
vectools 0.1.1

Supplementary
Vector-Related Tools

Abby Spurdle

January 8, 2020

Supports formatted nested/partitioned matrices, formatted object arrays and similar format-
ted data.frame(s), via coercion. These objects can be printed with plain text mark up, in-
cluding their partitions and submatrices. Also, includes an SQL-like select function, grouped
head functions and combined head and tail functions.

note that this package is subject to change

Introduction

Formatted tables are a central feature of software like Microsoft Excel.

Formatted matrices and tables are also used in reporting contexts, including Latex/amsmath
and HTML documents.

However, R has limited support for such objects.

The primary goal of this package is to support formatted object arrays and formatted
nested/partitioned matrices, at an interactive level. Also, it contains tools for subsetting
and tabular data analysis. Other tools are likely be added in the near future.

Preliminary Code

I will load (and attach) the vectools package:

> library (vectools)

Also, I will create three matrices:

> s4x4 = matrix (1:16, 4, 4)

> s10 = matrix (1:100, 10, 10)

> s20 = matrix (1:400, 20, 20)

Spurdle, A. vectools 0.1.1 2

Part One
Classes and Objects

Classes

In this package, the root class is:

� VectorLike (Vector-Like Object)

This has two subclasses:

� ObjectArray (Object Array)
These objects are similar to lists, including list matrices and list arrays.

� MatrixLike (Matrix-Like Object)

The MatrixLike class, has two subclasses:

� NestMatrix (Nested Matrix)
These objects are similar to two-dimensional object arrays, and represent matrices
where their elements are also matrices. Currently, there’s no restrictions on the
dimensions of their submatrices. Also, nested matrices may be recursively nested.
i.e. A matrix within a matrix within a matrix within a matrix...

� SectMatrix (Sectioned Matrix)
These objects are derived from a single matrix, with rectangular sections defining
arbitrary submatrices, which may or may not, form a partition of the matrix.

Furthermore, SectMatrix class, has a single subclass:

� PartMatrix (Partitioned Matrix)
These objects are also derived from a single matrix, and can be interpreted as a matrix
with horizontal/vertical seperators between rows/columns, which implicitly define a
(non-recursively) nested matrix, where the submatrices have matching dimensions.

There are limited subsetting operators, and dim, print, format, head and tail methods.

Object Arrays

In R, the standard way to create object arrays is via list matrices and list arrays. That
works, however, the resulting objects are difficult to format.

Here, ObjectArray objects, can be used to simplify the process, and support flexible for-
matting.

Constructors for near-trivial (S3) classes:

> alphabet.1 = function ()

structure (LETTERS, class="alphabet.1")

> alphabet.2 = function ()

structure (sample (LETTERS), class="alphabet.2")

A near-trivial 2x2 object array:

> x = ObjectArray (c (2, 2))

> x [[1, 1]] = alphabet.1 ()

> x [[2, 1]] = alphabet.1 ()

> x [[1, 2]] = alphabet.2 ()

> x [[2, 2]] = alphabet.2 ()

Spurdle, A. vectools 0.1.1 3

Printed with default formatting:

> x

[,1] [,2]

[1,] <v 26> <v 26>

[2,] <v 26> <v 26>

To customize the formatting, we can write (S3) objtag methods for our classes:

> objtag.alphabet.1 = function (x)

paste ("<A1 ", x [1], ":", x [26], ">", sep="")

> objtag.alphabet.2 = function (x)

paste ("<A2 ", x [1], ":", x [26], ">", sep="")

And we get:

> x

[,1] [,2]

[1,] <A1 A:Z> <A2 Y:H>

[2,] <A1 A:Z> <A2 L:K>

Note that objtag methods need to return a single string.

Nested Matrices
(Simple Case)

Re-iterating, NestMatrix objects are similar to two-dimensional object arrays.

In general, a nested matrix is mathematically equivalent to a partitioned matrix, so we can
construct them in a similar way to a partitioned matrix, discussed later.

> x = as.NestMatrix (s10, 5, c (2, 4, 6, 8))

The top-level object:

> x

[,1] [,2] [,3] [,4] [,5]

[1,] <m 5x2> <m 5x2> <m 5x2> <m 5x2> <m 5x2>

[2,] <m 5x2> <m 5x2> <m 5x2> <m 5x2> <m 5x2>

Expanding the first element:

> x [[1, 1]]

[,1] [,2]

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

[5,] 5 15

Spurdle, A. vectools 0.1.1 4

Nested Matrices
(General Case)

For more general cases, we can use the main NestMatrix constructor or the as.NestMatrix.2
function:

> xsub = NestMatrix (4, 4)

> for (i in 1:4)

{ for (j in 1:4)

xsub [[i, j]] = s4x4

}

> x = NestMatrix (4, 4)

> for (i in 1:4)

{ for (j in 1:4)

x [[i, j]] = xsub

}

The top-level object (x):

> x

[,1] [,2] [,3] [,4]

[1,] <NM 4x4> <NM 4x4> <NM 4x4> <NM 4x4>

[2,] <NM 4x4> <NM 4x4> <NM 4x4> <NM 4x4>

[3,] <NM 4x4> <NM 4x4> <NM 4x4> <NM 4x4>

[4,] <NM 4x4> <NM 4x4> <NM 4x4> <NM 4x4>

Expanding the first element (one of the xsub objects):

> x [[1, 1]]

[,1] [,2] [,3] [,4]

[1,] <m 4x4> <m 4x4> <m 4x4> <m 4x4>

[2,] <m 4x4> <m 4x4> <m 4x4> <m 4x4>

[3,] <m 4x4> <m 4x4> <m 4x4> <m 4x4>

[4,] <m 4x4> <m 4x4> <m 4x4> <m 4x4>

Expanding the first element within the first element (one of the s4x4 objects):

> x [[1, 1]][[1, 1]]

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

Sectioned Matrices

Here, SectMatrix objects contain a single matrix, with sections.

They can be created using either the SectMatrix or as.SectMatrix functions, and then using
the setmap function to define what I refer to as section maps.

> x = as.SectMatrix (s10, 2)

> setmap (x, 1) = c (2, 2, 4, 4)

> setmap (x, 2) = c (7, 7, 9, 9)

> x

Spurdle, A. vectools 0.1.1 5

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 11 21 31 41 51 61 71 81 91

+ --- --- --- +

[2,] 2 | 12 22 32 | 42 52 62 72 82 92

[3,] 3 | 13 23 33 | 43 53 63 73 83 93

[4,] 4 | 14 24 34 | 44 54 64 74 84 94

+ --- --- --- +

[5,] 5 15 25 35 45 55 65 75 85 95

[6,] 6 16 26 36 46 56 66 76 86 96

+ --- --- --- +

[7,] 7 17 27 37 47 57 | 67 77 87 | 97

[8,] 8 18 28 38 48 58 | 68 78 88 | 98

[9,] 9 19 29 39 49 59 | 69 79 89 | 99

+ --- --- --- +

[10,] 10 20 30 40 50 60 70 80 90 100

Single bracket subsetting gives submatrices and double bracket subsetting gives elements
from the combined matrix:

> x [1]

[,1] [,2] [,3]

[1,] 12 22 32

[2,] 13 23 33

[3,] 14 24 34

> x [1][1, 2]

[1] 22

> x [[2, 3]]

[1] 22

Note that it’s possible for submatrices to overlap:

> setmap (x, 1) = c (2, 2, 7, 7)

> setmap (x, 2) = c (4, 4, 9, 9)

> x

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 11 21 31 41 51 61 71 81 91

+ --- --- --- --- --- --- --- +

[2,] 2 | 12 22 32 42 52 62 | 72 82 92

[3,] 3 | 13 23 33 43 53 63 | 73 83 93

| + --- --- --- --- --- --- --- +

[4,] 4 | 14 24 | 34 44 54 64 | 74 84 | 94

[5,] 5 | 15 25 | 35 45 55 65 | 75 85 | 95

[6,] 6 | 16 26 | 36 46 56 66 | 76 86 | 96

[7,] 7 | 17 27 | 37 47 57 67 | 77 87 | 97

+ --- --- | --- --- --- --- + |

[8,] 8 18 28 | 38 48 58 68 78 88 | 98

[9,] 9 19 29 | 39 49 59 69 79 89 | 99

+ --- --- --- --- --- --- --- +

[10,] 10 20 30 40 50 60 70 80 90 100

Als note that you need to set all the section maps, before printing or formatting.

Spurdle, A. vectools 0.1.1 6

Partitioned Matrices

Re-iterating, PartMatrix objects extend sectioned matrices.

They’re created using either the PartMatrix or as.PartMatrix functions, and by specifying
the inter-row and inter-column indicies of seperators.

Here’s a partitioned matrix, with one row separator, and four column separators:

> x = as.PartMatrix (s10, 5, c (2, 4, 6, 8))

> x

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 11 | 21 31 | 41 51 | 61 71 | 81 91

[2,] 2 12 | 22 32 | 42 52 | 62 72 | 82 92

[3,] 3 13 | 23 33 | 43 53 | 63 73 | 83 93

[4,] 4 14 | 24 34 | 44 54 | 64 74 | 84 94

[5,] 5 15 | 25 35 | 45 55 | 65 75 | 85 95

--- --- + --- --- + --- --- + --- --- + --- ---

[6,] 6 16 | 26 36 | 46 56 | 66 76 | 86 96

[7,] 7 17 | 27 37 | 47 57 | 67 77 | 87 97

[8,] 8 18 | 28 38 | 48 58 | 68 78 | 88 98

[9,] 9 19 | 29 39 | 49 59 | 69 79 | 89 99

[10,] 10 20 | 30 40 | 50 60 | 70 80 | 90 100

In principle, subsetting is the same as sectioned matrices:

> x [1, 2]

[,1] [,2]

[1,] 21 31

[2,] 22 32

[3,] 23 33

[4,] 24 34

[5,] 25 35

> x [1,2][2, 1]

[1] 22

> x [[2, 3]]

[1] 22

However, partitioned matrices always use two dimensional section indicies, whereas sec-
tioned matrices can use one, two or higher dimensional indices.
i.e. The example in the previous section, used one dimensional indices.

Nested Matrices vs Partitioned Matrices

If we limit nested matrices to the simple case, then nested matrices and (regular) parti-
tioned matrices are mathematically equivalent. However, this package implements them
differently, and uses different formatting.

Here’s a comparision:

> nm = as.NestMatrix (s10, 5, c (2, 4, 6, 8))

> pm = as.PartMatrix (s10, 5, c (2, 4, 6, 8))

Spurdle, A. vectools 0.1.1 7

> nm

[,1] [,2] [,3] [,4] [,5]

[1,] <m 5x2> <m 5x2> <m 5x2> <m 5x2> <m 5x2>

[2,] <m 5x2> <m 5x2> <m 5x2> <m 5x2> <m 5x2>

> pm

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 11 | 21 31 | 41 51 | 61 71 | 81 91

[2,] 2 12 | 22 32 | 42 52 | 62 72 | 82 92

[3,] 3 13 | 23 33 | 43 53 | 63 73 | 83 93

[4,] 4 14 | 24 34 | 44 54 | 64 74 | 84 94

[5,] 5 15 | 25 35 | 45 55 | 65 75 | 85 95

--- --- + --- --- + --- --- + --- --- + --- ---

[6,] 6 16 | 26 36 | 46 56 | 66 76 | 86 96

[7,] 7 17 | 27 37 | 47 57 | 67 77 | 87 97

[8,] 8 18 | 28 38 | 48 58 | 68 78 | 88 98

[9,] 9 19 | 29 39 | 49 59 | 69 79 | 89 99

[10,] 10 20 | 30 40 | 50 60 | 70 80 | 90 100

Also, note the differences in dimensions and subsetting operators:

> dim (nm)

[1] 2 5

> dim (pm)

[1] 10 10

> nm [[1, 1]]

[,1] [,2]

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

[5,] 5 15

> pm [1, 1]

[,1] [,2]

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

[5,] 5 15

Expanding on a previous point, this package is subject to change, and in particular, the
handling of dimensions and subsetting operations.

Spurdle, A. vectools 0.1.1 8

Part Two
SQL-Like Functions

SQL-Like Select Function

The select function is a R (only) function with standard R syntax, but nonstandard eval-
uation. Currently, it supports a subset of SQL select functionality, and is designed for
convenience only and not for high performance or large datasets. This vignette is just a
demonstration, refer to the help page for more details.

I will use the mtcars data.

Trivial use:

> #all variables

> head (

select (., from (mtcars))

)

mpg cyl disp hp drat wt qsec vs am gear carb

1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

> head (

select (am, cyl, mpg, from (mtcars))

)

am cyl mpg

1 1 6 21.0

2 1 6 21.0

3 1 4 22.8

4 0 6 21.4

5 0 8 18.7

6 0 6 18.1

And for a less trivial example, using the select function to produce the count and mean of
mpg, grouped by am and cy1:

> select (am, cyl,

from (mtcars),

group.by (am, cyl),

count <- length (mpg),

mean.mpg <- mean (mpg))

am cyl count mean.mpg

1 0 4 3 22.90000

2 0 6 4 19.12500

3 0 8 12 15.05000

4 1 4 8 28.07500

5 1 6 3 20.56667

6 1 8 2 15.40000

Using an SQL-like function for aggregation, has the advantage that it’s relative simple and
intuitive.

Spurdle, A. vectools 0.1.1 9

Optionally, we can partition and sort the data:

> select (am, cyl,

from (mtcars),

group.by (am, cyl), partition.by (am), sort.by (-am, -mean.mpg),

count <- length (mpg),

mean.mpg <- mean (mpg))

am cyl count mean.mpg

-------- + -------- -------- --------

1 1 | 4 8 28.07500

2 | 6 3 20.56667

3 | 8 2 15.40000

-------- | -------- -------- --------

4 0 | 4 3 22.90000

5 | 6 4 19.12500

6 | 8 12 15.05000

The where construct is currently simple, and can be applied to variables present both
before and after grouping:

> head (

select (am, cyl, mpg, from (mtcars), where (mpg >= 20))

)

am cyl mpg

1 1 6 21.0

2 1 6 21.0

3 1 4 22.8

4 0 6 21.4

5 0 4 24.4

6 0 4 22.8

Spurdle, A. vectools 0.1.1 10

Part Three
Head and Tail Generalizations

Combined Head and Tail Methods
(Matrices)

The headt function can be used to print the head and tail simultaneously.

I will use a SectMatrix object, however, this works on several classes:

> x = as.SectMatrix (s20, 2)

> setmap (x, 1) = c (2, 2, 19, 19)

> setmap (x, 2) = c (3, 3, 18, 18)

Head and tail, with n = 6.

> headt (x, 6)

[,1] [,2] [,3] [,4] [,17] [,18] [,19] [,20]

[1,] 1 21 41 61 # 321 341 361 381

+ --- --- --- --- # --- --- --- --- +

[2,] 2 | 22 42 62 # 322 342 362 | 382

| + --- --- # --- --- + |

[3,] 3 | 23 | 43 63 # 323 343 | 363 | 383

[4,] 4 | 24 | 44 64 # 324 344 | 364 | 384

###

[17,] 17 | 37 | 57 77 # 337 357 | 377 | 397

[18,] 18 | 38 | 58 78 # 338 358 | 378 | 398

| + --- --- # --- --- + |

[19,] 19 | 39 59 79 # 339 359 379 | 399

+ --- --- --- --- # --- --- --- --- +

[20,] 20 40 60 80 # 340 360 380 400

We can specify rows and columns separately:

> headt (x, c (3, 6))

[,1] [,2] [,3] [,4] [,17] [,18] [,19] [,20]

[1,] 1 21 41 61 # 321 341 361 381

+ --- --- --- --- # --- --- --- --- +

[2,] 2 | 22 42 62 # 322 342 362 | 382

###

[19,] 19 | 39 59 79 # 339 359 379 | 399

+ --- --- --- --- # --- --- --- --- +

[20,] 20 40 60 80 # 340 360 380 400

And head and tail separately:

Spurdle, A. vectools 0.1.1 11

> headt (x, 6, 3)

[,1] [,2] [,3] [,4] [,19] [,20]

[1,] 1 21 41 61 # 361 381

+ --- --- --- --- # --- +

[2,] 2 | 22 42 62 # 362 | 382

| + --- --- # |

[3,] 3 | 23 | 43 63 # 363 | 383

[4,] 4 | 24 | 44 64 # 364 | 384

###

[19,] 19 | 39 59 79 # 379 | 399

+ --- --- --- --- # --- +

[20,] 20 40 60 80 # 380 400

Note that currently, the size arguments, include the seperators.

Grouped Head
(Tables)

The headg function can be used to produce head(s) for subsets:

> headg (iris, "Species")

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

---------- ---------- ---------- ---------- ----------

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

---------- ---------- ---------- ---------- ----------

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

53 6.9 3.1 4.9 1.5 versicolor

---------- ---------- ---------- ---------- ----------

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica

103 7.1 3.0 5.9 2.1 virginica

Currently, it only supports data.frame(s).

Combined Head and Tail Methods
(Tables)

The headt function works on standard matrices and data.frame(s), too.

Here’s an example using the trees data:

> headt (trees)

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

####

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0

