Package ‘valuer’

February 7, 2018
Type Package

Title Pricing of Variable Annuities

Version 1.1.2

Author Ivan Zoccolan [aut, cre]

Maintainer Ivan Zoccolan <ivan.zoccolan@gmail.com>

Description Pricing of variable annuity life insurance
contracts by means of Monte Carlo methods. Monte Carlo is used to price
the contract in case the policyholder cannot surrender while
Least Squares Monte Carlo is used if the insured can surrender.
This package implements the pricing framework and algorithm described in
Bacinello et al. (2011) <doi:10.1016/j.insmatheco.2011.05.003>.
It also implements the state-dependent fee structure
discussed in Bernard et al. (2014) <do0i:10.1017/asb.2014.13> as well as
a function which prices the contract by resolving the partial differential equation
described in MacKay et al. (2017) <doi:10.1111/jori.12094>.

License GPL-3

LazyData TRUE

RoxygenNote 6.0.1

Depends R (>= 3.2.5), orthopolynom (>= 1.0-5)

Imports R6 (>=2.1.2), ReppEigen (>=0.3.2.8.1), timeDate (>=
3012.100), yuima (>= 1.1.6), ggplot2, Rcpp

Suggests testthat, knitr, rmarkdown, doParallel (>= 1.0.10), foreach
(>=1.4.3), limSolve

LinkingTo Rcpp
VignetteBuilder knitr

URL http://github.com/IvanZoccolan/valuer

BugReports http://github.com/IvanZoccolan/valuer/issues
NeedsCompilation yes

Repository CRAN

Date/Publication 2018-02-07 15:37:45 UTC

http://github.com/IvanZoccolan/valuer
http://github.com/IvanZoccolan/valuer/issues

2

calc_account

R topics documented:

calc_account L e 2
constant_parameterS e e e e e e e e e e e e e e e e e e 3
data_gatherer e 4
financials_BBM2010 e e 4
financials_ BMOP2011 e 5
financials_ BZ2016 e 5
financials_BZ2016bis 6
GMAB . . e 7
GMAB_GMDB e 9
GMDB . . . e 11
GMIB e e e 13
GMWB . . . e e e 16
makeham e e 18
me_gatherer e 19
mortality BBM2010 20
mortality_ BMOP2011 e 20
010 O 21
payoff GMWB e 21
payoff_guarantee e e 22
payoff_ratchet 23
payoff_rollup 24
penalty_class 25
S vt e e e e e e 26
va_bs_engine 26
va_bs_engine2 e 29
VA_BNZINE v v vt e e e e e e e e e e e 32
va_mkh_engine 33
va_pde_PriCero e e e e e 36
va_produCt e e e 38
va_sde_engine e 39
va_sde_engine2 e e e e e e e e 42
va_sde_engine3 L. e e e e e e e 45
yr_fractions e e e e e e 48
Index 49
calc_account Calculates the account
Description

Calculates the account

Usage

calc_account(spot, ben, fee, barrier, penalty)

constant_parameters

Arguments
spot numeric vector with the VA reference fund values
ben numeric vector with the living benefit cash flow
fee numeric scalar with the fee
barrier numeric scalar with the state-dependent barrier
penalty numeric vector with the surrender penalty

constant_parameters Constant parameter class
Description

Class providing a constant parameter object with methods to calculate the integral of the parameter
and the squared parameter over a time span.

Usage

constant_parameters

Format

R6Class object.

Value

Object of R6Class

Methods

integral Calculates the integral given the initial and final times. The arguments are two timeDate
object with the initial and final times. It returns a numeric scalar with the integral

integral_square (public) Calculates the integral of the squared constant parameter given the
initial and final times. The arguments are two timeDate object with the initial and final times.
It returns a numeric scalar with the integral

get (public) get the constant

Examples

r <- constant_parameters$new(0.01)

#0ver the full year (365 days) the integral should evaluate to 0.01

r$integral (timeDate: :timeDate("2016-07-09"), timeDate::timeDate("2017-07-09"))

#0ver the full year the integral square should evaluate to 0.001
r$integral_square(timeDate::timeDate("2016-07-09"), timeDate::timeDate("2017-07-09"))

4 financials. BBM2010

data_gatherer Simple data gatherer

Description

Class which defines a simple data gatherer to hold estimates calculated in a loop.

Usage

data_gatherer

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method
dump_result Saves the argument result which is a numeric scalar

get_results Returns a numeric vector with the point estimates.

financials_BBM2010 BBM?2010 financial processes

Description

List of parameters to initialize a va_sde_engine object to simulate the interest rate, volatility and
log price processes according to the stochastic differential equations specified in BBM2010 - See
References.

Usage
financials_BBM2010

Format
A list with elements:

[[1]] List of parameters for simulate
[[2]] List of parameters for setModel

[[3 1] Vector with indices indicating the interest rate and log price in solve.variable setModel

financials. BMOP2011 5

References

BBM2010 Bacinello A.R., Biffis E. e Millossovich P. "Regression-based algorithms for life insurance
contracts with surrender guarantees". In: Quantitative Finance 10.9 (2010), pp. 1077-1090.

financials_BMOP2011 BMOP2011 financial processes

Description

List of parameters to initialize a va_sde_engine object to simulate the interest rate, volatility and
log price processes according to the stochastic differential equations specified in BMOP2011 - See
References.

Usage

financials_BMOP2011

Format
A list with elements:
[[1 1] List of parameters for simulate

[[2]] List of parameters for setModel

[[3 11 Vector with indices indicating the interest rate and log price in solve.variable setModel

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. e Pitacco E. "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

financials_BZ2016 BZ2016 financial processes

Description

List of parameters to initialize a va_sde_engine2 object to simulate the interest rate and log price
processes being the volatility constant. The interest rate and fund processes follow the stochastic
differential equations specified in BMOP2011 - See References. The volatility is constant with
default value 0.2

Usage

financials_BZ2016

6 financials_BZ2016bis

Format
A list with elements:

[[1 1] List of parameters for simulate
[[2]] List of parameters for setModel

[[3]] Vector with indices indicating the interest rate and log price in solve.variable setModel

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. e Pitacco E. "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.
Examples

#Sets the constant volatility to 0.3
financials_BZ20@16[[1]]1$K <- 0.3 * 2

financials_BZ2016bis BZ2016bis financial processes

Description

List of parameters to initialize a va_sde_engine3 object to simulate the log price and volatility pro-
cesses which follow the stochastic differential equations specified in BMOP2011 - See References.
The interest rate is constant with default value 0.03.

Usage

financials_BZ2016bis

Format
A list with elements:

[[1 1] List of parameters for simulate
[[2]] List of parameters for setModel

[[3 1] Vector with indices indicating the log price in solve.variable setModel

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. e Pitacco E. "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.
Examples

#Sets the interest rate to 2%
financials_BZ2016bis[[1]]$r <- 0.02

GMAB 7

GMAB Variable Annuity with GMAB guarantee

Description

Class for VA with Guaranteed Minimum Accumulation Benefit (GMAB). It supports a simple state-
dependent fee structure with a single barrier.

See References for a description of variable annuities life insurance products, their guarantees and
fee structures.

Usage
GMAB

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:
payoff payoff object of the GMAB guarantee
t@ timeDate object with the issue date of the contract
t timeDate object with the end date of the accumulation period
t1 timeDate object with the end date of the life benefit payment
age numeric positive scalar with the age of the policyholder
fee constant_parameters object with the fee
barrier numeric positive scalar with the state-dependent fee barrier
penalty penalty_class object with the penalty
get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured
set_age set method for the age of the insured

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

8 GMAB

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

set_payoff set method for the payoff_guarantee object.
survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument
spot_values a numeric vector which holds the values of the underlying fund and death_time
a time index with the time of death

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are spot_values vector which holds the values of the underlying fund and t the time index
of the survival benefit.

get_premium Returns the premium as non negative scalar

References
BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM?2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 1%
rate <- constant_parameters$new(0.01)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Five years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("2020-12-31")

age <- 60
A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier
barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

GMAB_GMDB 9

penalty <- penalty_class$new(type = 1, 0.01)

#Sets up a VA contract with GMAB guarantee. The guaranteed miminum

#is the roll-up of premiums with rate 1%

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

GMAB_GMDB Variable Annuity with GMAB and GMDB guarantees

Description

Class for a VA with Guaranteed Minimum Accumulation Benefit (GMAB) and Guaranteed Min-
imum Accumulation Benefit (GMDB). It supports a simple state-dependent fee structure with a

single barrier.
See References for a description of variable annuities life insurance products, their guarantees and

fee structures.

Usage
GMAB_GMDB

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

payoff payoff object of the GMAB guarantee

t@ timeDate object with the issue date of the contract

t timeDate object with the end date of the accumulation period

t1 timeDate object with the end date of the life benefit payment

age numeric positive scalar with the age of the policyholder

fee constant_parameters object with the fee

barrier numeric positive scalar with the state-dependent fee barrier

penalty penalty_class object with the penalty

death_payoff payoff object with the payoff of the GMDB guarantee
get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured

set_age set method for the age of the insured

10 GMAB_GMDB

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

set_payoff set method for the payoff_guarantee object of the GMAB rider
set_death_payoff set method for the payoff_guarantee object of the GMDB rider
survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument
spot_values a numeric vector which holds the values of the underlying fund and death_time
a time index with the time of death

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are spot_values vector which holds the values of the underlying fund and t the time index
of the survival benefit.

get_premium Returns the premium as non negative scalar

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

Examples
#Sets up the payoff as a roll-up of premiums with roll-up rate 1%
rate <- constant_parameters$new(0.01)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Five years time-line
begin <- timeDate::timeDate("2016-01-01")

GMDB 11

end <- timeDate::timeDate("2020-12-31")
#Age of the insured

age <- 60

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02, 365)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier
barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case
penalty <- penalty_class$new(type = 1, 0.01)

#Sets up the GMAB + GMDB with the same payoff for survival and death
#benefits

contract <- GMAB_GMDB$new(rollup, t@ = begin, t = end, age = age, fee =fee,
barrier = barrier, penalty = penalty, death_payoff = rollup)

GMDB Variable Annuity with GMDB guarantee

Description

Class for VA with Guaranteed Minimum Death Benefit (GMDB). It supports a simple state-dependent
fee structure with a single barrier.

See References for a description of variable annuities life insurance products, their guarantees and
fee structures.

Usage
GMDB

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:
payoff payoff object of the GMDB guarantee
t@ timeDate object with the issue date of the contract
t timeDate object with the end date of the accumulation period
t1 timeDate object with the end date of the life benefit payment

12 GMDB

age numeric positive scalar with the age of the policyholder
fee constant_parameters object with the fee
barrier numeric positive scalar with the state-dependent fee barrier

penalty penalty_class object with the penalty
get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured
set_age set method for the age of the insured

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument
spot_values a numeric vector which holds the values of the underlying fund and death_time
a time index with the time of death

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are spot_values vector which holds the values of the underlying fund and t the time index
of the survival benefit.

get_premium Returns the premium as non negative scalar

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

GMIB 13

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 2%
rate <- constant_parameters$new(0.02)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("”2020-12-31")

age <- 60
A constant fee of 0.02% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier
barrier <- Inf

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case
penalty <- penalty_class$new(type = 1, 0.01)

#Sets up a VA contract with GMDB guarantee. The guaranteed miminum
#is the roll-up of premiums with rate 2%

contract <- GMDB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

GMIB Variable Annuity with GMIB guarantee

Description

Class for VA with Guaranteed Minimum Income Benefit (GMIB). A GMIB rider provides a lifetime
annuity from a specified future time. Types of GMIB supported are a whole-life annuity (Ia), an
annuity-certain (Ib) or annuity-certain followed by a deferred whole-life annuity (Ic). It supports a
simple state-dependent fee structure with a single barrier.

See References for a description of variable annuities life insurance products, their guarantees and
fee structures.

Usage
GMIB

Format

R6Class object.

14 GMIB

Details

The annuity payment is assumed to be annual and it’s calculated as the annuitization rate by the
roll-up or ratchet payoff at the end of the accumulation period t.

Value

Object of R6Class

Methods

new Constructor method with arguments:
payoff payoff object of the GMAB guarantee
t@ timeDate object with the issue date of the contract
t timeDate object with the end date of the accumulation period
t1 timeDate object with the end date of the life benefit payment
age numeric positive scalar with the age of the policyholder
fee constant_parameters object with the fee
barrier numeric positive scalar with the state-dependent fee barrier
penalty penalty_class object with the penalty
eta numeric scalar with the market annuitisation rate

type string with the income benefit type: it can be ’Ia’ for a whole-life annuity, "Ib’ for
an annuity-certain with maturity t1, *Ic’ for an annuity certain with maturity t1 followed
with a deferred life-annuity if the insured is alive after t1.

get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured
set_age set method for the age of the insured

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

set_payoff set method for the payoff_guarantee object.
survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

GMIB 15

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument
spot_values a numeric vector which holds the values of the underlying fund, death_time a
time index with the time of death and discounts a numeric vector with the discount factors
at time of death. These latest are used to calculate the death benefit for type Ib and Ic.

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are spot_values vector which holds the values of the underlying fund and time the time
index of the survival benefit. The function will return O if there’s no survival benefit at the
specified time

get_premium Returns the premium as non negative scalar

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach."” In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 1%
rate <- constant_parameters$new(0.01)

premium <- 100

rollup <- payoff_rollup$new(premium, rate)

t0 <- timeDate::timeDate("2016-01-01")

#Five year accumulation period
t <- timeDate::timeDate("2020-12-31")

#Five year annuity certain period
t1 <- timeDate::timeDate("2025-12-31")

age <- 60

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier
barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.01)

#Sets up a VA contract with GMIB guarantee, whole-life (Ia).

16 GMWB

contract <- GMIB$new(rollup, t@ = t@, t = t, age = age, fee = fee,
barrier = barrier, penalty = penalty, eta = 0.04)

#Sets up a VA contract with GMIB gurantee annuity-certain with

#maturity ti1

contract <- GMIB$new(rollup, t0 = t@, t = t, t1 = t1, age = age,

fee = fee, barrier = barrier, penalty = penalty, eta = 0.04, type = "Ib")

GMWB Variable Annuity with GMWB guarantee

Description

Class for a VA product with Guaranteed Minimum Withdrawal Benefit (GMWB). A GMWB rider
allows for periodic withdrawals from the policy account. Types of GMWB supported are with-
drawals up to a fixed date independent of survival (Wa), withdrawals up to fixed date only if the
insured is alive (Wb) or whole life withdrawals (Wc). It supports a simple state-dependent fee
structure with a single barrier.

See References for a description of variable annuities life insurance products, their guarantees and
fee structures.

Usage
GMWB

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

payoff payoff_GMWB object with the amount of the periodic withdrawal
t@ timeDate object with the issue date of the contract

t1 timeDate object with the end date of the contract

age numeric positive scalar with the age of the policyholder

fee constant_parameters object with the fee

barrier numeric positive scalar with the state-dependent fee barrier
penalty penalty_class object with the penalty

type string with the GMWB contract type: it can be 'Wa' for withdrawals up to t1 inde-
pendent of survival,'Wb' for withdrawals up to t1 only if the insured is alive, 'Wc' for
whole life withdrawals.

GMWB 17

freq string with the frequency of withdrawals expressed in months (e.g. '12m' stands for
yearly withdrawals).

get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured
set_age set method for the age of the insured

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

set_payoff set method for the payoff_guarantee object.
survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument:
spot_values a numeric vector which holds the values of the underlying fund, death_time a
time index with the time of death and discounts a numeric vector with the discount factors
at time of death. These latest are used to calculate the death benefit for the GMWB of type Wa

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are: spot_values vector which holds the values of the underlying fund, death_time time
index of the time of death and time the time index of the survival benefit. The function will
return O if there’s no survival benefit at the specified time

get_premium Returns the premium as non negative scalar

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

18 makeham

Examples

#Sets up the periodic payment.

premium <- 100

beta <- 0.1

GMWB_payment <- payoff_GMWB$new(premium, beta)

#Issue date of the contract
t0 <- timeDate::timeDate("2016-01-01")

#Ten years expiration of the guarantee
t1 <- timeDate::timeDate("2025-12-31")
age <- 60

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier
barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case
penalty <- penalty_class$new(type = 1, 0.01)

#Sets up a VA contract with GMWB guarantee type Wa with yearly
#withdrawals for 10 years.

contract <- GMWB$new(GMWB_payment, t0 = t@, t1 = t1, age = age, fee = fee,
barrier = barrier, penalty = penalty, type = "Wa", freq = "12m")

makeham Makeham’s intensity of mortality

Description

Makeham’s intensity of mortality

Usage
makeham(t, x, A, B, ¢)

Arguments

t time as numeric scalar

X age as numeric scalar

mc_gatherer 19

A numeric scalar
B numeric scalar
c numeric scalar
mc_gatherer Monte Carlo gatherer
Description

Class which defines a gatherer for the Monte Carlo simulated values. It has methods to return the
Monte Carlo estimate and Monte Carlo Standard Error of the estimate as well as a convergence
table.

Usage

mc_gatherer

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method
dump_result Saves the argument result which is a numeric scalar

get_results Returns the Monte Carlo estimate and the (estimated) Monte Carlo Standard Error
of the estimate

convergence_table Returns the convergence table

plot Plots a Monte Carlo convergence graph at 95% level

20 mortality BMOP2011

mortality_BBM2010@ BBM?2010 demographic processes

Description
List of parameters to initialize a va_sde_engine object to simulate the intensity of mortality process
according to the stochastic differential equation specified in BBM2010 - See References.

Usage

mortality_BBM2010

Format
A list with elements:
[[1]] List of parameters for simulate

[[2]] List of parameters for setModel

[[3 1] Vector with indices indicating the intensity of mortality in solve.variable setModel

References

BBM2010 Bacinello A.R., Biffis E. e Millossovich P. "Regression-based algorithms for life insurance
contracts with surrender guarantees". In: Quantitative Finance 10.9 (2010), pp. 1077-1090.

mortality_BMOP2011 BMOP2011 demographic processes

Description
List of parameters to initialize a va_sde_engine object to simulate the intensity of mortality process
according to the stochastic differential equation specified in BMOP2011 - See References.

Usage

mortality_BMOP2011

Format
A list with elements:
[[1]] List of parameters for simulate

[[2 1] List of parameters for setModel

[[3 1] Vector with indices indicating the intensity of mortality in solve.variable setModel

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. e Pitacco E. "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

mu Weibull intensity of mortality

Description

Weibull intensity of mortality

Usage

mu(t, x, c1, c2)

Arguments
t time as numeric scalar
X age as numeric scalar
cl numeric scalar
c2 numeric scalar
payoff_GMWB GMWB payoff class
Description

Class providing the periodic payment of a GMWB contract. It is stated as a given percentage of the
premium.

Usage
payoff_GMWB

Format

R6Class object.

Value

Object of R6Class

22 payoff_guarantee

Methods

new Initialize method. The arguments are a non negative scalar with the premium and a scalar
between 0 and 1 with the percentage.

set_premium Stores the premium in a private field. The argument is a non negative scalar

get_premium Returns the premium as non negative scalar

set_beta Sets the percentage. The argument is a scalar between 0 and 1

get_beta Gets the percentage

get_payoff Gets the payoff

Examples

premium <- 100

beta <- 0.15

GMWB_payment <- payoff_GMWB$new(premium, beta)
GMWB_payment$get_payoff ()

payoff_guarantee Generic guarantee payoff class

Description
Class providing an interface for guarantee payoff objects. This class shouldn’t be instantiated but
used as base class for more specialized implementations such as a roll-up or ratchet payoff classes.
Usage

payoff_guarantee

Format

R6Class object.

Value

Object of R6Class

Methods

new (public) Initialize method. The argument is a non negative scalar with the premium.
set_premium (public) Stores the premium in a private field. The argument is a non negative scalar
get_premium (public) Returns the premium as non negative scalar

get_payoff (public) Gets a zero payoff in this base class.The arguments are a numeric vector
with the amounts and a vector of timeDate objects to calculate the payoff

payoff_ratchet 23

payoff_ratchet Ratchet payoff class

Description

Class providing a ratchet payoff object. The payoff will be the highest account value recorded at
some specified times.

Usage

payoff_ratchet

Format

R6Class object.

Value

Object of R6Class

Methods

new Initialize method. The arguments are a non negative scalar with the premium and the ratchet
frequency. Allowed units for the frequency are "m" for 4 weeks, "w" for weeks, "d" for days

set_premium Stores the premium in a private field. The argument is a non negative scalar
get_premium Returns the premium as non negative scalar

set_freq Sets the ratchet frequency. Allowed units for the frequency are "m" for 4 weeks, "w" for
weeks, "d" for days

get_payoff Gets the payoff. The arguments are a numeric vector with the amounts, a vector of
timeDate objects with the start and end dates for the ratchet and a numeric vector with the
account values. (see Examples)

Examples

freq <- "1m"

premium <- 100

ratchet <- payoff_ratchet$new(premium, freq)

t1 <- timeDate::timeDate("2016-01-01")

t2 <- timeDate::timeDate("2016-12-31")

account <- 120 * rnorm(365)
ratchet$get_payoff(c(120,100), c(t1,t2), account)

24 payoff_rollup

payoff_rollup Roll-up of premiums payoff class

Description

Class providing a roll-up of premium payoff object. The payoff is the maximum between the
account value and the roll-up of the premium at a given rate.

Usage

payoff_rollup

Format

R6Class object.

Value

Object of R6Class

Methods

new Initialize method. The arguments are a non negative scalar with the premium and a constant_parameters
object with the roll-up rate.

set_premium Stores the premium in a private field. The argument is a non negative scalar
get_premium Returns the premium as non negative scalar
set_rate Sets the roll-up rate into a private field. The argument is a constant_parameters object

get_payoff Gets the payoff. The arguments are a numeric vector with the amounts and a vector of
timeDate objects with the start and end dates to calculate the roll-up amount (see Examples)

Examples

rate <- constant_parameters$new(0.01)
premium <- 100

rollup <- payoff_rollup$new(premium, rate)
t1 <- timeDate::timeDate("2016-01-01")

t2 <- timeDate::timeDate("2016-12-31")
rollup$get_payoff(c(120,100), c(t1,t2))

penalty_class 25

penalty_class Surrender penalty class

Description

Class providing a surrender charge. It supports a constant surrender charge (type 1) and two surren-
der charges decreasing with time, (type 2 and type 3).

Usage

penalty_class

Format

R6Class object.

Value

Object of R6Class

Methods

new Initialization methods with arguments:
type type of the surrender charge. It can be 1 (constant) or 2 or 3 (decreasing with time).
const positive integer between 0 and 1 with the maximum surrender charge.
T Positive integer with expiry of the VA product.

get get the surrender penalty. Argument is time a scalar in [0, T].
set set the maximum surrender penalty.
get_type get the type of the surrender penalty

Examples

#Sets a constant penalty

penalty <- penalty_class$new(type = 1, const
penalty$get()

penalty$set(0.04)

penalty$get()

#Sets a time decreasing penalty of type 2
penalty <- penalty_class$new(type = 2, const = 0.08, T = 10)
penalty$get(time = @)

penalty$get(time = 2)

penalty$set(0.05)

penalty$get(time = @)

#Sets a time decreasing penalty of type 3

penalty <- penalty_class$new(type = 3, const = 0.08, T = 10)
penalty$get(time = @)

penalty$get(time = 2)

penalty$set(0.05)

penalty$get(time = @)

0.03)

26 va_bs_engine

sq Square root utility function

Description
Takes square root if positive otherwise returns zero. To be used with mean reverting squared root
processes (CIR SDE)

Usage

sq(x)

Arguments

X numeric scalar

va_bs_engine Variable Annuity pricing engine with GBM

Description

Class providing a variable annuity pricing engine with the underlying reference risk neutral fund
modeled as a Geometric Brownian Motion and the intensity of mortality modeled by the Weibull
intensity of mortality. The value of the VA contract is estimated by means of the Monte Carlo
method if the policyholder cannot surrender (the so called "static" approach), and by means of Least
Squares Monte Carlo in case the policyholder can surrender the contract (the "mixed" approach).
See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo.

Usage

va_bs_engine

Format

R6Class object.

Value

Object of R6Class

va_bs_engine 27

Methods

new Constructor method with arguments:
product va_product object
interest constant_parameters object with the interest rate
¢1 numeric scalar argument of the intensity of mortality function mu
c2 numeric scalar argument of the intensity of mortality function mu
spot numeric scalar with the initial fund price
volatility constant_parameters object with the volatility
dividends constant_parameters object with the dividend rate
death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line
simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.
simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.
get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths
do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.
do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC
freq string which contains the frequency of the surrender decision. The default is "3m" which
corresponds to deciding every three months if surrendering the contract or not.
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.
get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors. This method must be implemented by sub-classes.
fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates

npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm
simulate boolean specifying if financial and mortality paths should be simulated.

28 va_bs_engine

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 1%
rate <- constant_parameters$new(0.01)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Ten years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("”2025-12-31")

#Age of the policyholder.

age <- 60

A constant fee of 4% per year (365 days)
fee <- constant_parameters$new(0.04)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- Inf

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.01)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

#Interest rate

r <- constant_parameters$new(@.03)
#Initial value of the underlying fund
spot <- 100

#Volatility

vol <- constant_parameters$new(@.2)
#Dividend rate

div <- constant_parameters$new(0.0)
#Gatherer for the MC point estimates
the_gatherer <- mc_gatherer$new()
#Number of paths to simulate
no_of_paths <- 1e2

#Sets up the pricing engine specifying the va_contract, the interest rate
#the parameters of the Weibull intensity of mortality, the initial fund
#value, the volatility and dividends rate

engine <- va_bs_engine$new(contract, r, c1=90.43, c2=10.36, spot,
volatility=vol, dividends=div)

va_bs_engine2 29

#Estimates the contract value by means of the static approach.

engine$do_static(the_gatherer, no_of_paths)
the_gatherer$get_results()

#Estimates the contract value by means of the mixed approach.
#To compare with the static approach we won't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3,

freq = "3m", simulate = FALSE)
the_gatherer_2%$get_results()

va_bs_engine?2 Variable Annuity pricing engine with GBM and generic mortality

Description

Class providing a variable annuity pricing engine with the underlying reference risk neutral fund
modeled as a Geometric Brownian Motion and the intensity of mortality process specified by a
generic SDE (stochastic mortality). The value of the VA contract is estimated by means of the
Monte Carlo method if the policyholder cannot surrender (the so called "static" approach), and
by means of Least Squares Monte Carlo in case the policyholder can surrender the contract (the
"mixed" approach).

See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo.

Usage

va_bs_engine?2

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:
product va_product object
interest constant_parameters object with the interest rate
spot numeric scalar with the initial fund price

30 va_bs_engine2

volatility constant_parameters object with the volatility
dividends constant_parameters object with the dividend rate
mortality_parms A list of parameters specifying the demographic processes. See mortality_BMOP2011
for an example.
death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line
simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.
simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.
get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths
do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.
do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC
freq string which contains the frequency of the surrender decision. The defaultis "3m"” which
corresponds to deciding every three months if surrendering the contract or not.
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.
get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors. This method must be implemented by sub-classes.
fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:
fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm

simulate boolean specifying if financial and mortality paths should be simulated.

References
BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

va_bs_engine2 31

Examples

Not run:
#Sets up the payoff as a roll-up of premiums with roll-up rate 1%

rate <- constant_parameters$new(0.01)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Ten years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("”2025-12-31")

#Age of the policyholder.

age <- 60

A constant fee of 4% per year (365 days)
fee <- constant_parameters$new(0.04)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- Inf

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.01)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

#Interest rate

r <- constant_parameters$new(@.03)
#Initial value of the underlying fund
spot <- 100

#Volatility

vol <- constant_parameters$new(0.2)
#Dividend rate

div <- constant_parameters$new(0.0)
#Gatherer for the MC point estimates
the_gatherer <- mc_gatherer$new()
#Number of paths to simulate
no_of_paths <- 10

#Sets up the pricing engine specifying the va_contract, the interest rate
#the parameters of the Weibull intensity of mortality, the initial fund
#value, the volatility and dividends rate

engine <- va_bs_engine2$new(contract, r, spot,

volatility=vol, dividends=div, mortality_BMOP2011)

#Estimates the contract value by means of the static approach.

engine$do_static(the_gatherer, no_of_paths)
the_gatherer$get_results()

32 va_engine

#Estimates the contract value by means of the mixed approach.
#To compare with the static approach we won't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3,
freq = "3m”, simulate = FALSE)

the_gatherer_2%$get_results()

End(Not run)

va_engine Generic Variable Annuity pricing engine

Description

Class providing an interface for a generic VA pricing engine.

This class shouldn’t be instantiated but used as base class for variable annuity pricing engines. The
value of the VA contract is estimated by means of the Monte Carlo method if the policyholder
cannot surrender (the so called "static" approach), and by means of Least Squares Monte Carlo in
case the policyholder can surrender the contract (the "mixed" approach).

See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo.

Usage

va_engine

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method

death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line plus one.

simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.

simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.

get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths

va_mkh_engine 33

do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specity if the paths should be simulated from scratch, default is TRUE.
do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate

degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC

freq string which contains the frequency of the surrender decision. The defaultis "3m"” which
corresponds to deciding every three months if surrendering the contract or not.

simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors. This method must be implemented by sub-classes.

fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE
tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4
nmax positive integer with the maximum number of iterations of the bisection algorithm

simulate boolean specifying if financial and mortality paths should be simulated.

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

va_mkh_engine Variable Annuity pricing engine with GBM and Makeham

34 va_mkh_engine

Description

Class providing a variable annuity pricing engine with the underlying reference risk neutral fund
modeled as a Geometric Brownian Motion and the intensity of mortality modeled by the Makeham
intensity of mortality. The value of the VA contract is estimated by means of the Monte Carlo
method if the policyholder cannot surrender (the so called "static" approach), and by means of Least
Squares Monte Carlo in case the policyholder can surrender the contract (the "mixed" approach).
See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo.

Usage

va_mkh_engine

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

product va_product object

interest constant_parameters object with the interest rate

A numeric scalar argument of the intensity of mortality function makeham
B numeric scalar argument of the intensity of mortality function makeham
spot numeric scalar with the initial fund price

volatility constant_parameters object with the volatility
dividends constant_parameters object with the dividend rate

¢ numeric scalar argument of the intensity of mortality function makeham

death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line

simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.

simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.

get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths

do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

va_mkh_engine 35

do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate

degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC

freq string which contains the frequency of the surrender decision. The defaultis "3m"” which
corresponds to deciding every three months if surrendering the contract or not.

simulate boolean to specity if the paths should be simulated from scratch, default is TRUE.

get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors. This method must be implemented by sub-classes.

fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm
simulate boolean specifying if financial and mortality paths should be simulated.

References
BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 1%
rate <- constant_parameters$new(0.01)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Ten years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("2025-12-31")

#Age of the policyholder.

age <- 60

A constant fee of 4% per year (365 days)
fee <- constant_parameters$new(0.04)

36

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- Inf

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.01)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

#Interest rate

r <- constant_parameters$new(0.03)
#Initial value of the underlying fund
spot <- 100

#Volatility

vol <- constant_parameters$new(@.2)
#Dividend rate

div <- constant_parameters$new(0.0)
#Gatherer for the MC point estimates
the_gatherer <- mc_gatherer$new()
#Number of paths to simulate
no_of_paths <- 1e2

#Sets up the pricing engine specifying the va_contract, the interest rate
#the parameters of the Makeham intensity of mortality, the initial fund
#value, the volatility and dividends rate

engine <- va_mkh_engine$new(contract, r, A = 0.0001, B = 0.00035, spot,
volatility = vol, dividends = div, ¢ = 1.075)

#Estimates the contract value by means of the static approach.

engine$do_static(the_gatherer, no_of_paths)
the_gatherer$get_results()

#Estimates the contract value by means of the mixed approach.
#To compare with the static approach we won't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3,

freq = "3m", simulate = FALSE)
the_gatherer_2%$get_results()

va_pde_pricer

va_pde_pricer PDE Pricing of Variable Annuity

va_pde_pricer 37

Description

va_pde_pricer returns the price of a VA with GMAB and GMDB guarantees. The underlying fund
is a GBM and the intensity of mortality is deterministic. The fee has a state-dependent structure.

Usage

va_pde_pricer(F@ = 100, r = 0.03, sigma = 0.165, x = 50, delta = 9,
fee = 0.01, beta = 150, T =5, dt = 0.1, dF = 0.1,
lambda = function(t) makeham(t, x = 50, A = 1e-04, B = 0.00035, c = 1.075),

K = function(t, T) { 0.05 * (1 - t/T)*3 }, Fmax = 500)
Arguments

Fo numeric scalar with the initial value of the underlying fund

r numeric scalar with the constant interest rate

sigma numeric scalar with the constant volatility

X numeric integer with the age of the insured

delta numeric scalar with the roll-up rate of the GMAB and GMDB

fee numeric scalar with the state-dependent base fee

beta numeric scalar with the state-dependent barrier It should be greater than Fo. If
set to Inf the fee structure becomes constant

T numeric integer with the maturity of the contract

dt numeric scalar with the discretization step of the time dimension

dF numeric scalar with the discretization step for the fund dimension

lambda function with the intensity of mortality. Default is makeham with parameters

x =50, A =0.0001, B =0.00035, c = 1.075

K function with the surrender penalty.
Fmax numeric scalar with the maximum fund value
Details

This function resolves the PDE in [MK2017] by means of the finite difference implicit method. It
requires the package limSolve to be installed.

Value

numeric scalar with the VA price

References

MK2017 A. MacKay, M. Augustyniak, C. Bernard, and M.R. Hardy. Risk management of policyholder
behavior in equity-linked life insurance. The Journal of Risk and Insurance, 84(2):661-690,
2017. DOI: 10.1111/jori.12094

38 va_product

Examples

lambda <- function(t) mu(t, x = 50, c1 = 90.43 , c2 = 10.36)
K <- function(t, T) {0.05 x (1 -t / T)"3}

va <- va_pde_pricer(lambda = lambda, K = K, Fmax = 200)

va

va_product Generic Variable Annuity product class

Description

Class providing an interface for a generic VA product object. This class shouldn’t be instantiated
but used as base class for implementing products with contract riders such as GMAB, GMIB, etc.
It supports a simple state-dependent fee structure with a single barrier.

See References for a description of variable annuities life insurance products, their guarantees and

fee structures.

Usage

va_product

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:
payoff payoff object of the GMAB guarantee
t@ timeDate object with the issue date of the contract
t timeDate object with the end date of the accumulation period
t1 timeDate object with the end date of the life benefit payment
age numeric positive scalar with the age of the policyholder
fee constant_parameters object with the fee
barrier numeric positive scalar with the state-dependent fee barrier
penalty penalty_class object with the penalty
get_times get method for the product time-line. Returns a timeDate object
get_age get method for the age of the insured

set_age set method for the age of the insured

va_sde_engine 39

get_barrier get method for the state-dependent fee barrier. Returns a positive scalar with the
barrier

set_barrier set method for the state-dependent fee barrier. Argument must be a positive scalar.

set_penalty_object the argument penalty is a penalty_class object which is stored in a pri-
vate field.

get_penalty_object gets the penalty_class object.

set_penalty set method for the penalty applied in case of surrender. The argument must be a
scalar between 0 and 1.

get_penalty get method for the surrender penalties. It can be a scalar between 0 and 1 in case the
penalty is constant or a numeric vector in case the penalty varies with time.

set_fee set method for the contract fee. The argument is a constant_parameters object with the
fee.

set_payoff set method for the payoff_guarantee object.
survival_benefit_times returns a numeric vector with the survival benefit time indexes.

surrender_times returns a numeric vector with the surrender time indexes. Takes as argument a
string with the frequency of the decision if surrendering the contract, e.g. "3m" corresponds
to a surrender decision taken every 3 months.

times_in_yrs returns the product time-line in fraction of year

cash_flows returns a numeric vector with the cash flows of the product. It takes as argument
spot_values a numeric vector which holds the values of the underlying fund this method
will calculate the cash flows from

survival_benefit Returns a numeric scalar corresponding to the survival benefit. The arguments
are spot_values vector which holds the values of the underlying fund and t the time index
of the survival benefit. The function will return O if there’s no survival benefit at the specified
time

get_premium Returns the premium as non negative scalar

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A., Pitacco E., "Variable annuities: a unifying valu-
ation approach."” In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

BHM2014 Bernard C., Hardy M. and Mackay A. "State-dependent fees for variable annuity guarantees."
In: Astin Bulletin 44 (2014), pp. 559-585.

va_sde_engine General Variable Annuity pricing engine

40 va_sde_engine

Description

Class providing a variable annuity pricing engine where the underlying reference fund and the
intensity of mortality are specified by an arbitrary system of stochastic differential equations. The
simulation is done by means of the yuima package.

The value of the VA contract is estimated by means of the Monte Carlo method if the policyholder
cannot surrender (the so called "static" approach), and by means of Least Squares Monte Carlo in
case the policyholder can surrender the contract (the "mixed" approach).

See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo and [YUIMA2@14] for yuima.

Usage

va_sde_engine

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

product A va_product object with the VA product.

financial_parms A listof parameters specifying the financial processes. See financials_BMOP2011
for an example.

mortality_parms A list of parameters specifying the demographic processes. See mortality_BMOP2011
for an example.

death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line plus one.

simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.

simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.

get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths.

do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:

the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:

the_gatherer gatherer object to hold the point estimates

https://CRAN.R-project.org/package=yuima

va_sde_engine 41

npaths positive integer with the number of paths to simulate

degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC

freq string which contains the frequency of the surrender decision. The default is "3m" which
corresponds to deciding every three months if surrendering the contract or not.

simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors.

fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm
simulate boolean specifying if financial and mortality paths should be simulated.

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

YUIMA2014 Alexandre Brouste, Masaaki Fukasawa, Hideitsu Hino, Stefano M. lacus, Kengo Kamatani,
Yuta Koike, Hiroki Masuda, Ryosuke Nomura, Teppei Ogihara, Yasutaka Shimuzu, Masayuki
Uchida, Nakahiro Yoshida (2014). The YUIMA Project: A Computational Framework for
Simulation and Inference of Stochastic Differential Equations. Journal of Statistical Software,
57(4), 1-51. URL http://www.jstatsoft.org/v57/i04/.

Examples
#Sets up the payoff as a roll-up of premiums with roll-up rate 2%
rate <- constant_parameters$new(0.02)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Five years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("”2020-12-31")

#Age of the policyholder.
age <- 60

42 va_sde_engine2

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.02)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

#Sets up a gatherer of the MC point estimates
the_gatherer <- mc_gatherer$new()
no_of_paths <- 10

#Sets up the pricing engine
engine <- va_sde_engine$new(contract, financials_BMOP2011,
mortality_BMOP2011)

#Estimates the contract value by means of the static approach
engine$do_static(the_gatherer, no_of_paths)

the_gatherer$get_results()

#Estimates the contract value by means of the mixed approach
#To compare with the static approach we don't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3, freq = "3m",

simulate = FALSE)
the_gatherer_2%$get_results()

va_sde_engine2 Variable Annuity pricing engine with general financial processes and
Weibull mortality

Description

Class providing a variable annuity pricing engine where the underlying reference fund and inter-
est rates are specified by an arbitrary system of stochastic differential equations. In contrast the
intensity of mortality is deterministic and given by the Weibull function. The financial paths are
simulated by means of the yuima package.

The value of the VA contract is estimated by means of the Monte Carlo method if the policyholder
cannot surrender (the so called "static" approach), and by means of Least Squares Monte Carlo in
case the policyholder can surrender the contract (the "mixed" approach).

https://CRAN.R-project.org/package=yuima

va_sde_engine2 43

See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo and [YUIMA2014] for yuima.

Usage

va_sde_engine2

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

product A va_product object with the VA product.

financial_parms A list of parameters specifying the financial processes. See financials_BZ2016
for an example.

¢1 numeric scalar argument of the intensity of mortality function mu
c2 numeric scalar argument of the intensity of mortality function mu

death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line plus one.

simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.

simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.

get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths.

do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.
do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate

degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC

freq string which contains the frequency of the surrender decision. The default is "3m" which
corresponds to deciding every three months if surrendering the contract or not.

simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

44 va_sde_engine2

get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors.

fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm
simulate boolean specifying if financial and mortality paths should be simulated.

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

YUIMA2014 Alexandre Brouste, Masaaki Fukasawa, Hideitsu Hino, Stefano M. lacus, Kengo Kamatani,
Yuta Koike, Hiroki Masuda, Ryosuke Nomura, Teppei Ogihara, Yasutaka Shimuzu, Masayuki
Uchida, Nakahiro Yoshida (2014). The YUIMA Project: A Computational Framework for
Simulation and Inference of Stochastic Differential Equations. Journal of Statistical Software,
57(4), 1-51. URL http://www.jstatsoft.org/v57/i04/.

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 2%
rate <- constant_parameters$new(0.02)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#Five years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("2020-12-31")

#Age of the policyholder.

age <- 50

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract

va_sde_engine3 45

#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.02)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,
barrier = barrier, penalty = penalty)

#Sets up a gatherer of the MC point estimates
the_gatherer <- mc_gatherer$new()
no_of_paths <- 10

#Sets up the pricing engine
engine <- va_sde_engine2$new(contract, financials_BMOP2011)

#Estimates the contract value by means of the static approach
engine$do_static(the_gatherer, no_of_paths)

the_gatherer$get_results()

#Estimates the contract value by means of the mixed approach
#To compare with the static approach we don't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3, freq = "3m",

simulate = FALSE)
the_gatherer_2%$get_results()

va_sde_engine3 Variable Annuity pricing engine with general fund processes and
Weibull mortality

Description

Class providing a variable annuity pricing engine where the underlying reference fund is specified
by an arbitrary system of stochastic differential equations. In contrast, the interest rates is constant
and the intensity of mortality is deterministic and given by the Weibull function. The fund paths are
simulated by means of the yuima package.

The value of the VA contract is estimated by means of the Monte Carlo method if the policyholder
cannot surrender (the so called "static" approach), and by means of Least Squares Monte Carlo in
case the policyholder can surrender the contract (the "mixed" approach).

See References -[BMOP2011] for a description of the mixed and static approaches and the algorithm
implemented by this class, [LS2001] for Least Squares Monte Carlo and [YUIMA2014] for yuima.

Usage

va_sde_engine3

https://CRAN.R-project.org/package=yuima

46 va_sde_engine3

Format

R6Class object.

Value

Object of R6Class

Methods

new Constructor method with arguments:

product A va_product object with the VA product.

financial_parms A list of parameters specifying the financial processes. See financials_BZ2016bis
for an example.

interest constant_parameters object with the constant interest rate
¢1 numeric scalar argument of the intensity of mortality function mu
c2 numeric scalar argument of the intensity of mortality function mu

death_time Returns the time of death index. If the death doesn’t occur during the product time-
line it returns the last index of the product time-line plus one.

simulate_financial_paths Simulates npaths paths of the underlying fund of the VA contract
and the discount factors (interest rate) and saves them into private fields for later use.

simulate_mortality_paths Simulates npaths paths of the intensity of mortality and saves them
into private fields for later use.

get_fund Gets the i-th path of the underlying fund where i goes from 1 to npaths.

do_static Estimates the VA contract value by means of the static approach (Monte Carlo), see
References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate
simulate boolean to specity if the paths should be simulated from scratch, default is TRUE.
do_mixed Estimates the VA contract by means of the mixed approach (Least Squares Monte Carlo),
see References. It takes as arguments:
the_gatherer gatherer object to hold the point estimates
npaths positive integer with the number of paths to simulate

degree positive integer with the maximum degree of the weighted Laguerre polynomials used
in the least squares by LSMC

freq string which contains the frequency of the surrender decision. The default is "3m"” which
corresponds to deciding every three months if surrendering the contract or not.

simulate boolean to specify if the paths should be simulated from scratch, default is TRUE.

get_discount Arguments are i,j. Gets the j-th discount factor corresponding to the i-th simu-
lated path of the discount factors.

fair_fee Calculates the fair fee for a contract using the bisection method. Arguments are:

fee_gatherer data_gatherer object to hold the point estimates
npaths numeric scalar with the number of MC simulations to run

va_sde_engine3 47

lower numeric scalar with the lower fee corresponding to positive end of the bisection inter-
val

upper numeric scalar with the upper fee corresponding to the negative end of the bisection
interval

mixed boolean specifying if the mixed method has to be used. The default is FALSE

tol numeric scalar with the tolerance of the bisection algorithm. Default is 1e-4

nmax positive integer with the maximum number of iterations of the bisection algorithm
simulate boolean specifying if financial and mortality paths should be simulated.

References

BMOP2011 Bacinello A.R., Millossovich P, Olivieri A. ,Pitacco E., "Variable annuities: a unifying valu-
ation approach." In: Insurance: Mathematics and Economics 49 (2011), pp. 285-297.

LS2001 Longstaff EA. e Schwartz E.S. Valuing american options by simulation: a simple least-squares
approach. In: Review of Financial studies 14 (2001), pp. 113-147

YUIMAZ2014 Alexandre Brouste, Masaaki Fukasawa, Hideitsu Hino, Stefano M. lacus, Kengo Kamatani,
Yuta Koike, Hiroki Masuda, Ryosuke Nomura, Teppei Ogihara, Yasutaka Shimuzu, Masayuki
Uchida, Nakahiro Yoshida (2014). The YUIMA Project: A Computational Framework for
Simulation and Inference of Stochastic Differential Equations. Journal of Statistical Software,
57(4), 1-51. URL http://www.jstatsoft.org/v57/i04/.

Examples

#Sets up the payoff as a roll-up of premiums with roll-up rate 2%
rate <- constant_parameters$new(0.02)

premium <- 100
rollup <- payoff_rollup$new(premium, rate)

#constant interest rate
r <- constant_parameters$new(0.03)

#Five years time-line
begin <- timeDate::timeDate("2016-01-01")
end <- timeDate::timeDate("”2020-12-31")

#Age of the policyholder.

age <- 50

A constant fee of 2% per year (365 days)
fee <- constant_parameters$new(0.02)

#Barrier for a state-dependent fee. The fee will be applied only if
#the value of the account is below the barrier

barrier <- 200

#Withdrawal penalty applied in case the insured surrenders the contract
#It is a constant penalty in this case

penalty <- penalty_class$new(type = 1, 0.02)

#Sets up the contract with GMAB guarantee

contract <- GMAB$new(rollup, t@ = begin, t = end, age = age, fee = fee,

48

barrier = barrier, penalty = penalty)

#Sets up a gatherer of the MC point estimates
the_gatherer <- mc_gatherer$new()
no_of_paths <- 10

#Sets up the pricing engine
engine <- va_sde_engine3$new(contract, financials_BZ2016bis, interest = r)

#Estimates the contract value by means of the static approach
engine$do_static(the_gatherer, no_of_paths)

the_gatherer$get_results()

#Estimates the contract value by means of the mixed approach
#To compare with the static approach we don't simulate the underlying
#fund paths again.

the_gatherer_2 <- mc_gatherer$new()
engine$do_mixed(the_gatherer_2, no_of_paths, degree = 3, freq = "3m",

simulate = FALSE)
the_gatherer_2%$get_results()

yr_fractions

yr_fractions Normalizes a timeDate sequence into year fractions

Description

Normalizes a timeDate sequence into year fractions

Usage

yr_fractions(times)

Arguments

times A timeDate sequence

Index

+Topic datasets
constant_parameters, 3
data_gatherer, 4
financials_BBM2010, 4
financials_BMOP2011, 5
financials_BZ2016, 5
financials_BZ2016bis, 6
GMAB, 7
GMAB_GMDB, 9
GMDB, 11
GMIB, 13
GMWB, 16
mc_gatherer, 19
mortality_BBM2010, 20
mortality_BMOP2011, 20
payoff_GMWB, 21
payoff_guarantee, 22
payoff_ratchet, 23
payoff_rollup, 24
penalty_class, 25
va_bs_engine, 26
va_bs_engine2, 29
va_engine, 32
va_mkh_engine, 33
va_product, 38
va_sde_engine, 39
va_sde_engine2, 42
va_sde_engine3, 45

calc_account, 2
constant_parameters, 3, 7-10, 12, 14, 16
17,24, 27, 29, 30, 34, 38, 39, 46

data_gatherer, 4, 27, 30, 33, 35,41, 44, 46

financials_BBM2010, 4
financials_BMOP2011, 5, 40
financials_BZ2016, 5, 43
financials_BZ2016bis, 6, 46

GMAB, 7

49

GMAB_GMDB, 9
GMDB, 11
GMIB, 13
GMWB, 16

makeham, 18, 34, 37
mc_gatherer, 19
mortality_BBM2010, 20
mortality_BMOP2011, 20, 30, 40
mu, 21, 27, 43, 46

payoff_GMWB, 21

payoff_guarantee, 8, 10, 14, 17,22, 39

payoff_ratchet, 23

payoff_rollup, 24

penalty_class, 7,9, 10, 12, 14, 16, 17, 25,
38, 39

R6Class, 3, 4,7,9,11, 13, 14, 16, 19, 21-26,
29, 32, 34, 38,40, 43, 46

setModel, 4-6, 20
simulate, 4-6, 20
sq, 26

timeDate, 3,7,9, 11, 12, 14, 16, 17, 22-24,
38, 48

va_bs_engine, 26
va_bs_engine2, 29

va_engine, 32

va_mkh_engine, 33
va_pde_pricer, 36
va_product, 27, 29, 34, 38, 40, 43, 46
va_sde_engine, 39
va_sde_engine2, 5, 42
va_sde_engine3, 6, 45

yr_fractions, 48

	calc_account
	constant_parameters
	data_gatherer
	financials_BBM2010
	financials_BMOP2011
	financials_BZ2016
	financials_BZ2016bis
	GMAB
	GMAB_GMDB
	GMDB
	GMIB
	GMWB
	makeham
	mc_gatherer
	mortality_BBM2010
	mortality_BMOP2011
	mu
	payoff_GMWB
	payoff_guarantee
	payoff_ratchet
	payoff_rollup
	penalty_class
	sq
	va_bs_engine
	va_bs_engine2
	va_engine
	va_mkh_engine
	va_pde_pricer
	va_product
	va_sde_engine
	va_sde_engine2
	va_sde_engine3
	yr_fractions
	Index

