you stored your pollutant x as ’X_’ "before" when
’_X’ and "none" for merging directly the files.

as_list "Logical"; for returning the results as list or not.

k factor

Value

’Spatial feature’ of lines or a dataframe of emissions

Examples

Not run:
Do not run

74 emis_order

End(Not run)

emis_order Re-order the emission to match specific hours and days

Description

Emissions are ususally estimated for a year, 24 hours or one week from monday to sunday (with
168 hours). This depends on the availability of traffic data. When an air quality simulation is going
to be done, they cover specific periods of time. For instance, WRF Chem emissions files supports
periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem
simulation scan starts a thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions
are in local time and cover only 168 hours starting on monday. This function tries to transform our
emissions in local time to the desired utc time, by recycling the local emissions.

Usage

emis_order(
x,
lt_emissions,
start_utc_time,
desired_length,
tz_lt = Sys.timezone(),
k = 1,
net,
verbose = TRUE

)

Arguments

x one of the following:

• Spatial object of class "Spatial". Columns are hourly emissions.
• Spatial Object of class "sf". Columns are hourly emissions.
• "data.frame", "matrix" or "Emissions".

In all cases, columns are hourly emissions.

lt_emissions Local time of the emissions at first hour. It must be the before time of start_utc_time.
For instance, if start_utc_time is 2020-02-02 00:00, and your emissions starts
monday at 00:00, your lt_emissions must be 2020-01-27 00:00. The argument
tz_lt will detect your current local time zone and do the rest for you.

start_utc_time UTC time for the desired first hour. For instance, the first hour of the namelist.input
for WRF.

desired_length Integer; length to recycle or subset local emissions. For instance, the length of
the WRF Chem simulations, states at namelist.input.

emis_order 75

tz_lt Character, Time zone of the local emissions. Default value is derived from
Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this
function will show you a menu to choose one of the 697 time zones available.

k Numeric, factor.

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING".

verbose Logical, to show more information, default is TRUE.

Value

sf or data.frame

See Also

GriddedEmissionsArray

Examples

Not run:
#do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24), "km")
pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets", net = net)
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
head(E_CO_g) #class sf
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)
wCO <- emis_order(x = E_CO_g,

lt_emissions = "2020-02-19 00:00",
start_utc_time = "2020-02-20 00:00",

76 emis_order2

desired_length = 241)

End(Not run)

emis_order2 Re-order the emission to match specific hours and days

Description

Emissions are ususally estimated for a year, 24 hours or one week from monday to sunday (with
168 hours). This depends on the availability of traffic data. When an air quality simulation is going
to be done, they cover specific periods of time. For instance, WRF Chem emissions files supports
periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem
simulation scan starts a thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions
are in local time and cover only 168 hours starting on monday. This function tries to transform our
emissions in local time to the desired utc time, by recycling the local emissions.

Usage

emis_order2(
x,
lt_emissions,
start_utc_time,
desired_length,
tz_lt = Sys.timezone(),
k = 1,
net,
verbose = TRUE

)

Arguments

x one of the following:

• Spatial object of class "Spatial". Columns are hourly emissions.
• Spatial Object of class "sf". Columns are hourly emissions.
• "data.frame", "matrix" or "Emissions".

In all cases, columns are hourly emissions.

lt_emissions Local time of the emissions at first hour. It must be the before time of start_utc_time.
For instance, if start_utc_time is 2020-02-02 00:00, and your emissions starts
monday at 00:00, your lt_emissions must be 2020-01-27 00:00. The argument
tz_lt will detect your current local time zone and do the rest for you.

start_utc_time UTC time for the desired first hour. For instance, the first hour of the namelist.input
for WRF.

desired_length Integer; length to recycle or subset local emissions. For instance, the length of
the WRF Chem simulations, states at namelist.input.

emis_order2 77

tz_lt Character, Time zone of the local emissions. Default value is derived from
Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this
function will show you a menu to choose one of the 697 time zones available.

k Numeric, factor.

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING".

verbose Logical, to show more information, default is TRUE.

Value

sf or data.frame

Note

The function emis_order2 will be kept for back compatibility until version 1.0.0, where will be
superseded by emis_oder, the same function.

See Also

GriddedEmissionsArray

Examples

Not run:
#do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24), "km")
pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets", net = net)
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)

78 emis_paved

head(E_CO_g) #class sf
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)
wCO <- emis_order(x = E_CO_g,

lt_emissions = "2020-02-19 00:00",
start_utc_time = "2020-02-20 00:00",
desired_length = 241)

End(Not run)

emis_paved Estimation of resuspension emissions from paved roads

Description

emis_paved estimates vehicular emissions from paved roads. The vehicular emissions are esti-
mated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1
Paved roads. It is assumed dry hours and anual aggregation should consider moisture factor. It
depends on Average Daily Traffic (ADT)

Usage

emis_paved(
veh,
adt,
lkm,
k = 0.62,
sL1 = 0.6,
sL2 = 0.2,
sL3 = 0.06,
sL4 = 0.03,
W,
net = net

)

Arguments

veh Numeric vector with length of elements equals to number of streets It is an array
with dimenssions number of streets x hours of day x days of week

adt Numeric vector of with Average Daily Traffic (ADT)

lkm Length of each link

k K_PM30 = 3.23 (g/vkm), K_PM15 = 0.77 (g/vkm), K_PM10 = 0.62 (g/vkm)
and K_PM2.5 = 0.15 (g/vkm).

sL1 Silt loading (g/m2) for roads with ADT <= 500

sL2 Silt loading (g/m2) for roads with ADT > 500 and <= 5000

sL3 Silt loading (g/m2) for roads with ADT > 5000 and <= 1000

emis_post 79

sL4 Silt loading (g/m2) for roads with ADT > 10000

W array of dimensions of veh. It consists in the hourly averaged weight of traffic
fleet in each road

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

Value

emission estimation g/h

Note

silt values can vary a lot. For comparison:

ADT US-EPA g/m2 CENMA (Chile) g/m2
< 500 0.6 2.4
500-5000 0.2 0.7
5000-1000 0.06 0.6
>10000 0.03 0.3

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0201.pdf

CENMA Chile: Actualizacion de inventario de emisiones de contaminntes atmosfericos RM 2020
Universidad de Chile#’

Examples

Not run:
Do not run
veh <- matrix(1000, nrow = 10,ncol = 10)
W <- veh*1.5
lkm <- 1:10
ADT <-1000:1010
emi <- emis_paved(veh = veh, adt = ADT, lkm = lkm, k = 0.65, W = W)
class(emi)
head(emi)

End(Not run)

emis_post Post emissions

Description

emis_post simplify emissions estimated as total per type category of vehicle or by street. It reads
EmissionsArray and Emissions classes. It can return an dataframe with hourly emissions at each
street, or a data base with emissions by vehicular category, hour, including size, fuel and other
characteristics.

80 emis_post

Usage

emis_post(arra, veh, size, fuel, pollutant, by = "veh", net, type_emi, k = 1)

Arguments

arra Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets
x category of vehicles x hours

veh Character, type of vehicle

size Character, size or weight

fuel Character, fuel

pollutant Pollutant

by Type of output, "veh" for total vehicular category , "streets_narrow" or "streets".
"streets" returns a dataframe with rows as number of streets and columns the
hours as days*hours considered, e.g. 168 columns as the hours of a whole week
and "streets repeats the row number of streets by hour and day of the week

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING". Only when by =
’streets_wide’

type_emi Character, type of emissions(exhaust, evaporative, etc)

k Numeric, factor

Note

This function depends on EmissionsArray objests which currently has 4 dimensions. However, a
future version of VEIN will produce EmissionsArray with 3 dimensiones and his fungeorge soros
drugsction also will change. This change will be made in order to not produce inconsistencies with
previous versions, therefore, if the user count with an EmissionsArry with 4 dimension, it will be
able to use this function.

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
Estimation for morning rush hour and local emission factors
speed <- data.frame(S8 = net$ps)
p1h <- matrix(1)
lef <- EmissionFactorsList(fe2015[fe2015$Pollutant=="CO", "PC_G"])
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed,

profile = p1h)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")

emis_source 81

summary(E_CO_STREETS)
E_CO_STREETSsf <- emis_post(arra = E_CO, pollutant = "CO",

by = "streets", net = net)
summary(E_CO_STREETSsf)
plot(E_CO_STREETSsf, main = "CO emissions (g/h)")
arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
Estimation 168 hours
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24),"km"); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(dfcol = cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)
arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets")
summary(E_CO_STREETS)
arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
head(E_CO_DF)
recreating 24 profile
lpc <-list(pc1*0.2, pc1*0.1, pc1*0.1, pc1*0.2, pc1*0.5, pc1*0.8,

pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.5,
pc1*0.5, pc1*0.5, pc1*0.5, pc1*0.8,
pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.3, pc1*0.2, pc1*0.1)

E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed[, 1:24],
agemax = 41, hour = 24, day = 1)

plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2,

veh = "PC",
size = "<1400",
fuel = "G",
type_emi = "Exhaust",
pollutant = "CO", by = "veh")

head(E_CO_DFv2)

End(Not run)

emis_source A function to source vein scripts

82 emis_to_streets

Description

emis_source source vein scripts

Usage

emis_source(
path = "est",
pattern = ".R",
ignore = "~",
first,
ask = TRUE,
recursive = TRUE,
full.names = TRUE,
echo = FALSE

)

Arguments

path Character; path to source scripts. Default is "est".

pattern Character; extensions of R scripts. Default is ".R".

ignore Character; caracter to be excluded. Default is "~". Sometimes, the OS creates
automatic back-ups, for instance "run.R~", the ideia is to avoid sourcing these
files.

first Character; first script.

ask Logical; Check inputs or not. Default is "FALSE". It allows to stop inputs

recursive Logical; recursive or not. Default is "TRUE"

full.names Logical; full.names or not. Default is "TRUE".

echo Source with echo?

Examples

Not run:
Do not run

End(Not run)

emis_to_streets Emis to streets distribute top-down emissions into streets

Description

emis_to_streets allocates emissions proportionally to each feature. "Spatial" objects are con-
verter to "sf" objects. Currently, ’LINESTRING’ or ’MULTILINESTRING’ supported. The emis-
sions are distributed in each street.

emis_to_streets 83

Usage

emis_to_streets(streets, dfemis, by = "ID", stpro, verbose = TRUE)

Arguments

streets sf object with geometry ’LINESTRING’ or ’MULTILINESTRING’. Or Spa-
tialLinesDataFrame

dfemis data.frame with emissions

by Character indicating the columns that must be present in both ’street’ and ’dfemis’

stpro data.frame with two columns, category of streets and value. The name of the
first column must be "stpro" and the sf streets must also have a column with the
nam "stpro" indicating the category of streets. The second column must have
the name "VAL" indicating the associated values to each category of street

verbose Logical; to show more info.

Note

When spobj is a ’Spatial’ object (class of sp), they are converted into ’sf’.

See Also

add_polid

Examples

Not run:
data(net)
stpro = data.frame(stpro = as.character(unique(net$tstreet)),

VAL = 1:9)
dnet <- net["ldv"]
dnet$stpro <- as.character(net$tstreet)
dnet$ID <- "A"
df2 <- data.frame(BC = 10, CO = 20, ID = "A")
ste <- emis_to_streets(streets = dnet, dfemis = df2)
sum(ste$ldv)
sum(net$ldv)
sum(ste$BC)
sum(df2$BC)
ste2 <- emis_to_streets(streets = dnet, dfemis = df2, stpro = stpro)
sum(ste2$ldv)
sum(net$ldv)
sum(ste2$BC)
sum(df2$BC)

End(Not run)

84 emis_wear

emis_wear Emission estimation from tyre, break and road surface wear

Description

emis_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

emis_wear(
veh,
lkm,
ef,
what = "tyre",
speed,
agemax = ncol(veh),
profile,
hour = nrow(profile),
day = ncol(profile)

)

Arguments

veh Object of class "Vehicles"

lkm Length of the road in km.

ef list of emission factor functions class "EmissionFactorsList", length equals to
hours.

what Character for indicating "tyre", "break" or "road"

speed Speed data-frame with number of columns as hours

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

fe2015 85

Examples

Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv[1:10] + net$hdv[1:10], pc_profile[, 1])
df <- netspeed(pc_week, net$ps[1:10], net$ffs[1:10],

net$capacity[1:10], net$lkm[1:10], alpha = 1)
ef <- ef_wear(wear = "tyre", type = "PC", pol = "PM10", speed = df)
emi <- emis_wear(veh = age_ldv(net$ldv[1:10], name = "VEH"),

lkm = net$lkm[1:10], ef = ef, speed = df,
profile = pc_profile[, 1])

emi

End(Not run)

fe2015 Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO

Usage

data(fe2015)

Format

A data frame with 288 rows and 12 variables:

Age Age of use

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N2O", "NMHC", "NOx", and "PM"

Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"

t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III","IV", "V"

Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III","IV", "V"

Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"

Euro_HDV Euro emission standard equivalence: "PRE", "I", "II", "III", "V"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

CETESB

86 fkm

fkm List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de
intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions
depends on the age of use of the vehicle

Usage

data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol

KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol

KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex

KM_PC_B5 Mileage in km of Passenger Cars using Diesel with 5% biodiesel

KM_TRUCKS_B5 Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_B5 Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_B5 Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel

KM_SBUS_B5 Mileage in km of Small Bus using Diesel with 5% biodiesel

KM_ATRUCKS_B5 Mileage in km of Articulated Trucks using Diesel with 5% biodiesel

KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol

KM_LDV_GNV Mileage in km of Light Duty Vehicles using Natural Gas

Source

CETESB

fuel_corr 87

fuel_corr Correction due Fuel effects

Description

Take into account the effect of better fuels on vehicles with older technology. If the ratio is less than
1, return 1. It means that it is nota degradation function.

Usage

fuel_corr(
euro,
g = c(e100 = 52, aro = 39, o2 = 0.4, e150 = 86, olefin = 10, s = 165),
d = c(den = 840, pah = 9, cn = 51, t95 = 350, s = 400)

)

Arguments

euro Character; Euro standards ("PRE", "I", "II", "III", "IV", "V", VI, "VIc")
g Numeric; vector with parameters of gasoline with the names: e100(vol. (sul-

phur, ppm)
d Numeric; vector with parameters for diesel with the names: den (density at 15

celcius degrees kg/m3), pah ((Back end distillation in Celcius degrees) and s
(sulphur, ppm)

Value

A list with the correction of emission factors.

Note

This function cannot be used to account for deterioration, therefore, it is restricted to values between
0 and 1. Parameters for gasoline (g):

O2 = Oxygenates in

S = Sulphur content in ppm

ARO = Aromatics content in

OLEFIN = Olefins content in

E100 = Mid range volatility in

E150 = Tail-end volatility in

Parameters for diesel (d):

DEN = Density at 15 C (kg/m3)

S = Sulphur content in ppm

PAH = Aromatics content in

CN = Cetane number

T95 = Back-end distillation in o C.

88 GriddedEmissionsArray

Examples

Not run:
f <- fuel_corr(euro = "I")
names(f)

End(Not run)

get_project Download vein project to a specificor new directory

Description

get_project downloads a project for runnign vein. The projects are available on Github.com/atmoschem/vein/projects

Usage

get_project(directory, case = "brasil", approach = "bottom-up")

Arguments

directory Character; Path to an existing or a new directory to be created. It needs absolute
path.

case Character; Currently only supports "brasil" (or "brazil").

approach Character; Currently only supports "bottom-up".

Examples

Not run:
#do not run

End(Not run)

GriddedEmissionsArray Construction function for class "GriddedEmissionsArray"

Description

GriddedEmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimen-
sios.

GriddedEmissionsArray 89

Usage

GriddedEmissionsArray(x, ..., cols, rows, times = ncol(x), rotate, flip = TRUE)

S3 method for class 'GriddedEmissionsArray'
print(x, ...)

S3 method for class 'GriddedEmissionsArray'
summary(object, ...)

S3 method for class 'GriddedEmissionsArray'
plot(x, ..., times = 1)

Arguments

x Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or "matrix"

... ignored

cols Number of columns

rows Number of rows

times Number of times

rotate Character, rotate array to "left" or "right"

flip Logical, To flip vertically the array or not

object object with class "EmissionsArray’

Value

Objects of class "GriddedEmissionsArray"

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]](1:24), "km")
pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!

90 grid_emis

cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets",

net = net, k = units::set_units(1, "1/h"))
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
plot(E_CO_g["V9"])
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, flip = FALSE)
plot(gr)
For some cptcity color gradients:
plot(gr, col = cptcity::lucky())

End(Not run)

grid_emis Allocate emissions gridded emissions into streets (grid to emis street)

Description

grid_emis it is sort of the opposite of emis_grid. It allocates gridded emissions into streets. This
function applies emis_dist into each grid cell using lapply. This function is in development and
pull request are welcome.

Usage

grid_emis(spobj, g, top_down = FALSE, sr, pro, char, verbose = FALSE)

Arguments

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".

g A grid with class "SpatialPolygonsDataFrame" or "sf". This grid includes the
total emissions with the column "emission". If profile is going to be used, the
column ’emission’ must include the sum of the emissions for each profile. For
instance, if profile covers the hourly emissions, the column ’emission’ bust be
the sum of the hourly emissions.

top_down Logical; requires emissions named ‘emissions‘ and allows to apply profile fac-
tors. If your data is hourly emissions or a a spatial grid with several emissions at
different hours, being each hour a column, it is better to use top_down = FALSE.
In this way all the hourly emissions are considered, however, eah hourly emis-
sions has to have the name "V" and the number of the hour like "V1"

sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.

grid_emis 91

pro Numeric, Matrix or data-frame profiles, for instance, pc_profile.

char Character, name of the first letter of hourly emissions. New variables in R start
with letter "V", for your hourly emissions might start with letter "h". This option
applies when top_down is FALSE. For instance, if your hourly emissions are:
"h1", "h2", "h3"... ‘char“ can be "h"

verbose Logical; to show more info.

Note

Your gridded emissions might have flux units (mass / area / time(implicit)) You must multiply
your emissions with the area to return to the original units.

Examples

Not run:
data(net)
data(pc_profile)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,

84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
Estimation for morning rush hour and local emission factors
lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G"))
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef,

profile = 1, speed = Speed(1))
E_CO_STREETS <- emis_post(arra = E_CO, by = "streets", net = net)

g <- make_grid(net, 1/102.47/2) #500m in degrees

gCO <- emis_grid(spobj = E_CO_STREETS, g = g)
gCO$emission <- gCO$V1
area <- sf::st_area(gCO)
area <- units::set_units(area, "km^2") #Check units!
gCO$emission <- gCO$emission*area
#
\dontrun{
#do not run
library(osmdata)
library(sf)
osm <- osmdata_sf(
add_osm_feature(
opq(bbox = st_bbox(gCO)),
key = 'highway'))$osm_lines[, c("highway")]
st <- c("motorway", "motorway_link", "trunk", "trunk_link",
"primary", "primary_link", "secondary", "secondary_link",
"tertiary", "tertiary_link")
osm <- osm[osm$highway %in% st,]
plot(osm, axes = T)
top_down requires name `emissions` into gCO`
xnet <- grid_emis(osm, gCO, top_down = TRUE)

92 invcop

plot(xnet, axes = T)
bottom_up requires that emissions are named `V` plus the hour like `V1`
xnet <- grid_emis(osm, gCO,top_down= FALSE)
plot(xnet["V1"], axes = T)
}

End(Not run)

invcop Helper function to copy and zip projects

Description

invcop help to copy and zip projects

Usage

invcop(
in_name = getwd(),
out_name,
all = FALSE,
main = TRUE,
ef = TRUE,
est = TRUE,
network = TRUE,
veh_rds = FALSE,
veh_csv = TRUE,
zip = TRUE

)

Arguments

in_name Character; Name of current project.

out_name Character; Name of outtput project.

all Logical; copy ALL (and for once) or not.

main Logical; copy or not.

ef Logical; copy or not.

est Logical; copy or not.

network Logical; copy or not.

veh_rds Logical; copy or not.

veh_csv Logical; copy or not.

zip Logical; zip or not.

Value

emission estimation g/h

inventory 93

Note

This function was created to copy and zip project without the emis.

Examples

Not run:
Do not run

End(Not run)

inventory Inventory function.

Description

inventory produces an structure of directories and scripts in order to run vein. It is required to
know the vehicular composition of the fleet.

Usage

inventory(
name,
vehcomp = c(PC = 1, LCV = 1, HGV = 1, BUS = 1, MC = 1),
show.main = FALSE,
scripts = TRUE,
show.dir = FALSE,
show.scripts = FALSE,
clear = TRUE,
rush.hour = FALSE,
showWarnings = FALSE

)

Arguments

name Character, path to new main directory for running vein. NO BLANK SPACES
vehcomp Vehicular composition of the fleet. It is required a named numerical vector with

the names "PC", "LCV", "HGV", "BUS" and "MC". In the case that tthere are
no vehiles for one category of the composition, the name should be included
with the number zero, for example PC = 0. The maximum number allowed is
99 per category.

show.main Logical; Do you want to see the new main.R file?
scripts Logical Do you want to generate or no R scripts?
show.dir Logical value for printing the created directories.
show.scripts Logical value for printing the created scripts.
clear Logical value for removing recursively the directory and create another one.
rush.hour Logical, to create a template for morning rush hour.
showWarnings Logical, showWarnings?

94 long_to_wide

Value

Structure of directories and scripts for automating compilation of vehicular emissions inventory.
The structure can be used with other type of sources of emissions. The structure of the directories
is: daily, ef, emi, est, images, network and veh. This structure is a suggestion and the user can use
another. ’ ef: it is for storing the emission factors data-frame, similar to data(fe2015) but including
one column for each of the categories of the vehicular composition. For intance, if PC = 5, there
should be 5 columns with emission factors in this file. If LCV = 5, another 5 columns should be
present, and so on.

emi: Directory for saving the estimates. It is suggested to use .rds extension instead of .rda.

est: Directory with subdirectories matching the vehicular composition for storing the scripts named
input.R.

images: Directory for saving images.

network: Directory for saving the road network with the required attributes. This file will includes
the vehicular flow per street to be used by age* functions.

veh: Directory for storing the distribution by age of use of each category of the vehicular com-
position. Those are data-frames with number of columns with the age distribution and number of
rows as the number of streets. The class of these objects is "Vehicles". Future versions of vein will
generate Vehicles objects with the explicit spatial component.

The name of the scripts and directories are based on the vehicular composition, however, there is
included a file named main.R which is just an R script to estimate all the emissions. It is important
to note that the user must add the emission factors for other pollutants. Also, this function creates
the scripts input.R where the user must specify the inputs for the estimation of emissions of each
category. Also, there is a file called traffic.R to generates objects of class "Vehicles". The user can
rename these scripts.

Examples

Not run:
name = file.path(tempdir(), "YourCity")
inventory(name = name)

End(Not run)

long_to_wide Transform data.frame from long to wide format

Description

long_to_wide transform data.frame from long to wide format

make_grid 95

Usage

long_to_wide(
df,
column_with_new_names = names(df)[1],
column_with_data = "emission",
column_fixed,
net

)

Arguments

df data.frame with three column.
column_with_new_names

Character, column that has new column names
column_with_data

Character column with data

column_fixed Character, column that will remain fixed

net To return a sf

Value

wide data.frame.

See Also

emis_hot_td emis_cold_td wide_to_long

Examples

Not run:
df <- data.frame(pollutant = rep(c("CO", "propadiene", "NO2"), 10),
emission = vein::Emissions(1:30),
region = rep(letters[1:2], 15))
df
long_to_wide(df)
long_to_wide(df, column_fixed = "region")

End(Not run)

make_grid Creates rectangular grid for emission allocation

Description

make_grid creates a sf grid of polygons. The spatial reference is taken from the spatial object.

96 my_age

Usage

make_grid(spobj, width, height = width, polygon, crs = 4326, ...)

Arguments

spobj A spatial object of class sp or sf.
width Width of grid cell. It is recommended to use projected values.
height Height of grid cell.
polygon Deprecated! make_grid returns only sf grid of polygons.
crs coordinate reference system in numeric format from http://spatialreference.org/

to transform/project spatial data using sf::st_transform. The default value is
4326

... ignored

Value

A grid of polygons class ’sf’

Examples

Not run:
data(net)
grid <- make_grid(net, width = 0.5/102.47) #500 mts
plot(grid, axes = TRUE) #class sf

End(Not run)

my_age Returns amount of vehicles at each age

Description

my_age returns amount of vehicles at each age using a numeric vector.

Usage

my_age(
x,
y,
agemax,
name = "vehicle",
k = 1,
pro_street,
net,
verbose = FALSE,
namerows

)

my_age 97

Arguments

x Numeric; vehicles by street (or spatial feature).

y Numeric or data.frame; when pro_street is not available, y must be ’numeric’,
else, a ’data.frame’. The names of the columns of this data.frame must be the
same of the elements of pro_street and each column must have a profile of age of
use of vehicle. When ’y’ is ’numeric’ the vehicles has the same age distribution
to all street. When ’y’ is a data.frame, the distribution by age of use varies the
streets.

agemax Integer; age of oldest vehicles for that category

name Character; of vehicle assigned to columns of dataframe.

k Integer; multiplication factor. If its length is > 1, it must match the length of x

pro_street Character; each category of profile for each street. The length of this character
vector must be equal to the length of ’x’. The names of the data.frame ’y’ must
be have the same content of ’pro_street’

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

verbose Logical; message with average age and total numer of vehicles.

namerows Any vector to be change row.names. For instance, name of regions or streets.

Value

dataframe of age distrubution of vehicles.

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or (the regis)*better) the registry of new vehicles, use age to apply a survival function.
3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or
age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know
the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

Examples

Not run:
data(net)
dpc <- c(seq(1,20,3), 20:10)
PC_E25_1400 <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400")
class(PC_E25_1400)
plot(PC_E25_1400)
PC_E25_1400sf <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400", net = net)
class(PC_E25_1400sf)
plot(PC_E25_1400sf)
PC_E25_1400nsf <- sf::st_set_geometry(PC_E25_1400sf, NULL)
class(PC_E25_1400nsf)
yy <- data.frame(a = 1:5, b = 5:1) # perfiles por categoria de calle
pro_street <- c("a", "b", "a") # categorias de cada calle

98 net

x <- c(100,5000, 3) # vehiculos
my_age(x = x, y = yy, pro_street = pro_street)

End(Not run)

net Road network of the west part of Sao Paulo city

Description

This dataset is a sf class object with roads from a traffic simulations made by CET Sao Paulo, Brazil

Usage

data(net)

Format

A Spatial data.frame (sf) with 1796 rows and 1 variables:

ldv Light Duty Vehicles (veh/h)

hdv Heavy Duty Vehicles (veh/h)

lkm Length of the link (km)

ps Peak Speed (km/h)

ffs Free Flow Speed (km/h)

tstreet Type of street

lanes Number of lanes per link

capacity Capacity of vehicles in each link (1/h)

tmin Time for travelling each link (min)

geometry geometry

Source

http://www.cetsp.com.br/

http://www.cetsp.com.br/

netspeed 99

netspeed Calculate speeds of traffic network

Description

netspeed Creates a dataframe of speeds fir diferent hours and each link based on morning rush
traffic data

Usage

netspeed(q = 1, ps, ffs, cap, lkm, alpha = 0.15, beta = 4, net, scheme = FALSE)

Arguments

q Data-frame of traffic flow to each hour (veh/h)

ps Peak speed (km/h)

ffs Free flow speed (km/h)

cap Capacity of link (veh/h)

lkm Distance of link (km)

alpha Parameter of BPR curves

beta Parameter of BPR curves

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

scheme Logical to create a Speed data-frame with 24 hours and a default profile. It needs
ffs and ps:

00:00-06:00 ffs
06:00-07:00 average between ffs and ps
07:00-10:00 ps
10:00-17:00 average between ffs and ps
17:00-20:00 ps
20:00-22:00 average between ffs and ps
22:00-00:00 ffs

Value

dataframe speeds with units or sf.

Examples

Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, alpha = 1)

100 pc_profile

class(df)
plot(df) #plot of the average speed at each hour, +- sd
df <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
dfsf <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE, net = net)
class(dfsf)
head(dfsf)
plot(dfsf) #plot of the average speed at each hour, +- sd

End(Not run)

pc_cold Profile of Vehicle start patterns

Description

This dataset is a dataframe with percetage of hourly starts with a lapse of 6 hours with engine turned
off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle activity study.
ISSRC. www.issrc.org

Usage

data(pc_cold)

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is nor-
malized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is
ARTESP (www.artesp.com.br)

Usage

data(pc_profile)

pollutants 101

Format

A data frame with 24 rows and 7 variables:

V1 24 hours profile for Monday

V2 24 hours profile for Tuesday

V3 24 hours profile for Wednesday

V4 24 hours profile for Thursday

V5 24 hours profile for Friday

V6 24 hours profile for Saturday

V7 24 hours profile for Sunday

pollutants Data.frame with pollutants names and molar mass used in VEIN

Description

This dataset also includes MIR, MOIR and EBIR is Carter SAPRC07.xls https://www.engr.ucr.edu/~carter/SAPRC/

Usage

data(pollutants)

Format

A data frame with 148 rows and 10 variables:

n Number for each pollutant, from 1 to 132

group1 classification for pollutants including "NMHC", "PAH", "METALS", "PM", "criteria" and
"PCDD"

group2 A sub classification for pollutants including "alkenes", "alkynes", "aromatics", "alkanes",
"PAH"„ "aldehydes", "ketones", "METALS", "PM_char", "criteria", "cycloalkanes", "NMHC",
"PCDD", "PM10", "PM2.5"

pollutant 1 of the 132 pollutants covered

CAS CAS Registry Number

g_mol molar mass

MIR Maximum incremental Reactivity (gm O3 / gm VOC)

MOIR Reactivity (gm O3 / gm VOC)

EBIR Reactivity (gm O3 / gm VOC)

notes Inform some assumption for molar mass

102 profiles

profiles Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is n a list of data-frames with traffic activity normalized monday 08:00-09:00. It comes
from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br) for
months January and June and years 2012, 2013 and 2014. The type of vehicles covered are PC,
MC, MC and HGV.

Usage

data(pc_profile)

Format

A list of data-frames with 24 rows and 7 variables:

PC_JUNE_2012 168 hours

PC_JUNE_2013 168 hours

PC_JUNE_2014 168 hours

LCV_JUNE_2012 168 hours

LCV_JUNE_2013 168 hours

LCV_JUNE_2014 168 hours

MC_JUNE_2012 168 hours

MC_JUNE_2013 168 hours

MC_JUNE_2014 168 hours

HGV_JUNE_2012 168 hours

HGV_JUNE_2013 168 hours

HGV_JUNE_2014 168 hours

PC_JANUARY_2012 168 hours

PC_JANUARY_2013 168 hours

PC_JANUARY_2014 168 hours

LCV_JANUARY_2012 168 hours

LCV_JANUARY_2013 168 hours

LCV_JANUARY_2014 168 hours

MC_JANUARY_2012 168 hours

MC_JANUARY_2014 168 hours

HGV_JANUARY_2012 168 hours

HGV_JANUARY_2013 168 hours

HGV_JANUARY_2014 168 hours

remove_units 103

remove_units Remove units

Description

remove_units Remove units from sf, data.frames, matrix or units.

Usage

remove_units(x)

Arguments

x Object with class "sf", "data.frame", "matrix" or "units"

Value

"sf", data.frame", "matrix" or numeric

Examples

Not run:
ef1 <- ef_cetesb(p = "CO", c("PC_G", "PC_FE"))
class(ef1)
sapply(ef1, class)
a <- remove_units(ef1)

End(Not run)

speciate Speciation of emissions

Description

speciate separates emissions in different compounds. It covers black carbon and organic matter
from particulate matter. Soon it will be added more speciations

Usage

speciate(x, spec = "bcom", veh, fuel, eu, show = FALSE, list = FALSE, pmpar)

104 speciate

Arguments

x Emissions estimation

spec speciation: The speciations are: "bcom", tyre" (or "tire"), "brake", "road", "iag",
"nox" and "nmhc". ’iag’ now includes a speciation for use of industrial and
building paintings. "bcom" stands for black carbon and organic matter. "pmiag"
speciates PM2.5 and requires only argument x of PM2.5 emissions in g/h/km^2
as gridded emissions (flux). It also accepts one of the following pollutants:
’e_eth’, ’e_hc3’, ’e_hc5’, ’e_hc8’, ’e_ol2’, ’e_olt’, ’e_oli’, ’e_iso’, ’e_tol’,
’e_xyl’, ’e_c2h5oh’, ’e_hcho’, ’e_ch3oh’, ’e_ket’, "e_so4i", "e_so4j", "e_no3i",
"e_no3j", "e_pm2.5i", "e_pm2.5j", "e_orgi", "e_orgj", "e_eci", "e_ecj". Also
"h2o"

veh Type of vehicle: When spec is "bcom" or "nox" veh can be "PC", "LCV", HDV"
or "Motorcycle". When spec is "iag" veh can take two values depending: when
the speciation is for vehicles veh accepts "veh", eu "Evaporative", "Liquid" or
"Exhaust" and fuel "G", "E" or "D", when the speciation is for painting, veh is
"paint" fuel or eu can be "industrial" or "building" when spec is "nmhc", veh
can be "LDV" with fuel "G" or "D" and eu "PRE", "I", "II", "III", "IV", "V", or
"VI". when spec is "nmhc", veh can be "HDV" with fuel "D" and eu "PRE", "I",
"II", "III", "IV", "V", or "VI". when spec is "nmhc" and fuel is "LPG", veh and
eu must be "ALL"

fuel Fuel. When spec is "bcom" fuel can be "G" or "D". When spec is "iag" fuel can
be "G", "E" or "D". When spec is "nox" fuel can be "G", "D", "LPG", "E85" or
"CNG". Not required for "tyre", "brake" or "road". When spec is "nmhc" fuel
can be G, D or LPG.

eu Euro emission standard: "PRE", "ECE_1501", "ECE_1502", "ECE_1503", "I",
"II", "III", "IV", "V", "III-CDFP","IV-CDFP","V-CDFP", "III-ADFP", "IV-ADFP","V-
ADFP" and "OPEN_LOOP". When spec is "iag" accept the values "Exhaust"
"Evaporative" and "Liquid". When spec is "nox" eu can be "PRE", "I", "II",
"III", "IV", "V", "VI", "VIc", "III-DPF" or "III+CRT". Not required for "tyre",
"brake" or "road"

show when TRUE shows row of table with respective speciation

list when TRUE returns a list with number of elements of the list as the number
species of pollutants

pmpar Numeric vector for PM speciation eg: c(e_so4i = 0.0077, e_so4j = 0.0623,
e_no3i = 0.00247, e_no3j = 0.01053, e_pm2.5i = 0.1, e_pm2.5j = 0.3, e_orgi
= 0.0304, e_orgj = 0.1296, e_eci = 0.056, e_ecj = 0.024, h2o = 0.277) These are
default values. however, when this argument is preseent, new values are used.

Value

dataframe of speciation in grams or mols

Note

when spec = "iag": veh is only "veh", fuel is "G" (blended with 25% ethanol), "D" (blended with
5% of biodiesel) or "E" (Ethanol 100%). eu is "Evaporative", "Liquid" or "Exhaust",

Speed 105

emissions of "pmiag" speciate pm2.5 into e_so4i, e_so4j, e_no3i, e_no3j, e_mp2.5i, e_mp2.5j,
e_orgi, e_orgj, e_eci, e_ecj and h2o. Reference: Rafee, S.: Estudo numerico do impacto das emis-
soes veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao
amazonica, Master thesis, Londrina: Universidade Tecnologica Federal do Parana, 2015.

References

"bcom": Ntziachristos and Zamaras. 2016. Passneger cars, light commercial trucks, heavy-duty
vehicles including buses and motor cycles. In: EEA, EMEP. EEA air pollutant emission inventory
guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "brake" and "road": Ntziachristos and Boulter 2016. Automobile tyre and brake wear and
road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European
Environment Agency, Copenhagen, 2016

"iag": Ibarra-Espinosa S. Air pollution modeling in Sao Paulo using bottom-up vehicular emissions
inventories. 2017. PhD thesis. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Uni-
versidade de Sao Paulo, Sao Paulo, page 88. Speciate EPA: https://cfpub.epa.gov/speciate/. : K.
Sexton, H. Westberg, "Ambient hydrocarbon and ozone measurements downwind of a large auto-
motive painting plant" Environ. Sci. Tchnol. 14:329 (1980).P.A. Scheff, R.A. Schauer, James J.,
Kleeman, Mike J., Cass, Glen R., Characterization and Control of Organic Compounds Emitted
from Air Pollution Sources, Final Report, Contract 93-329, prepared for California Air Resources
Board Research Division, Sacramento, CA, April 1998. 2004 NPRI National Databases as of April
25, 2006, http://www.ec.gc.ca/pdb/npri/npri_dat_rep_e.cfm. Memorandum Proposed procedures
for preparing composite speciation profiles using Environment Canada s National Pollutant Release
Inventory (NPRI) for stationary sources, prepared by Ying Hsu and Randy Strait of E.H. Pechan
Associates, Inc. for David Niemi, Marc Deslauriers, and Lisa Graham of Environment Canada,
September 26, 2006.

Examples

Not run:
Do not run
pm <- rnorm(n = 100, mean = 400, sd = 2)
df <- speciate(pm, veh = "PC", fuel = "G", eu = "I")
dfa <- speciate(pm, spec = "e_eth", veh = "veh", fuel = "G", eu = "Exhaust")
dfb <- speciate(pm, spec = "e_tol", veh = "veh", fuel = "G", eu = "Exhaust")
dfc <- speciate(pm, spec = "e_so4i")

End(Not run)

Speed Construction function for class "Speed"

Description

Speed returns a tranformed object with class "Speed" and units km/h. This functions includes two
arguments, distance and time. Therefore, it is posibel to change the units of the speed to "m" to "s"
for example. This function returns a dataframe with units for speed. When this function is applied
to numeric vectors it add class "units".

106 split_emis

Usage

Speed(x, ...)

S3 method for class 'Speed'
print(x, ...)

S3 method for class 'Speed'
summary(object, ...)

S3 method for class 'Speed'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object Object with class "Speed"

Value

Constructor for class "Speed" or "units"

See Also

units

Examples

Not run:
data(net)
data(pc_profile)
speed <- Speed(net$ps)
class(speed)
plot(speed, type = "l")
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm)
summary(df)

End(Not run)

split_emis Split street emissions based on a grid

Description

split_emis split street emissions into a grid.

temp_fact 107

Usage

split_emis(net, distance, add_column, verbose = TRUE)

Arguments

net A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf" with emissions.

distance Numeric distance or a grid with class "sf".

add_column Character indicating name of column of distance. For instance, if distance is an
sf object, and you wand to add one extra column to the resulting object.

verbose Logical, to show more information.

Examples

Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
dim(net)
netsf <- sf::st_as_sf(net)[, "ldv"]
x <- split_emis(netsf, g)
dim(x)
g$A <- rep(letters, length = 20)[1:nrow(g)]
g$B <- rev(g$A)
netsf <- sf::st_as_sf(net)[, c("ldv", "hdv")]
xx <- split_emis(netsf, g, add_column = c("A", "B"))

End(Not run)

temp_fact Expansion of hourly traffic data

Description

temp_fact is a matrix multiplication between traffic and hourly expansion data-frames to obtain a
data-frame of traffic at each link to every hour

Usage

temp_fact(q, pro, net, time)

Arguments

q Numeric; traffic data per each link

pro Numeric; expansion factors data-frames

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

time Character to be the time units as denominator, eg "1/h"

108 to_latex

Value

data-frames of expanded traffic or sf.

Examples

Not run:
Do not run
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)
pc_weeksf <- temp_fact(net$ldv+net$hdv, pc_profile, net = net)
plot(pc_weeksf)

End(Not run)

to_latex creates a .tex a table from a data.frame

Description

to_latex reads a data.frme an dgenerates a .tex table, aiming to replicate the method of tablegen-
erator.com

Usage

to_latex(df, file, caption = "My table", label = "tab:df")

Arguments

df data.frame with three column.

file Character, name of new .tex file

caption Character caption of table

label Character, label of table

Value

a text file with extension .tex.

See Also

vein_notes long_to_wide

Vehicles 109

Examples

Not run:
df <- data.frame(pollutant = rep(c("CO", "propadiene", "NO2"), 10),

emission = vein::Emissions(1:30),
region = rep(letters[1:2], 15))

df
long_to_wide(df)
(df2 <- long_to_wide(df, column_fixed = "region"))
to_latex(df2)
to_latex(long_to_wide(df, column_fixed = "region"),
file = paste0(tempfile(), ".tex"))

End(Not run)

Vehicles Construction function for class "Vehicles"

Description

Vehicles returns a tranformed object with class "Vehicles" and units ’veh’. The type of objects
supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it is
converted to data.frame. If the object is "numeric" it is converted to class "units".

Usage

Vehicles(x, ..., time)

S3 method for class 'Vehicles'
print(x, ...)

S3 method for class 'Vehicles'
summary(object, ...)

S3 method for class 'Vehicles'
plot(x, ..., message = TRUE)

Arguments

x Object with class "Vehicles"

... ignored

time Character to be the time units as denominator, eg "1/h"

object Object with class "Vehicles"

message message with average age

Value

Objects of class "Vehicles" or "units"

110 vein_notes

Examples

Not run:
lt <- rnorm(100, 300, 10)
class(lt)
vlt <- Vehicles(lt)
class(vlt)
plot(vlt)
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
summary(LT_B5)
plot(LT_B5)

End(Not run)

vein_notes vein_notes for writting technical notes about the inventory

Description

vein_notes creates aa text file ’.txt’ for writting technical notes about this emissions inventory

Usage

vein_notes(
notes,
file = "README",
yourname = Sys.info()["login"],
title = "Notes for this VEIN run",
approach = "Top Down",
traffic = "Your traffic information",
composition = "Your traffic information",
ef = "Your information about emission factors",
cold_start = "Your information about cold starts",
evaporative = "Your information about evaporative emission factors",
standards = "Your information about standards",
mileage = "Your information about mileage"

)

Arguments

notes Character; vector of notes.

file Character; Name of the file. The function will generate a file with an extension
’.txt’.

yourname Character; Name of the inventor compiler.

title Character; Title of this file. For instance: "Vehicular Emissions Inventory of
Region XX, Base year XX"

approach Character; vector of notes.

vkm 111

traffic Character; vector of notes.

composition Character; vector of notes.

ef Character; vector of notes.

cold_start Character; vector of notes.

evaporative Character; vector of notes.

standards Character; vector of notes.

mileage Character; vector of notes.

Value

Writes a text file.

Examples

Not run:
#do not run
a <- "delete"
f <- vein_notes("notes", file = a)
file.edit(f)
file.remove("delete")

End(Not run)

vkm Estimation of VKM

Description

vkm consists in the product of the number of vehicles and the distance driven by these vehicles in
km. This function reads hourly vehiles and then extrapolates the vehicles

Usage

vkm(
veh,
lkm,
profile,
hour = nrow(profile),
day = ncol(profile),
array = TRUE,
as_df = TRUE

)

112 wide_to_long

Arguments

veh Numeric vector with number of vehicles per street
lkm Length of each link (km)
profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour Number of considered hours in estimation
day Number of considered days in estimation
array When FALSE produces a dataframe of the estimation. When TRUE expects

a profile as a dataframe producing an array with dimensions (streets x hours x
days)

as_df Logical; when TRUE transform returning array in data.frame (streets x hour*days)

Value

emission estimation of vkm

Examples

Not run:
Do not run
pc <- lkm <- abs(rnorm(10,1,1))*100
pro <- matrix(abs(rnorm(24*7,0.5,1)), ncol=7, nrow=24)
vkms <- vkm(veh = pc, lkm = lkm, profile = pro)
class(vkms)
dim(vkms)
vkms2 <- vkm(veh = pc, lkm = lkm, profile = pro, as_df = FALSE)
class(vkms2)
dim(vkms2)

End(Not run)

wide_to_long Transform data.frame from wide to long format

Description

wide_to_long transform data.frame from wide to long format

Usage

wide_to_long(df, column_with_data = names(df), column_fixed, geometry)

Arguments

df data.frame with three column.
column_with_data

Character column with data
column_fixed Character, column that will remain fixed
geometry To return a sf

wide_to_long 113

Value

long data.frame.

See Also

emis_hot_td emis_cold_td long_to_wide

Examples

Not run:
data(net)
net <- sf::st_set_geometry(net, NULL)
df <- wide_to_long(df = net)
head(df)

End(Not run)

Index

∗Topic China
ef_china, 19

∗Topic cold
cold_mileage, 15
ef_ldv_cold, 32
ef_ldv_cold_list, 34

∗Topic cumileage
ef_nitro, 43

∗Topic datasets
fe2015, 85
fkm, 86
net, 98
pc_cold, 100
pc_profile, 100
pollutants, 101
profiles, 102

∗Topic deterioration
emis_det, 60

∗Topic ef_china
ef_china, 19

∗Topic emission
ef_cetesb, 16
ef_china, 19
ef_hdv_scaled, 25
ef_hdv_speed, 27
ef_im, 30
ef_ive, 31
ef_ldv_cold, 32
ef_ldv_cold_list, 34
ef_ldv_scaled, 35
ef_ldv_speed, 37
ef_local, 41
ef_nitro, 43
ef_whe, 45
emis_det, 60

∗Topic emitters
ef_whe, 45

∗Topic factors
ef_cetesb, 16

ef_china, 19
ef_hdv_scaled, 25
ef_hdv_speed, 27
ef_im, 30
ef_ive, 31
ef_ldv_cold, 32
ef_ldv_cold_list, 34
ef_ldv_scaled, 35
ef_ldv_speed, 37
ef_local, 41
ef_nitro, 43
ef_whe, 45
emis_det, 60

∗Topic high
ef_whe, 45

∗Topic ive
ef_ive, 31

∗Topic mileage
cold_mileage, 15
ef_im, 30

∗Topic speed
ef_hdv_scaled, 25
ef_hdv_speed, 27
ef_ive, 31
ef_ldv_scaled, 35
ef_ldv_speed, 37

∗Topic start
ef_ldv_cold_list, 34

∗Topic units
remove_units, 103

add_lkm, 3
add_polid, 4, 4, 83
adt, 5, 5
age, 6, 6, 7, 9, 11, 12, 97
age_hdv, 7, 8, 8, 9, 11, 12, 97
age_ldv, 7, 9, 10, 10, 11, 12, 97
age_moto, 7, 9, 11, 11, 12, 97
aw, 13, 13

114

INDEX 115

celsius, 14
cold_mileage, 15

ef_cetesb, 16, 16, 41, 42
ef_china, 19, 19, 69
ef_evap, 22, 22, 55, 64
ef_fun, 24, 24
ef_hdv_scaled, 25, 25
ef_hdv_speed, 27, 54, 55
ef_im, 30, 30
ef_ive, 31, 31
ef_ldv_cold, 28, 32, 32, 39, 59
ef_ldv_cold_list, 34
ef_ldv_scaled, 35
ef_ldv_speed, 21, 37, 37, 54, 55, 69
ef_local, 41, 41
ef_nitro, 43, 43
ef_wear, 44, 44
ef_whe, 45, 45
emis, 28, 39, 46, 46
emis_chem, 54, 54
emis_cold, 56, 57
emis_cold_td, 58, 58, 95, 113
emis_det, 30, 60, 60
emis_dist, 62, 62, 90
emis_evap, 63, 63
emis_evap2, 65
emis_grid, 67, 68, 90
emis_hot_td, 21, 69, 69, 95, 113
emis_merge, 72, 72, 73
emis_order, 74
emis_order2, 76
emis_paved, 78
emis_post, 73, 79
emis_source, 81, 82
emis_to_streets, 4, 82, 82
emis_wear, 84
EmissionFactors, 50
EmissionFactorsList, 51
Emissions, 52
EmissionsArray, 53

fe2015, 85
fkm, 86
fuel_corr, 28, 33, 38, 39, 87

get_project, 88, 88
grid_emis, 90, 90
GriddedEmissionsArray, 75, 77, 88

invcop, 92
inventory, 93

long_to_wide, 94, 94, 108, 113

make_grid, 95, 96
my_age, 7, 9, 11, 12, 96, 97

net, 98
netspeed, 99

pc_cold, 100
pc_profile, 100
plot.EmissionFactors (EmissionFactors),

50
plot.EmissionFactorsList

(EmissionFactorsList), 51
plot.Emissions (Emissions), 52
plot.EmissionsArray (EmissionsArray), 53
plot.GriddedEmissionsArray

(GriddedEmissionsArray), 88
plot.Speed (Speed), 105
plot.Vehicles (Vehicles), 109
pollutants, 101
print.EmissionFactors

(EmissionFactors), 50
print.EmissionFactorsList

(EmissionFactorsList), 51
print.Emissions (Emissions), 52
print.EmissionsArray (EmissionsArray),

53
print.GriddedEmissionsArray

(GriddedEmissionsArray), 88
print.Speed (Speed), 105
print.Vehicles (Vehicles), 109
profiles, 102

remove_units, 103, 103

speciate, 55, 103
Speed, 105
split_emis, 106, 106
summary.EmissionFactors

(EmissionFactors), 50
summary.EmissionFactorsList

(EmissionFactorsList), 51
summary.Emissions (Emissions), 52
summary.EmissionsArray

(EmissionsArray), 53

116 INDEX

summary.GriddedEmissionsArray
(GriddedEmissionsArray), 88

summary.Speed (Speed), 105
summary.Vehicles (Vehicles), 109

temp_fact, 107
to_latex, 108, 108

units, 106

Vehicles, 109
vein_notes, 108, 110, 110
vkm, 111

weekly (emis_order), 74
wide_to_long, 95, 112, 112

	add_lkm
	add_polid
	adt
	age
	age_hdv
	age_ldv
	age_moto
	aw
	celsius
	cold_mileage
	ef_cetesb
	ef_china
	ef_evap
	ef_fun
	ef_hdv_scaled
	ef_hdv_speed
	ef_im
	ef_ive
	ef_ldv_cold
	ef_ldv_cold_list
	ef_ldv_scaled
	ef_ldv_speed
	ef_local
	ef_nitro
	ef_wear
	ef_whe
	emis
	EmissionFactors
	EmissionFactorsList
	Emissions
	EmissionsArray
	emis_chem
	emis_cold
	emis_cold_td
	emis_det
	emis_dist
	emis_evap
	emis_evap2
	emis_grid
	emis_hot_td
	emis_merge
	emis_order
	emis_order2
	emis_paved
	emis_post
	emis_source
	emis_to_streets
	emis_wear
	fe2015
	fkm
	fuel_corr
	get_project
	GriddedEmissionsArray
	grid_emis
	invcop
	inventory
	long_to_wide
	make_grid
	my_age
	net
	netspeed
	pc_cold
	pc_profile
	pollutants
	profiles
	remove_units
	speciate
	Speed
	split_emis
	temp_fact
	to_latex
	Vehicles
	vein_notes
	vkm
	wide_to_long
	Index

