Package 'varTestnlme'

July 7, 2020

Type Package

Title Variance Components Testing for Linear and Nonlinear Mixed Effects Models

Version 0.2.0
URL http://github.com/baeyc/varTestnlme/
BugReports http://github.com/baeyc/varTestnlme/issues
Maintainer Charlotte Baey charlotte.baey@univ-lille.fr
Description An implementation of the Likelihood ratio Test (LRT) for testing that, in a (non)linear mixed effects model, the variances of a subset of the random effects are equal to zero. There is no restriction on the subset of variances that can be tested: for example, it is possible to test that all the variances are equal to zero. Note that the implemented test is asymptotic.
This package should be used on model fits from packages 'nlme', 'lmer', and 'saemix'. Charlotte Baey, Paul-
Henry Cournède and Estelle Kuhn (2019) doi:10.1016/j.csda.2019.01.014.
License GPL (>=2)
Encoding UTF-8
LazyData true
Imports mvtnorm, alabama, Matrix, merDeriv, matrixcalc, anocva, corpcor, quadprog, lme4, nlme, saemix, msm, foreach, methods, doParallel, parallel, lmeresampler

RoxygenNote 7.1.0
Suggests knitr, rmarkdown, ggplot2
VignetteBuilder knitr
NeedsCompilation no
Author Charlotte Baey [aut, cre] (https://orcid.org/0000-0002-1413-1058), Estelle Kuhn [aut]

Repository CRAN
Date/Publication 2020-07-07 21:10:02 UTC

R topics documented:

approxWeights 2
bootinvFIM 3
chiBarSquareObject-class 4
dfchisqbar 4
extractFIMnlme 5
funcStruct 5
getVarCovlme4 6
getVarCovnlme 7
pchisqbar 7
plot.varTestObject 8
print.varTestObject 8
summary.varTestObject 8
varTest 9
varTestnlme-internal 11
varTestObject-class 11
weightsChiBarSquare 12
Index 13
approxWeights

Description

Approximation of the chi-bar-square weigths via Monte Carlo approximation.

Usage

approxWeights(x, df, q)

Arguments

df a vector containing the degrees of freedom of the chi-squared components
$\mathrm{q} \quad$ the empirical quantile of x used to choose the $p-2$ values c_{1}, \ldots, c_{p-2} (see Details)

Details

The chi-bar-square distribution $\bar{\chi}^{2}(I, C)$ is a mixture of chi-square distributions. The function provides a method to approximate the weights of the mixture components, when the number of components is known as well as the degrees of freedom of each chi-square distribution in the mixture, and given a vector of simulated values from the target $\bar{\chi}^{2}(I, C)$ distribution. Let us assume that
there are p components in the mixture, with degrees of freedom between n_{1} and n_{p}. By definition of a mixture distribution, we have :

$$
P\left(\bar{\chi}^{2}(I, C) \leq c\right)=\sum_{i=n_{1}}^{n_{p}} w_{i} P\left(\chi_{i}^{2} \leq c\right)
$$

Choosing $p-2$ values c_{1}, \ldots, c_{p-2}, the function will generate a system of $p-2$ equations according to the above relationship, and add two additional relationships stating that the sum of all the weights is equal to 1 , and that the sum of odd weights and of even weights is equal to $1 / 2$, so that we end up with a system a p equations with p variables.

Value

A vector containing the estimated weights, as well as their covariance matrix.

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>
bootinvFIM Approximation of the (inverse of the) Fisher Information Matrix

Description

Approximation of the inverse of the Fisher Information Matix via parametric bootstrap

Usage

bootinvFIM(m, B = 1000)

Arguments

m a fitted model that will be used as the basis of the parametric bootstrap (providing the initial maximum likelihood estimate of the parameters and the modelling framework)
B the size of the bootstrap sample

Details

When the FIM is not available, this function provides an approximation of the FIM based on an estimate of the covariancole matrix of the model's parameters obtained via parametric bootstrap.

Value

the empirical covariancole matrix of the parameter estimates obtained on the bootstrap sample

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>

```
chiBarSquareObject-class
```

 Class "chiBarSquareObject"

Description

An object of the chiBarSquareObject class, storing the parameters of the chi-bar-square distribution.

Slots

V a positive-definite matrix
dims the set of dimensions defining the cone
or thant logical, equals TRUE is the cone is the nonnegative orthant of $\mathrm{R}^{\wedge} \mathrm{r}$
dfchisqbar
dfchisqbar Computes the degrees of freedom of the chi-square involved in the mixture

Description

dfchisqbar Computes the degrees of freedom of the chi-square involved in the mixture

Usage

\#\# S4 method for signature 'chiBarSquareObject'
dfchisqbar (object)

Arguments

object a chiBarSquareObject

Description

Extraction of the Fisher Information Matix for variance components fitted with nlme using Delta method

Usage

```
    extractFIMnlme(m, struct)
```


Arguments

m	a model fitted using nlme
struct	a string giving the structure of the covariance matrix: either diag for a diagonal matrix, blockDiag for a block diagonal matrix of full for a matrix with non- zero components

Details

This function extract the FIM computed by the nlme for the transformed variance components, and uses the Delta method to compute the FIM for the natural variance components (i.e. variances and covariances)

Value

the FIM matrix for the variance components

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>

```
funcStruct Extracting models structures
```


Description

Functions extracting the structure of the models for each package nlme, lme 4 and saemix.

Usage

modelStructnlme(m1, m0, randm0)
modelStructlme4(m1, m0, linmodel, randm0)
modelStructsaemix (m1, m0, randm0)

Arguments

m 1	the model under H 1
m 0	the model under H0
randm0	a boolean stating whether the model under H0 contains any random effect
linmodel	(only for modelStructlme4) a boolean to specify whether the model is linear or
	not

Value

A list with the following components:
detailStruct a data frame containing 8 variables: name with the name of the model parameters, var 1 and var 2 with the names of the two variances associated with each covariance parameter, type giving the type of parameter (beta for fixed effects, sd for variances and co for covariances), tested equal to TRUE if the parameter is tested and FALSE otherwise, block giving the block number to which the variance component parameter belongs (equal 0 for fixed effects), covTested indicating whether a covariance is tested without the associated variances being tested, and covInBlock indicating whether a covariance is tested within a block of the complete covariance matrix
dims a list with the dimensions of the models (nbFE1 and nbFE0 the number of fixed effects in m 1 and m 0 , nbRE1 and nbRE0 the number of random effects in m 1 and m 0 and dimSigma the number of residual error parameters)
structGamma the structure of the covariance matrix of the random effects as a list of three logical elements: diag, full and blockDiag, equal to TRUE if the matrix is diagonal, full or block-diagonal respectively.

Description

Extract covariance matrix of the random effects for a model fitted with lme4.

Usage

getVarCovlme4(m)

Arguments

m
a fit from lme4 package (either linear or nonlinear)

```
    getVarCovnlme Extract covariance matrix
```


Description

Extract covariance matrix of the random effects for a model fitted with nlme.

Usage

getVarCovnlme(m)

Arguments

m

> a fit from nlme package (either linear or nonlinear)

pchisqbar | pchisqbar Cumulative distribution function of the chi-bar-square dis- |
| :--- |
| tribution | tribution

Description

pchisqbar Cumulative distribution function of the chi-bar-square distribution

Usage

```
## S4 method for signature 'numeric,chiBarSquareObject,logical'
pchisqbar(q, object, lower.tail = T)
```


Arguments

q
object a chiBarSquareObject
lower.tail
the quantile
logical, default to TRUE

plot.varTestObject Diagnostic plot for the approximation of the chi-bar-square distribu-

 tion
Description

Plot the empirical cumulative distribution function (cdf) of the simulated chi-bar-square distributed variable, along with the exact cdf of all the chi-square distributions involved in the mixture, and with the cdf based on the approximated weights. This function can only be used when the weights were approximated by simulation.

Arguments

x
a object of class varTestObject obtained from a call to function varTest
print.varTestObject Print basic information about the variance components test

Description

Displays the likelihood ratio test statistics and the p-value of the test

Arguments

x
a object of class varTestObject obtained from a call to function varTest
summary.varTest0bject Summary information for the variance components test

Description

Displays the likelihood ratio test statistics, the limiting distribution and the p-value of the test

Arguments

x
a object of class varTestObject obtained from a call to function varTest

Value

a list containing the following elements:
lrt the likelihood ratio test statistics
df the degrees of freedom of the chi-bar distributions involved in the chi-bar-square distribution
weights the weights of the limiting chi-bar-square distribution
pvalWeights the p-value of the test calculated using the cdf of the chi-bar-square based on (approximated) weights
pvalMC the Monte-Carlo estimate of the p-value of the test based on the simulated chi-bar-square distribution
varTest Variance component testing

Description

Perform a likelihood ratio test to test whether a subset of the variances of the random effects are equal to zero. The test is defined by two hypotheses, H 0 and H 1 , and the model under H 0 is assumed to be nested within the model under H 1 .

Usage

```
varTest(
    m1,
    m0,
    control = list(M = 5000, parallel = T, nbcores = 1, B = 1000),
    pval.comp = "bounds",
    fim = "extract"
    )
```


Arguments

m1 a fit of the model under H1, obtained from nlme, lme4 or saemix
m0 a fit of the model under H0, obtained from the same package as m0
control (optional) a list of control options for the computation of the chi-bar-weights
pval.comp (optional) the method to be used to compute the p-value, one of: "bounds" (the default), "approx" or "both" (see Details section)
fim (optional) the method to compute the Fisher Information Matrix. Currently, only fim="extract" is supported.

Details

It is possible to tests if any subset of the variances are equal to zero. However, the function does not currently support nested random effects, and assumes that the random effects are Gaussian.
The asymptotic distribution of the likelihood ratio test is a chi-bar-square, with weights that need to be approximated by Monte Carlo methods, apart from some specific cases where they are available explicitly. Therefore, the p-value of the test is not exact but approximated. This computation can be time-consuming, so the default behaviour of the function is to provide bounds on the exact p-value, which can be enough in practice to decide whether to reject or not the null hypothesis. This is triggered by the option pval. comp="bounds". To compute an approximation of the exact p-value, one should use the option pval. comp="approx" or pval. comp="both".
When pval.comp="approx" or pval.comp="both", the weights of th chi-bar-square distribution are computed and thus
The control argument controls the options for chi-bar-square weights computation. It is a list with the following elements: M the size of the Monte Carlo simulation, parallel a boolean for parallel computing and nbcores the number of cores to be used in case of parallel computing. Default is $M=5000$, parallel=FALSE and nbcores=1.

Value

A list with the following components:

lrt	the likelihood ratio test statistics
ddl	the degrees of freedom of the chi-bar distributions involved in the chi-bar-square distribution
weights	the weights of the limiting chi-bar-square distribution
pval	the p-value of the test

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>

References

Baey C, Cournède P-H, Kuhn E, 2019. Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models. Computational Statistics and Data Analysis 135:107-122.

Silvapulle MJ, Sen PK, 2011. Constrained statistical inference: order, inequality and shape constraints.

Examples

```
# load nlme package and example dataset
library(lme4)
data(Orthodont, package = "nlme")
# fit the two models under H1 and H0
lm1.h1.lme4 <- lmer(distance ~ 1 + Sex + age + age*Sex +
```

```
(0 + age | Subject), data = Orthodont, REML = FALSE)
lm1.h0.lme4 <- lm(distance ~ 1 + Sex + age + age*Sex, data = Orthodont)
# compare them (order is important: m1 comes first)
varTest(lm1.h1.lme4,lm1.h0.lme4,pval.comp="bounds")
```

varTestnlme-internal Internal varTestnlme Functions

Description

Internal varTestnlme functions

```
    varTestObject-class Class "varTestObject"
```


Description

An object of the varTestObject class, storing the results of the LRT

Slots

lrt the likelihood ratio test statistics
df the degrees of freedom of the chi-square distributions involved in the mixture weights the weights associated to the chi-square distributions involved in the mixture pvalue the p-value of the LRT

Objects from the Class

An object of the varTestObject contains the following slots:

```
weightsChiBarSquare Chi-bar-square weights computation
```


Description

Computation of the chi-bar-square weigths.

Usage

weightsChiBarSquare(cbs, control)

Arguments

cbs an object of class chiBarSquareObject, containing the parameters of the chi-bar-square distribution
control (optional) a list of control options for the computation of the chi-bar-weights

Details

The function computes an approximation of the weights of the chi-bar-square distribution $\bar{\chi}^{2}(I, C)$ arising as the limiting distribution of the likelihood ratio test statistics under the null hypothesis. More details can be found in the references listed below

Value

A list containing the degrees of freedom of the chi-bar distributions involved in the chi-bar-square, along with the associated weights.

Author(s)

Charlotte Baey <charlotte.baey@univ-lille.fr>

References

Baey C, Cournède P-H, Kuhn E, 2019. Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models. Computational Statistics and Data Analysis 135:107-122.
Silvapulle MJ, Sen PK, 2011. Constrained statistical inference: order, inequality and shape constraints.

Index

```
approxWeights,2
bootinvFIM, 3
bootstrap (bootinvFIM), 3
chiBarSquareObject, 12
chiBarSquareObject
    (chiBarSquareObject-class), 4
chiBarSquareObject-class,4
dfchisqbar, 4
dfchisqbar,chiBarSquareObject-method
    (dfchisqbar), 4
eqCstr (varTestnlme-internal), 11
extractFIMnlme,5
FIM(extractFIMnlme), 5
funcStruct,5
getVarCovlme4,6
getVarCovnlme, }
gradObjFunction(varTestnlme-internal),
    11
ineqCstr(varTestnlme-internal),11
invFIM(bootinvFIM), 3
jacobianEqCstr (varTestnlme-internal),
    11
jacobianIneqCstr
    (varTestnlme-internal), 11
likelihood (varTest), }
lrt(varTest), }
modelStructlme4 (funcStruct), 5
modelStructnlme (funcStruct), 5
modelStructsaemix (funcStruct), 5
nlme (extractFIMnlme),5
```

objFunction (varTestnlme-internal), 11
pchisqbar, 7
pchisqbar, numeric, chiBarSquareObject,logical-method (pchisqbar), 7
plot.varTestObject, 8
print.varTestObject, 8
summary.varTestObject, 8
symMatrixFromVect
(varTestnlme-internal), 11
test (varTest), 9
varTest, 8,9
varTestnlme-internal, 11
varTestObject, 8
varTestObject (varTestObject-class), 11
varTestObject-class, 11
weightsChiBarSquare, 12

