
Data Validation Infrastructure for R

Mark P.J. van der Loo

Statistics Netherlands
Edwin de Jonge

Statistics Netherlands

Abstract

Checking data quality against domain knowledge is a common activity that pervades
statistical analysis from raw data to output. The R package validate facilitates this
task by capturing and applying expert knowledge in the form of validation rules: logical
restrictions on variables, records, or data sets that should be satisfied before they are
considered valid input for further analysis. In the validate package, validation rules are
objects of computation that can be manipulated, investigated, and confronted with data
or versions of a data set. The results of a confrontation are then available for further
investigation, summarization or visualization. Validation rules can also be endowed with
metadata and documentation and they may be stored or retrieved from external sources
such as text files or tabular formats. This data validation infrastructure thus allows for
systematic, user-defined definition of data quality requirements that can be reused for
various versions of a data set or by data correction algorithms that are parameterized by
validation rules.

Keywords: data checking, data quality, data cleaning, R.

Citation. MPJ van der Loo and E de Jonge (2019), Data Validation Infrastructure for R,
Journal of Statistical Software (accepted for publication).

1. Introduction

Checking whether data satisfy assumptions based on domain knowledge pervades data ana-
lyses. Whether it is raw data, cleaned up data, or output of a statistical calculation, data
analysts have to scrutinize data sets at every stage to ensure that they can be used for re-
porting or further computation. We refer to this procedure of investigating the quality of a
data set and deciding whether it is fit for purpose as a ‘data validation’ procedure.

Many things can go wrong while creating, gathering, or processing data. Accordingly there
are many types of checks that can be performed. One usually distinguishes between technical
checks that are related to data structure and data type, and checks that are related to the
topics described by the data. Examples of technical checks include testing whether an ‘age’
variable is numeric, whether all necessary variables are present, or whether the identifying
variable (primary key) is unique across records. Examples of tests that relate to subject matter
knowledge include range checks (the age of a person should be between 0 and say, 120), and
consistency checks between variables (a person under the age of 18 can not be married). Some
checks require simple comparisons, while others involve elaborate calculations. For example
consider a check where we test that the mean profit to turnover ratio in a certain economic
sector has not changed more than 10% between the current quarter and the same quarter last

2 Data validation infrastructure for R

year. To execute such a check we need data on profit and turnover for two quarters, compute
their ratios (taking exceptions such as dividing by zero into account), average them, and then
compare the relative absolute difference with a fixed value (0.1).

Since data validation is such a common and diverse task, it is desirable to use a dedicated tool
that allows one to systematize and organize data validation procedures. There are several
recent contributions to the R language (R Core Team 2019) that aim to support this in a
systematic way. The pointblank package of Iannone (2018) allows users to test data against
a number of hard-coded validation checks. For example, there are separate functions to
determine whether values in a column are positive, nonnegative, or in a certain range. The
dataMaid package (Petersen and Ekstrøm 2019) creates generic summary reports and figures
that are aimed at detecting common problems with data. Detected problems include the
presence of special values (such as Inf), empty strings and identifying potential outliers.
Fischetti (2019) published the assertr package, which allows for checking data against a
number of predefined (and parameterized) data checks called ‘predicates’. It is specifically
geared for use with a function composition operator such as the magrittr ‘forward pipe’
operator of Bache and Wickham (2014). Depending on the outcome of a predicate a custom
function can be evaluated and the utility of assertr is therefore comparable to a try-catch
mechanism. The editrules package (de Jonge and van der Loo 2018) allows users to specify
their own checks (called ‘edit rules’) and apply them to data. The checks that can be specified
are limited to simple in-record linear equalities and inequalities over the variables, and certain
conditional checks (e.g., IF age < 18 THEN married == FALSE).

The validate package (van der Loo and de Jonge 2019) presented in this paper takes an
approach that is more general than the packages mentioned above. Specifically, validate does
not limit the type of checks by hard-coding them or by limiting them to certain rule types.
Instead it provides a convenient domain specific language (DSL) in which the user can express
any type of validation task in the form of any number of ‘validation rules’. The package takes
care of reading, parsing and applying the rules to the data and offers tools to analyze and
visualize the results. Moreover, it treats these validation rules as first-class citizens so they
can be organized, manipulated, and analyzed like any other data type.

Defining a language specifically for the definition of validation rules has several advantages.
First, a formal language necessarily implements a strict demarcation of the concept of ‘data
validation’. A data validation language therefore incites users to separate their thinking about
data quality requirements from the data processing work flow. Second, expressing data qual-
ity requirements in the form of a formal data validation language allows for unambiguous and
clear communication of data quality or data quality requirements between data producers
and consumers. Third, it allows for systematic development and maintainance of data qual-
ity requirements based on established techniques for developing source code. This includes
practices like testing, reviewing, documenting, and version control. Fourth, it allows for the
reuse of validation rules for purposes other than quality measurement. Important examples
include the use of algorithms that can automatically find errors and adjust data to satisfy the
validation rules (de Waal, Pannekoek, and Scholtus 2011; van der Loo and de Jonge 2018).
Some examples of this are reported in Section 5. Finally, treating validation rules as enities on
their own opens up interesting new avenues of inquiry including questions like: ‘which rules
were violated most often?’ and ‘what variables were involved in these rules?’ Such statistics
can provide valuable clues to issues related to data gathering and processing that occurred
prior to data validation.

Mark P.J. van der Loo, Edwin de Jonge 3

The current version of the package is limited to validating data that is represented as records
in an R data frame. This means that in its current form other useful data types including
networks, geographical data, time series or (high-dimensional) arrays are excluded. However,
the package is extendable so it is possible to add such functionality without altering its
associated workflow or syntax.

In the remainder of this paper we first give a more precise definition of data validation
(Section 2). Next, in Section 3 we discuss how this definition is implemented in a domain
specific language and demonstrate the basic data validation work flow with the package.
We also demonstrate how validate treats validation as first-class citizens, allowing users to
create, read, update, and delete (CRUD) rules interactively. Rules can also be endowed with
metadata such as names and descriptions and we discuss how rules can be imported from,
and exported to several formats. Section 3 also discusses options such has how to control
the accuracy when testing numerical equalities during data validation, and how to analyse
and visualise the results of a data validation. In Section 4 we provide some background and
discuss the object model that is implemented by the package. In Section 5 we demonstrate
how validate can be used to both control and monitor a small data cleaning task. We conclude
with a summary and outlook in Section 6.

2. Data validation

Intuitively, data validation is a decision-making process where, based on data investigations,
one decides whether the data set is fit for its intended purpose. This notion is made more
precise in the following definition, which is currently the operational definition for the Eu-
ropean Statistical System1 (Di Zio, Fursova, Gelsema, Giessing, Guarnera, Ptrauskiene, von
Kalben, Scanu, ten Bosch, van der Loo, and Walsdorfe 2015).

Data validation is an activity in which it is verified whether or not a combination
of values is a member of a set of acceptable value combinations.

In other words, one considers the collection of all datasets that might be observed, and defines
data validation as a procedure that selects the datasets that are acceptable for further use.
This definition is general enough to permit a precise formal definition but also includes the
option to approve data by expert review.

To develop the formal side, the following definition is sufficient for our purpose (van der Loo
and de Jonge 2020).

A data validation function is a function v that accepts a data set and returns an
element in {TRUE, FALSE}. There is at least one data set s for which v(s) = TRUE

and at least one data set s′ for which v(s′) = FALSE.

We say that s passes v if v(s) = TRUE and that s fails v if v(s) = FALSE. The definition
requires that validation functions are surjective on {TRUE, FALSE} for the following reasons.

1The European Statistical System (ESS) is a partership between Eurostat (the European Union statistical
authority) and statistical authorities of member states of the European Union, the European Free Trade Asso-
ciation (EFTA) and the European Economic Area (EEA). See https://ec.europa.eu/eurostat/web/european-
statistical-system

4 Data validation infrastructure for R

On one hand, if v(s) = TRUE for every possible data set s, it does not distinguish between
valid and invalid data (a clear property demanded by the ESS definition). On the other hand,
if v(s) = FALSE for each possible data set s, then v must be a contradiction since no data can
ever satisfy the demand expressed by v.

It is possible to define the concept of ‘each possible data set’ formally by defining data sets as
collections of key-value pairs in a precise way. For a complete formal treatment of validation
functions and some of their general properties we refer the reader to van der Loo and de Jonge
(2020), Di Zio et al. (2015, Section 5) or van der Loo and de Jonge (2018, Chapter 6). For now,
it is important to note that the definition does not pose any restriction on the form of data
set that is under scrutiny. In the current definition a data set is viewed as an unstructured set
of key-value pairs and we do not impose a topology such as relational or network structure.

2.1. Validation functions and validation rules

A validation function can be defined by fixing a set of restrictions on a data set. For example
consider a data set with variables age and employment. Before using the data set in a
statistical analysis we wish to ensure that age is in the range [0, 120] and that persons under
the age of 15 do not have a paid job (have no employment). Knowing to what population the
data pertains, we also find it highly implausible to have an unemployment fraction exceeding
30%. These demands can be expressed as a rule set


















age ≥ 0 for all ages
age ≤ 120 for all ages
IF employment == "employed" THEN age ≥ 15 for all age-employment combinations
(nr. of records with employment == "unemployed")/(nr. of records) ≤ 0.3,

The corresponding validation function evaluates each rule on a data set and returns the logical
conjunction (AND) of their values.

Each restriction is ultimately a logical predicate, with propositions that possibly consist of
complex calculations on the data. In validate this is implemented by allowing users to define
a set of restrictions in the form of R expressions that evaluate to a scalar or vector of type
logical. The package then takes care of confronting rules with data and of the administration
of the rules and results.

3. Data validation with validate

A data validation task can be split up in three consecutive subtasks: loading the data and
the validation rules, confronting the data with the rules, and transforming and analyzing the
results. In what follows, we first demonstrate this workflow with an example. Next, detailed
descriptions of the most important features of the package are given in Sections 3.1–3.7. An
overview of the workflow is also given in Figure 1.

In the following we use the retailers data set included with the package. This data set
consists of 60 records with information on supermarkets, such as the number of staff employed,
several income amounts and several cost items.

R> library("validate")

R> data("retailers")

R> head(retailers[3:8], 3)

Mark P.J. van der Loo, Edwin de Jonge 5

validator() confront()

- CLI
- Free text
- YAML
- Data frame

validator

- validation rules
- metadata
- options

data.frame

validation

- results
- signals (errors,
warnings)

values()

summary()

...

Define and maintain rules Confront data with rules Analyze results

Figure 1: Overview of the main workflow and objects in validate.

staff turnover other.rev total.rev staff.costs total.costs

1 75 NA NA 1130 NA 18915

2 9 1607 NA 1607 131 1544

3 NA 6886 -33 6919 324 6493

R> retailers$id <- sprintf("RET%2d",1:nrow(retailers))

In the last expression we add a primary key to be better able to identify results later. Having
access to a unique record identifier is not strictly necessary but it does make connecting
validation results to original data easier later on in this example.

To test this data we first capture a set of restrictions in a ‘validator’ object, using a function
of the same name. We start with a few rules defined on the command-line.

R> rules <- validator(

+ st = staff >= 0

+ , to = turnover >= 0

+ , or = other.rev >= 0

+ , st.cs = if (staff > 0) staff.costs > 0

+ , bl = turnover + other.rev == total.rev

+ , mn = mean(profit, na.rm=TRUE) >= 1

+)

The first three rules are non-negativity restrictions. The fourth rule indicates that when a
retailer has employees (staff), there must be associated costs. The fifth rule is an account
balance check and the last rule expresses that perhaps some individual retailers have negative
profit (loss), but the sector as a whole is expected to be profitable. Each rule is given a (very)
short name. For instance the first rule is named "st".

To test the data against these rules, we use the function confront.

R> confront(retailers, rules, key="id")

6 Data validation infrastructure for R

Object of class 'validation'

Call:

confront(dat = retailers, x = rules, key = "id")

Confrontations: 6

With fails : 2

Warnings : 0

Errors : 0

The resulting object holds validation results and some metadata on the data validation pro-
cedure. When printed, it shows the number of ‘confrontations’ performed (there are six rules)
and number of confrontations that resulted in at least one failure. The number of warnings
and errors do not refer to data failing a rule. Rather, they show whether trying to execute a
rule raised a warning or error. An error occurs when a rule cannot be executed, for example
when it refers to a variable that is not in the data set.

R> # We use a variable not occurring in the dataset

R> badrule <- validator(employees >= 0)

R> confront(retailers, badrule)

Object of class 'validation'

Call:

confront(dat = retailers, x = badrule)

Confrontations: 1

With fails : 0

Warnings : 0

Errors : 1

In section §3.6 we explain in more detail how to handle errors or warnings. Here, we return
to the original rule set stored in rules and summarize the results.

R> check <- confront(retailers, rules, key="id")

R> summary(check)

name items passes fails nNA error warning

1 st 60 54 0 6 FALSE FALSE

2 to 60 56 0 4 FALSE FALSE

3 or 60 23 1 36 FALSE FALSE

4 st.cs 60 50 0 10 FALSE FALSE

5 bl 60 19 4 37 FALSE FALSE

6 mn 1 1 0 0 FALSE FALSE

expression

1 (staff - 0) >= -1e-08

2 (turnover - 0) >= -1e-08

3 (other.rev - 0) >= -1e-08

4 !(staff > 0) | (staff.costs > 0)

Mark P.J. van der Loo, Edwin de Jonge 7

5 abs(turnover + other.rev - total.rev) < 1e-08

6 mean(profit, na.rm = TRUE) >= 1

The summary method returns a data frame where each row represents one validation rule.
The second column (items) lists how many results each rule returned, i.e., how many items
were checked with the rule. Here, the first five rules are executed for each row in the data set
so there are 60 items (each row is one item). The last rule returns a single value. Calculating
this value involves comparing the mean profit with a positive number, so the ‘profit’ column
is the single item under scrutiny.

The next two columns list how many items passed, or failed the test. The nNA column shows
how many tests resulted in NA because one or more of the data points needed to evaluate
the rule were missing. The columns named error and warning indicate whether an error or
warning occurred during evaluation, and the last column shows the actual expression used
to evaluate the rule. Depending on the rule, the original expressions are manipulated, for
example to account for machine rounding errors (rule 1–3, and 5) or to vectorize the statement
(rule 4). The choices made in these conversions can be influenced with parameters that will
be detailed in Subsection 3.7.

The full set of results can be extracted, for example in the form of a data frame:

R> output <- as.data.frame(check)

R> tail(output,3)

id name value expression

299 RET59 bl NA abs(turnover + other.rev - total.rev) < 1e-08

300 RET60 bl NA abs(turnover + other.rev - total.rev) < 1e-08

301 <NA> mn TRUE mean(profit, na.rm = TRUE) >= 1

The output is a record for each validation on each item, with columns identifying the item (if
possible), the name of the validation rule, the result and the R expression used in obtaining
the result.

A very short summary of the results can be extracted with all, which returns TRUE only
when all tests are passed.

R> # passing all checks?

R> all(check)

[1] FALSE

R> # ignore missings:

R> all(check, na.rm=TRUE)

[1] FALSE

With plot we can quickly visualize the results. Here, we only visualize results of rules 1–5
because these are the rules rules that are applied to more than one item. The result is shown
in Figure 2.

8 Data validation infrastructure for R

st

to

st.c

or

bl

retailers

0 10 20 30 40 50 60

(staff − 0) >= −1e−08

(turnover − 0) >= −1e−08

!(staff > 0) | (staff.costs > 0)

(other.rev − 0) >= −1e−08

abs(turnover + other.rev − total.rev) < 1e−08

Itemsfails passes nNA

Figure 2: Barplot of validation results.

R> plot(check[1:5], main='retailers')

Until now we used validator to first create a rule set and then confront, to confront data
with rules. In the following sections we shall sometimes use check_that which combines these
steps.

R> ## this

R> out <- check_that(retailers, staff >= 0, other.rev >= 0)

R> ## is equivalent to

R> out <- confront(retailers, validator(staff>=0, other.rev >= 0))

3.1. Domain specific languages

According to Fowler (2010), a domain specific language (DSL) is “a computer programming
language of limited expressiveness focused on a particular domain”. DSLs are commonly di-
vided into standalone DSLs that can be run within a specific software and embedded DSLs
that are developed as a subset of expressions of an existing language (Gibbons 2013). Exam-
ples of standalone DSLs are the BLAISE scripting language for survey questionnaire design
(Statistics Netherlands 2018) and the relatively new VTL language for data validation and
transformation (VTL task force and SDMX technical working group 2018). A well-known
example of a DSL in R is the set of expressions accepted by the subset function. Recall
that if d is a data frame then subset(d, <expression>) returns the records in d satisfying
<expression>. The DSL for subset is a set of R expressions that evaluate to a logical vector
suitable for filtering records from d.

There are several reasons why R (R Core Team 2019) is a good choice for hosting an embedded
DSL. First, it offers all the necessary technical tools out of the box: R expressions can be
manipulated and investigated just like any other variable. In validate this is used to check

Mark P.J. van der Loo, Edwin de Jonge 9

if an expression passed to validator can be interpreted as a validation rule. R also offers
functions such as eval. This function accepts an unevaluated R expression and a data set
and evaluates the expression using data in the data set. In validate such a construction is
used to execute validation rules for a data set. Second, R and its packages offer an immense
amount of well-defined and well-tested (statistical) functionality. A DSL that is built in R

inherits all this functionality for free.

3.2. A domain specific language for data validation

The DSL implemented in validate consists of R expressions that evaluate to ‘logical’, plus
some special expressions that do not evaluate to ‘logical’ but that make certain common
data validation tasks easier. This section is devoted to the expressions that evaluate to a
‘logical’. Other syntax elements (‘syntactic sugar’) are discussed in the next section.

To ensure that an expression stored in a ‘validator’ object results in a ‘logical’, it is
inspected when the user defines it. When a user passes an expression that is not part of our
DSL, it is ignored with a warning.

R> rules <- validator(x > 0, mean(x))

Warning message:

Invalid syntax detected, the following expressions have been ignored:

[002] mean(x)

Here, the first expression is recognized as part of the DSL because the final operation to
be evaluated (the > comparison operator) must yield a ‘logical’. This is not true for the
second expression which just computes a mean. For each expression defined by the user, the
validator function compares the final operation with a list of allowed final operations. An
overview of these operations is given in the table below. They can be separated into unary
and binary operators or functions. Let us clarify their use with some examples.

Table 1: Basic operations and functions that define a validation rule.
Type R function or operator

Unary operators or functions !, all, any, grepl, any is. function.
Binary operators or functions <, <=, ==, identical, !=, >=, >, %in%, if, ~

Helper functions is_unique, all_unique, is_complete, all_complete

Example 1: checking for duplicates. The retailers dataset has an id variable. Requier-
ing it to be unique can be expressed as follows.

R> checks <- check_that(retailers, !any(duplicated(id)))

R> all(checks)

[1] TRUE

Or, using one of the helper functions

10 Data validation infrastructure for R

R> all(check_that(retailers, all_unique(id)))

[1] TRUE

The advantage of all_unique is that it accepts a comma-separated list of variable names so
it is also possible to check for uniqueness of combinations of values.

Example 2: checking variable type. Any function starting with ‘is.’ is accepted as a
data validation function. Below we demand that turnover is a numeric variable and size is
a categorical variable (factor).

R> checks <- check_that(retailers, is.numeric(turnover), is.factor(size))

R> all(checks)

[1] TRUE

The use of comparison operators (<,<=,. . .) was demonstrated in Section 2. The next example
demonstrates how more complex validation rules can be built up by reusing functionality
already present in R.

Example 3: correlation between variables. Suppose we wish to check whether the
correlation between two variables height and weight in the women dataset is larger than 0.5.

R> correlation_check <- validator(cor(height,weight) > 0.5)

R> summary(confront(women, correlation_check))

name items passes fails nNA error warning expression

1 V1 1 1 0 0 FALSE FALSE cor(height, weight) > 0.5

The unary operators and functions also include R’s grepl function which accepts a regular
expression and a ‘character’ vector, and returns TRUE for each element of the ‘character’
vector that matches the regular expression.

Example 4: pattern matching a text variable. The following rule tests if the size

variable always consists of a string starting with "sc", followed by a number.

R> checks <- check_that(retailers, grepl("^sc[0-9]$", size))

R> all(checks)

[1] TRUE

Mark P.J. van der Loo, Edwin de Jonge 11

Example 5: testing a variable against a code list. Since size is a categorical variable,
we can use the binary %in% operator to check the values against an explicit list of allowed
values.

R> checks <- check_that(retailers, size %in% c("sc0","sc1","sc2","sc3"))

R> all(checks)

[1] TRUE

The binary operations ‘if’ and ‘~’ (tilde) have special interpretations that need to be explained
in more detail. The if function is interpreted as a logical implication that results in a truth
value. In propositional logic, it is usually denoted with an arrow as in P ⇒ Q (P implies Q),
where P and Q are propositions that can be either TRUE or FALSE. The truth table for this
operation is given below.

P Q P ⇒ Q

FALSE FALSE TRUE
FALSE TRUE TRUE
TRUE FALSE FALSE
TRUE TRUE TRUE

It is a classic result from propositional logic that P ⇒ Q is equal to ¬P ∨ Q [(not P) or
Q], in the sense that both expressions have the same truth table. This result is exploited by
validate by translating rules of the form if(P) Q to !(P) | Q. This translation allows R to
execute the test in a vectorized manner, resulting in a significant speed gain.

Example 6: conditional rules. When a company employs staff, there should be associ-
ated staff costs.

R> check <- check_that(retailers, if (staff > 0) staff.costs > 0)

R> all(check, na.rm=TRUE)

[1] TRUE

R> summary(check)

name items passes fails nNA error warning

1 V1 60 50 0 10 FALSE FALSE

expression

1 !(staff > 0) | (staff.costs > 0)

The summary shows that indeed the original expression has been rewritten. Comparing the
rule with the truth table, we see that according to this rule it is acceptable for a company to
employ no staff and have no staff costs; to have staff costs without employing staff; and to
employ staff and have staff costs. It is not acceptable to employ staff and not have any staff
costs. If it is reasonable to expect staff whenever there are staff costs, a second rule of the
form if (staff.costs > 0) staff > 0 must be defined.

12 Data validation infrastructure for R

The last operation we discuss here is the ~ (tilde) operator. This is used to indicate so-called
functional dependencies. A functional dependency expresses a relation between multiple
records in relational data. For example given two variables street and postal_code we
could specify that ‘if two records have the same street name, they must have the same postal
code‘. In validate, this would be expressed as

R> rules <- validator(street ~ postal_code)

If we also have a variable called city, we could state that if two records have the same city
and street, they must have the same postal code. This would be expressed as

R> rules <- validator(city + street ~ postal_code)

Similarly, we can express the relation ‘if two records have the same postal code, they must
have the same values for city and street‘.

R> rules <- validator(postal_code ~ city + street)

Functional dependencies are have been researched extensively in the field of database theory.
Some interesting sources include Armstrong (1974); Beeri, Dowd, Fagin, and Statman (1984);
Bohannon, Fan, Geerts, Jia, and Kementsietsidis (2007) and references therein.

3.3. Syntactic sugar

The term ‘syntactic sugar’ refers to elements of a syntax that are not strictly necessary but
make common tasks easier. The validate DSL includes some syntactic sugar to refer to the
dataset as a whole, to store and reuse intermediate results, and to apply the same rule to
multiple variables. We discuss these syntax elements with a few examples while an overview
is given in Table 2.

Syntactic sugar 1: inspecting metadata. An important class of data validation involves
checking metadata, including the dimensions of a data set or the presence of certain variables.
In the previous section it was shown how rules can refer to individual variables in a data set,
but to test metadata, it is convenient to have access to the data set as a whole. This is
implemented using ‘.’.

R> rules <- validator(

+ nrow(.) >= 100

+ ,"Species" %in% names(.))

Here, the ‘.’ refers directly to the data set (here, the iris data frame) passed to confront.

Syntactic sugar 2: reuse calculations. The := operator can be used to store interme-
diate calculation for reuse. In the following rule set we check if the fraction of ‘versicolor’ is
between 0.25 and 0.50. To do so, we first compute the fraction and reuse that to check the
bounds.

Mark P.J. van der Loo, Edwin de Jonge 13

Table 2: Syntactic sugar
Syntax element Description

. Refers to the whole dataset, e.g., nrow(.) > 10

:= Store intermediate result, e.g., med := median(x)

var_group() Create a list of variables to be reused in rules, e.g.,
G := var_group(X, Y, Z)

R> rules <- validator(

+ fraction := mean(Species == "versicolor")

+ , vc_upr = fraction >= 0.25

+ , vc_lwr = fraction <= 0.50)

The := operator can be used as if it were the standard assignment operator in R. The main
difference is that the right-hand-side of A := B is not evaluated immediately. Rather, in any
rule after the definition of A := B the use of A is replaced by B. We can see this by confronting
the rule set from the example with the iris data set and inspecting the expressions that have
been evaluated.

R> as.data.frame(confront(iris, rules))["expression"]

expression

1 mean(Species == "versicolor") >= 0.25

2 mean(Species == "versicolor") <= 0.5

Syntactic sugar 3: referring to external data. For some data validation purposes it
is necessary or convenient to have access to external reference data. For example, we may
want to retrieve the list of valid Species values from an external source. This can be done
as follows.

R> codelist <- data.frame(

+ validSpecies = c("versicolor", "virginica","setosa")

+ , stringsAsFactors=FALSE)

R> rules <- validator(Species %in% ref$validSpecies)

R> summary(confront(iris, rules, ref=codelist))[1:5]

name items passes fails nNA

1 V1 150 150 0 0

Note that the reference data is passed via the ref argument of confront. There are several
ways to pass reference data in this way, including data frames, lists, or environments.

Syntactic sugar 4: same rules, multiple variables. When many variables need to
satisfy a similar set of rules, rule definition can become cumbersome. A common example
occurs when many variables are measured on the same scale such as [0, 1] or {1, 2, 3, 4, 5}, and

14 Data validation infrastructure for R

all these ranges need to be checked. Such cases are facilitated with the concept of ‘variable
groups’. This is essentially a list of variable names that can be reused inside a rule.

Explicitly, the following set of rules (defining that all of x, y, and z are between 0 and 1)

R> rules <- validator(x >= 0, y >= 0, z >= 0, x <= 1, y <= 1, z <= 1)

is equivalent to

R> rules <- validator(G := var_group(x, y, z), G >= 0, G <= 1)

The rule sets are expanded when confronted with data. If multiple variable groups are used
in a single validation rule, the expansion is based on the Cartesian product of the variables
defined in the variable groups.

3.4. Validator objects

Every data validation rule expresses an assumption about a data set. When the number of
such validation rules grows, it becomes desirable to be able to manage them with CRUD
(create, read, update, delete) operations, to describe, analyze, and manipulate them. There
are also benefits in having access to rule metadata, such as a rule name or description. Such
information can then be included in automatically generated data quality reports or dash-
boards. The purpose of ‘validator’ objects is to import, manipulate, and export validation
rules and their metadata. In this section we demonstrate how to manipulate and investigate
validation rules and their metadata, in the next section we focus on import and export of rule
sets.

Objects of class ‘validator’ behave much like an R list. They can be subsetted with the
square bracket operator, and a single element can be extracted using double square brackets.

R> rules <- validator(minht = height >= 40, maxht = height <= 95)

R> # Subsetting returns a 'validator' object.

R> rules[2]

Object of class 'validator' with 1 elements:

maxht: height <= 95

Rules are evaluated using locally defined options

A single element is an object of class ‘rule’. It holds an expression and some metadata.

R> rules[[1]]

Object of class rule.

expr : height >= 40

name : minht

label :

description:

origin : command-line

created : 2019-12-16 13:41:20

meta : language<chr>, severity<chr>

Mark P.J. van der Loo, Edwin de Jonge 15

Table 3: An overview of functions to investigate or manipulate ‘validator’ objects.
Function description

summary Summarize properties
plot Matrix plot showing what variables occur in each rule
‘[‘ Create new ‘validator’ with subset of rules
‘[[‘ Extract a single rule with its metadata
length Number of rules
as.data.frame Store rules (as character) and metadata in data frame
variables Which variables occur in a ‘validator’?
names, names<- get, set rule names
label, label<- get, set rule labels
description, description<- get, set rule description
origin, origin<- get, set rule origin
created, created<- get, set rule timestamp
meta, meta<- get, set generic metadata
+ combine two validator instances

Here, label and description are short and long descriptions of the rule respectively. These
have to be defined by the user. The fields origin and created are automatically filled when
the rules are defined. The meta field allows the user to add extra metadata elements.

Metadata can be extracted and defined in ways that should be familiar to R users. For
example, setting labels is done as follows.

R> label(rules) <- c("least height", "largest height")

R> rules

Object of class 'validator' with 2 elements:

minht [least height] : height >= 40

maxht [largest height]: height <= 95

For each field there is a get and set function that works similar to the names function of R.
The meta field can be manipulated with the meta function, which works similar to R’s attr

function. An overview of functions for manipulating ‘validator’ instances is given in Table 3.

For larger rule sets it is interesting to query which variables are covered and by which rules.
This is done with variables, which returns an overview of variable coverage by the rule set.

R> variables(rules)

[1] "height"

R> variables(rules, as='matrix')

variable

rule height

minht TRUE

maxht TRUE

16 Data validation infrastructure for R

Table 4: Import and export of validation rules.
Function Description

validator(...) Define rules on the command-line
validator(.file=) Read rules from file
validator(.data=) Read rules from data frame
export_yaml Export to YAML format
as.data.frame Transform ‘validator’ to ‘data.frame’ (lossy)

One use is to automatically detect whether all variables in a data set are covered in by a rule
set.

R> all(names(women) %in% variables(rules))

[1] FALSE

R> names(women)[!names(women) %in% variables(rules)]

[1] "weight"

There are other interesting questions to be asked about rule sets, for example whether there
are any redundancies or even contradictions. For this more advanced type of functionality
the reader is referred to the complementary validatetools package (de Jonge and van der Loo
2019).

3.5. Import and export of rule sets

Validation rules can be defined in several unstructured and structured formats. The unstruc-
tured formats include definition on the command line and definition via an unstructured text
file (source code). Structured formats include data frames or YAML files (yaml.org 2015)
where each rule can be endowed with metadata. Here we discuss some advantages and disad-
vantages of the methods for storing and exporting data validation rule sets (see also Table 4).

A rule set and its metadata can be exported to data frame using as.data.frame as usual
in R. Reading from data frame is done using validator(.data=). Import from and export
to data frame is especially useful in situations where rule sets are stored in a centralized
repository that is implemented as a data base. A disadvantage of using data frames is that
metadata that pertains to the rule set as a whole will be lost when exporting to data frame.
In particular, option settings particular to a rule set are not retained when exporting to data
frame. For extensive rule sets an approach using structured or unstructured text files, or a
combination thereof may better suit the needs.

Text files offer the most flexible way of defining rule sets in validate. Indeed, there are benefits
in treating a rule set as a type of source code that can be managed under version control and
provided with comments. The validate package also supports advanced features such as file
inclusion, where one rule file can refer to another rule file. We will demonstrate this in the
following example, which also shows how structured and unstructured formats may be used
together.

Mark P.J. van der Loo, Edwin de Jonge 17

For this example we imagine the following use case. We have a questionnaire that consists of
two parts: a general part that is sent to all participants of a study, and a specific part of which
the contents depends on the participant type. Here, the general part is related to retailers,
while the specific part is related to the subdomain of supermarkets. The idea is that we
maintain two files: one with general rules, that is to be reused accross different subdomains
and one with specific rules for supermarkets.

Figure 3 shows the general rules in YAML format. At the top, there is a section with general
options pertaining to the rule set as a whole. Next, all the rules and their metadata are
defined one by one. The rules are stored in a file named general_rules.yml. The specific
rules are stored in a simpler text file called rules.txt with the following content.

include:

- general_rules.yml

a reasonable profit

profit/total.rev <= 0.6

We expect that the supermarket sector

is profitable on average

mean(profit) >= 1

At the top there is an optional block, demarcated with dashes, where we can define properties
for the whole rule set or as in this case indicate that the file general_rules.yml must be
read before the current file. Both files can now be read as follows.

R> rules <- validator(.file="rules.txt")

R> rules

Object of class 'validator' with 5 elements:

G1 [nonnegative staff] : staff >= 0

G2 [nonnegative income]: turnover >= 0

G3 [Balance check] : profit + total.costs == total.rev

V1 : profit/total.rev <= 0.6

V2 : mean(profit) >= 1

A user is able to trace the origins of each rule interactively since the ‘validator’ remembers
where each rule came from.

R> origin(rules)

G1 G2 G3

"./general_rules.yml" "./general_rules.yml" "./general_rules.yml"

V1 V2

"rules.txt" "rules.txt"

18 Data validation infrastructure for R

options:

raise: none

lin.eq.eps: 1.0e-08

lin.ineq.eps: 1.0e-08

rules:

- expr: staff >= 0

name: 'G1'

label: 'nonnegative staff'

description: |

'Staff numbers cannot be negative'

created: 2018-06-05 14:44:06

origin:

meta: []

- expr: turnover >= 0

name: 'G2'

label: 'nonnegative income'

description: |

'Income cannot be negative (unlike in the

definition of the tax office)'

created: 2018-06-05 14:44:06

origin:

meta: []

- expr: profit + total.costs == total.rev

name: 'G3'

label: 'Balance check'

description: |

'Economic profit is defined as the

total revenue diminished with the

total costs.'

created: 2018-06-05 14:44:06

origin:

meta: []

Figure 3: Contents of the file general_rules.yml. Several global options and metadata fields
have been filled in.

Finally we point out that file inclusion works recursively so included files can include other
files. Mistakes such as cyclic inclusion are detected and reported when they occur. A complete
description can be found in a dedicated vignette that is included with the package.

3.6. Confronting data with rules

At the beginning of Section 3 we have seen how data can be checked against a rule set using
confront. It was also highlighted that several default choices were made, for instance how

Mark P.J. van der Loo, Edwin de Jonge 19

Table 5: Options for confronting data with rules. Default values in brackets.
Option Values Description

na.value [NA], TRUE, FALSE Value when rule results in NA

raise ["none"], "error", "all" What exceptions to raise
lin.eq.eps [1e-8]; positive number Tolerance for checking equalities
lin.ineq.eps [1e-8]; positive number Tolerance for checking inequalities

machine rounding and exceptions (errors, warnings) are handled, and the fact that missing
values in data lead to missing data validation results. In this section we demonstrate how
those options can be manipulated both globally and locally.

There are three places where options can be set, with three different ranges of influence. The
first place is while calling confront. In this case the options only pertain to the current call.
For example, we can count missing validation results as FALSE (fail) as follows (we suppress
the last column of the summary for brevity)

R> data("retailers")

R> rules <- validator(turnover >= 0, turnover + other.rev == total.rev)

R> summary(confront(retailers, rules))[-8]

name items passes fails nNA error warning

1 V1 60 56 0 4 FALSE FALSE

2 V2 60 19 4 37 FALSE FALSE

R> summary(confront(retailers, rules, na.value=FALSE))[-8]

name items passes fails nNA error warning

1 V1 60 56 4 0 FALSE FALSE

2 V2 60 19 41 0 FALSE FALSE

The second place to control options is by setting options for a specific ‘validator’ instance.
This is done with the voptions function. For example, if we know that all our variables are
integer we can ignore the possibility of spurious fails caused by machine rounding in linear
equalities and linear inequalities (we ignore columns 6 and 7 in the output for brevity).

R> voptions(rules, lin.eq.eps=0, lin.ineq.eps=0)

R> rules

Object of class 'validator' with 2 elements:

V1: turnover >= 0

V2: turnover + other.rev == total.rev

Rules are evaluated using locally defined options

R> summary(confront(retailers, rules))[-(6:7)]

name items passes fails nNA expression

1 V1 60 56 0 4 turnover >= 0

2 V2 60 19 4 37 turnover + other.rev == total.rev

20 Data validation infrastructure for R

The expressions in the expression column are now exactly equal to the user-defined rules
and there is no tolerance that allows for some machine rounding.

The third and final place where options can be set is globally. This is done by calling voptions

with option = value pairs. This will affect all validator objects, except those that already
have their options adjusted. Recall that by default, errors are caught and stored.

R> data("retailers")

R> out <- check_that(retailers, employees >= 0) # the error is caught.

However, we can set raise="error" so execution stops when an error is raised.

R> voptions(raise = "error") # set global option.

R> out <- check_that(retailers, employees >= 0)

Error in fun(...) : object 'employees' not found

Raising errors or warnings immediately rather then just registering them can be useful for
example when developing or debugging a large rule set.

To summarize, any option listed in Table 5 can be set at three levels: globally, for individual
‘validator’ objects, and during a single call to ‘confront’.

3.7. Validation objects and analyzing results

The return value of confront is a ‘validation’ object. It holds the data validation results
and some information on the data validation procedure. This information can be extracted
and summarized with the functions listed in Table 6. Below we demonstrate some of them
and point out some issues related to the dimensionality of data validation results.

Like ‘validator’ objects, ‘validation’ objects can be subsetted by rule using single square
brackets.

R> rules <- validator(other.rev >= 0, turnover >= 0,

+ turnover + other.rev == total.rev)

R> check <- confront(retailers, rules)

R> summary(check[1:2])

name items passes fails nNA error warning expression

1 V1 60 23 1 36 FALSE FALSE (other.rev - 0) >= -1e-08

2 V2 60 56 0 4 FALSE FALSE (turnover - 0) >= -1e-08

Using values all results can be gathered in an array.

R> head(values(check), n=3)

V1 V2 V3

[1,] NA NA NA

[2,] NA TRUE NA

[3,] FALSE TRUE FALSE

Mark P.J. van der Loo, Edwin de Jonge 21

Table 6: Investigating ‘confrontation’ objects.
Function description

summary Summarize results per rule
all Check if all validations result in TRUE

any Check if any validation resulted in FALSE

as.data.frame Gather results in a data frame
values Gather results in a (list of) array(s)
aggregate Aggregate results by record or by rule
sort As aggregate, but with sorted results
plot, barplot Create barplot(s) of results
errors List of error signals
warnings List of warning signals
‘[‘ Select subset of confrontations (by rule)
length Number of rules evaluated.

By aggregating and sorting results by rule or by record, interesting information can be gath-
ered on which records are the ‘worst violators’, or which rules are violated most often.

R> sort(check, by="rule")

npass nfail nNA rel.pass rel.fail rel.NA

V3 19 4 37 0.3166667 0.06666667 0.61666667

V1 23 1 36 0.3833333 0.01666667 0.60000000

V2 56 0 4 0.9333333 0.00000000 0.06666667

Here, we aggregated results by rule and sorted the totals by increasing number of passes per
rule. In this case the balance restriction (rule V3) is passed the least number of times.

One issue that hampers analysis of data validation results is that the outcome of different
validation rules may have different dimensions. As an example consider the following rules
for the retailers dataset.

R> rules <- validator(staff >= 0, turnover >= 0, mean(profit) >= 1)

R> check <- confront(retailers, rules)

The first two rules evaluate to sixty results: one for each record in the retailers data frame.
The third rule evaluates to a single result for the whole data set. This means that values

cannot meaningfully combine all results in a single array. For this reason values works much
like R’s native sapply function. An array is returned when all results fit in a single array. If
not, a list is returned with an array for each subset of results that fit together in an array.

R> c(class(values(check[1:2])), class(values(check)))

[1] "matrix" "list"

The default behavior can be controlled with a simplify argument. It has default value TRUE,
again similar to sapply.

22 Data validation infrastructure for R

Figure 4: UML diagram demonstrating part of the ‘validator’ object model. See Rumbaugh
et al. (2004) for a description of UML.

4. Object model and implementation

The validate package is designed with extensibility in mind. The main objects and methods
are based on the S4 system (see e.g., Chambers (2016)) since this is the most flexible object
system currently available in base R. In particular, the fact that S4 supports multiple dispatch
was an important driver to choose it over S3. This allows us to easily add confront methods
for different types of rules or different data types.

Figures 4 and 5 give a high-level overview of the object model used in validate in UML
diagrams. The central object for storing expressions is a (not user-visible) class called
‘expressionset’. An expressionset contains an option settings manager and a list of ‘rule’
objects. A ‘rule’ is an R expression endowed with with some standard metadata. The object
type that users see and manipulate directly is called ‘validator’. This is a specialization of
‘expressionset’ with some methods that only apply to data validation rules. For example,
the constructor of ‘validator’ checks whether the imported rules fall within the Domain
Specific Language described in Subsection 3.2. The constructor of ‘expressionset’ does not
perform such checks. There are also a few methods for extracting properties of validation
rules. These are currently not publicly documented and should be avoided by users. The
reason they are implemented as methods of validator objects is that it allows us to reuse
them in packages depending on validate (for example validatetools).

The user-visible return value of confrontation is an object of class ‘validation’ (Fig-
ure 5). This is again a specialization of a more general object called ‘confrontation’. A
‘confrontation’ object contains the call that created it, the evaluated expressions and their
results. Currently the specialization in ‘validation’ is limited to the show method.

Mark P.J. van der Loo, Edwin de Jonge 23

Figure 5: UML diagram showing contents of the ‘confrontation’ and ‘validation’ object
classes.

5. Demo: cleaning up a small data set

In this Section we demonstrate how validate can be integrated in a data cleaning workflow.
We also introduce two new functions called cells and compare, that allow for comparing two
or more versions of the same dataset.

The purpose in this example is to define a set of rules for the retailers data set and to
process it step by step until all fields are completed and all rules are satisfied. Moreover, we
wish to monitor changes in the quality of the dataset as it gets processed. To this end we use
the following R packages (to be discussed and referenced below).

R> library("validate")

R> library("dcmodify")

R> library("errorlocate")

R> library("simputation")

R> library("rspa")

The task is to clean up measured attributes of the retailers dataset. This excludes the
first two columns (representing size class and sample inclusion probability) so we first create
a working copy for the example.

R> data("retailers")

R> dat_raw <- retailers[-(1:2)]

We have defined a set of 18 validation rules for this data set in a text file that is avail-
able and documented in the supplementary materials. The rules include account balances,
non-negativity constraints and sanity constraints on ratios between variables. For brevity
only a few examples are displayed below. We relax the condition on equalities somewhat to
accommodate a method that will be introduced further on.

24 Data validation infrastructure for R

R> rules <- validator(.file="rules.R")

R> voptions(rules, lin.eq.eps=0.01)

R> rules[c(1,4,11)] # show a few examples

Object of class 'validator' with 3 elements:

V01: staff >= 0

V04: turnover + other.rev == total.rev

V11: profit <= 0.6 * turnover

Rules are evaluated using locally defined options

The retailers set consists of staff numbers and financial variables of 60 supermarkets. Re-
spondents have been asked to submit financial amounts in multiples of EUR 1000, but in
some cases they are submitted in Euro. For example, this is obviously the case in record 15.

R> dat_raw[15,c('staff','turnover','staff.costs')]

staff turnover staff.costs

15 3 80000 40000

Taking this record at face value would be equal to believing that a retailer with a staff of 3
generates 80 million Euros turnover and pays 40 million to three employees. If we assume that
staff is a reliable variable, such errors can often be detected and repaired using rule-based
processing. For example, IF the ratio between turnover and staff exceeds 500 THEN divide
turnover by 1000. The dcmodify package (van der Loo and de Jonge 2018) allows users to
formulate such rules and apply them to data, much like the way validation rules are defined
and applied in the validate package. We defined 12 of such rules, a few of which are printed
here for brevity. The complete set is available in the supplementary materials.

R> modifiers <- dcmodify::modifier(.file="modifiers.R")

R> modifiers[c(1,4,11)]

Object of class modifier with 3 elements:

M01:

if (other.rev >= 500 * vat) other.rev <- other.rev/1000

M04:

if (abs(profit) >= 100 * vat) profit <- profit/1000

M11:

if (staff.costs >= 500 * staff) staff.costs <- staff.costs/1000

The first and fourth statement compare a financial variable with the value of the Value-
Added-Tax amount (which is considered reliable). Just like in validate, the if-statement is
executed for each record of the data set. In cases where the condition evaluates to TRUE the
variable is to be replaced with the same value divided by one thousand. We can apply the
rules to the dataset as follows.

Mark P.J. van der Loo, Edwin de Jonge 25

still

extra

still

extra

still

extra

violated

satisfied

verifiable

unverifiable

total

Figure 6: Partitioning the result of comparing validation results for two versions of a data
set. The number of cells in a parent node is the sum of the number of cells in its child nodes
(reproduced from van der Loo and de Jonge (2018)).

R> dat_mod <- dcmodify::modify(dat_raw, modifiers)

We are now interested in the effect of this step by comparing the validation results before
and after executing these data modifying rules. Figure 6 shows how we can decompose the
validation results. The total number of validation results can be separated into those that are
verifiable (i.e., yielding TRUE or FALSE) and those that are not (yielding NA). The values that
are verifiable can be further separated into those that are TRUE or FALSE, and for each one we
can check whether they had a similar value in the previous version of the data set (still) or
if it has changed (extra). Similarly, we can check for unverifiable validations in the current
version whether they were also unverifiable in the previous version (still) or not (extra).

The validate package exports a function that computes the number of transitions for each
instance shown in Figure 6. The compare function accepts a ‘validator’ and an arbitrary
number of data sets that can be compared sequentially or against the first data set.

R> compare(rules, raw = dat_raw, modified=dat_mod)

Object of class validatorComparison:

compare(x = rules, raw = dat_raw, modified = dat_mod)

Version

Status raw modified

validations 1080 1080

verifiable 789 789

unverifiable 291 291

still_unverifiable 291 291

new_unverifiable 0 0

satisfied 746 755

still_satisfied 746 741

26 Data validation infrastructure for R

new_satisfied 0 14

violated 43 34

still_violated 43 29

new_violated 0 5

We see that out of 1080 validations (= 60 records times 18 rules), 746 are satisfied in the raw
data while 755 are satisfied in the modified data. This seems an improvement, but a closer
look reveals that actually 14 cases were resolved while 5 new violations were introduced. So
the assumptions laid down in the modifying rules may have been too strong in some cases.
Or, it is possible that one or more records had all financial variables a factor of thousand
too high (thus consistent in terms of balance checks) but not all variables were altered, hence
introducing inconsistency. For this example we will not dive deeper into this but instead move
on to the next cleaning step.

We now clean up the data in three steps. First, knowing what rules each record violates,
we need to figure out which fields to alter so that all rules can ultimately be satisfied. This
procedure is called ‘error localization’. Next, we impute the fields that are empty or deemed
erroneous during the error localization procedure. Since our imputation method will not take
validation rules into account, imputation will generally not yield a dataset that satisfies all
validation rules2. So in a last step we adjust the imputed values minimally (in a sense to be
defined) such that all constraints are satisfied.

For the first step we apply the principle of Fellegi and Holt (1976). In this approach, it is
assumed that errors are both rare and independently distributed over the variables. The
idea is to find for each record, the minimal (weighted) number of fields that can be emptied
such that imputation consistent with the rules is possible in principle. The chief difficulty is
that variables typically occur in more than one rule, so changing a variable to fix one rule,
may cause violation of another rule. There are several numerical approaches to solving this
(de Waal et al. 2011). The errorlocate package implements a mixed integer programming
(MIP) approach that both localizes and removes erroneous values. In the following step we
set higher weights for staff and vat, so errorlocate will not replace them unless it cannot
be avoided. This means we judge variables with heigher weight to be of higher quality.

R> weights = setNames(rep(1, ncol(dat_raw)), names(dat_raw))

R> weights[c("staff","vat")] <- 10

R> dat_el <- errorlocate::replace_errors(dat_mod, rules, weight = weights)

R> colSums(summary(confront(dat_el, rules))[3:5])

passes fails nNA

677 0 403

The output of confront confirms that there are no more violated rules. Of course many
cannot be checked anymore because a number of cells either were empty or have been emptied
by the error localization routine.

For the imputation step we use the simputation package (van der Loo 2017) to estimate the
missing values using classification and regression trees (CART, Breiman (1984)).

2For some work on imputing data under restrictions see de Waal (2017); Vink (2015) and Tempelman (2007)
and references therein.

Mark P.J. van der Loo, Edwin de Jonge 27

R> dat_imp <- simputation::impute_cart(dat_el, . ~ .)

R> colSums(summary(confront(dat_imp, rules))[3:5])

passes fails nNA

1003 77 0

As expected, we see many fails but no more missing values.

Third and finaly, we adjust the imputed values to fit the constraints. For this, we use the
rspa package (van der Loo 2019) which implements the successive projection algorithm. The
idea is to minimize the weighted Euclidean distance between the current imputed values and
adjusted values while satisfying all restrictions (this algorithm is limited to systems of linear
equalities and inequalities). To account for differences of scale between the variables, we use
the reciprocal of the current values as weight. It was shown by Zhang and Pannekoek (2015)
that this preserves the ratio between the original values to first order.

R> # Compute weights for weighted Euclidean distance

R> W <- t(t(dat_imp)) # convert to numeric matrix

R> W <- 1/(abs(W)+1) # compute weights

R> W <- W/rowSums(W) # normalize by row

R> # adjust the imputed values.

R> dat_adj <- rspa::match_restrictions(dat_imp, rules

+ , adjust = is.na(dat_el), weight=W, maxiter=1e4)

We can now verify that all rules are satisfied.

R> all(confront(dat_adj, rules))

[1] TRUE

Since we stored all intermediate results, we can visualize the effect of each intermediate step.
We use compare and cells to follow the changes in the data set as it is treated step by
step. The cells function is also part of validate. It measures the number of changes
by decomposing the number of cells in a data set into those that are available or not, and
separating those again into which are still available, have been removed, or are still missing
when compared to a previous version of the data set. (See Figure 7).

R> plot(compare(rules, raw= dat_raw, modified = dat_mod

+ , errors_located = dat_el, imputed = dat_imp

+ , adjusted = dat_adj, how="sequential"))

R> plot(cells(raw= dat_raw, modified = dat_mod

+ , errors_located = dat_el, imputed = dat_imp

+ , adjusted = dat_adj, compare="sequential"))

These plot methods can provide some quick first insight into the effect that each step has
on the dataset, thus providing potentially useful information for improving the process. For
example, in the left panel we see that across the procedure, the number of violations (thick red

28 Data validation infrastructure for R

0

200

400

600

800

1000

● ● ● ● ●

● ●

●

● ●

● ●

●

● ●

● ● ●

● ●● ●

●

● ●

● ●

●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ● ●● ● ●

●

●

raw
modified

errors_located
imputed

adjusted

Count

validations
verifiable
unverifiable
still unverifiable
new unverifiable
satisfied
still satisfied
new satisfied
violated
still violated
new violated

0

100

200

300

400

● ● ● ● ●

● ●

●

● ●

● ●

● ●

●

●

●
● ●

●

●

●

● ●

●

● ● ●

●

●

● ●

●

● ●

● ● ●

● ●● ●

●

● ●

raw
modified

errors_located
imputed

adjusted

Count

cells
available
still available
unadapted
adapted
imputed
missing
still missing
removed

Figure 7: Left: following the performance of a dataset with respect to rule satisfaction as it
gets processed step by step. Right: follow changes in cell values as a data set gets processed
step by step.

line) first decreases to zero after error localization, then errors get introduced by imputing
without regard of the restrictions, and finally all constraints are satisfied by adjusting the
imputed values. In the right panel we see that the number of missings (thick yellow line)
increases at error localization, reduces to zero after imputation (everything can be imputed)
and stays zero afterwards. Such displays can help when assessing the performance of a data
cleaning process, for example by switching imputation methods or altering the modifying
rules. For cases where there is no natural ordering in a sequence of data sets, the barplot

method has also been overloaded for objects of classes

Summarizing, we see that validate plays an integral role in the data cleaning procedure
demonstrated here. Not only is it used to define validation rules and to monitor data quality
as a function of processing step, it also provides control parameters for two crucial data
cleaning steps: error localization and adjusing numerical values.

6. Summary and outlook

The validate package demonstrated in this paper serves as a data validation infrastructure in
several aspects. First, it is grounded in a strict definition of the concept of data validation
functions. This definition is supported in the form of an R-embedded domain specific lan-
guage that allows users to express restrictions on data (validation rules) with great flexibility.
Second, the package treats validation rules as first class citizens, implementing full CRUD
(create, read, update, delete) functionality on validation rule sets along with rudimentary rule
inspection functionality. Third, a flexible file-based interface makes rule sets and their meta-
data elements maintainable as source code, complete with recursive file inclusion functionality.
The ability to reading rules and their metadata from a data frame also allows storage and

Mark P.J. van der Loo, Edwin de Jonge 29

retrieval from relational databases. Fourth, and finally, the package is implemented using a
fairly simple, extendable object-oriented framework. This allows extensions in the direction
of different data sources and different rule set implementations.

Future work on this package will likely include improved support for subsetting validation rule
sets based on metadata elements, support for user-defined extensions of the validation DSL,
more helper functions for complex validation tasks, and improved support for summarization
and reporting of data validation results.

References

Armstrong W (1974). “Dependency Structures of Data Base Relationships.” In IFIP Congress,
pp. 580–583. IFIP.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.5, URL https://CRAN.R-project.org/package=magrittr.

Beeri C, Dowd M, Fagin R, Statman R (1984). “On the Structure of Armstrong Relations
for Functional Dependencies.” Journal of the ACM (JACM), 31(1), 30–46.

Bohannon P, Fan W, Geerts F, Jia X, Kementsietsidis A (2007). “Conditional Functional
Dependencies for Data Cleaning.” In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pp. 746–755. IEEE.

Breiman L (1984). Classification and Regression Trees. Taylor & Francis Group, New York.

Chambers JM (2016). Extending R. The R Series. Chapman & Hall.

de Jonge E, van der Loo M (2018). editrules: Parsing, Applying, and Manipulating Data
Cleaning Rules. R package version 2.9.3, URL https://CRAN.R-project.org/package=

editrules.

de Jonge E, van der Loo M (2019). validatetools: Checking and Simplifying Valida-
tion Rule Sets. R package version 0.4.6, URL https://CRAN.R-project.org/package=

validatetools.

de Waal T (2017). “Imputation Methods Satisfying Constraints.” In Work Session on Statis-
tical Data Editing, Working Paper 5. United Nations Economic Commission for Europe.

de Waal T, Pannekoek J, Scholtus S (2011). Handbook of Statistical Data Editing and Impu-
tation, volume 563. John Wiley & Sons.

Di Zio M, Fursova N, Gelsema T, Giessing S, Guarnera U, Ptrauskiene J, von Kalben LQ,
Scanu M, ten Bosch K, van der Loo M, Walsdorfe K (2015). “Methodology for Data Valida-
tion.” Technical Report deliverable No., ESSNet on validation. URL https://ec.europa.

eu/eurostat/cros/content/methodology-data-validation-handbook-final_en.

Fellegi IP, Holt D (1976). “A Systematic Approach to Automatic Edit and Imputation.”
Journal of the American Statistical Association, 71(353), 17–35.

30 Data validation infrastructure for R

Fischetti T (2019). assertr: Assertive Programming for R Analysis Pipelines. R package
version 2.6, URL https://CRAN.R-project.org/package=assertr.

Fowler M (2010). Domain-Specific Languages. Pearson Education.

Gibbons J (2013). “Functional Programming for Domain-Specific Languages.” In V Zsók,
Z Horváth, L Csató (eds.), Central European Functional Programming - Summer School
on Domain-Specific Languages, volume 8606 of LNCS, pp. 1–28. Springer-Verlag. doi:

10.1007/978-3-319-15940-9_1. URL http://link.springer.com/chapter/10.1007/

978-3-319-15940-9_1.

Iannone R (2018). pointblank: Validation of Local and Remote Data Tables. R package version
0.2.0, URL https://CRAN.R-project.org/package=pointblank.

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised
Data Quality Screening in R.” Journal of Statistical Software, 90, 1–38.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rumbaugh J, Jacobson I, Booch G (2004). Unified Modeling Language Reference Manual,
The (2Nd Edition). Pearson Higher Education. ISBN 0321245628.

Statistics Netherlands (2018). BLAISE. Version 5.2, URL https://blaise.com.

Tempelman C (2007). Imputation of Restricted Data. Ph.D. thesis, University of Groningen.

van der Loo M (2017). simputation: Simple Imputation. R package version 0.2.3, URL
https://CRAN.R-project.org/package=simputation.

van der Loo M (2019). rspa: Adapt Numerical Records to Fit (in)Equality Restrictions. R

package version 0.2.4, URL https://CRAN.R-project.org/package=rspa.

van der Loo M, de Jonge E (2018). dcmodify: Modify Data Using Externally Defined Mod-
ification Rules. R package version 0.1.2, URL https://CRAN.R-project.org/package=

dcmodify.

van der Loo M, de Jonge E (2018). Statistical Data Cleaning with Applications in R. John
Wiley & Sons.

van der Loo M, de Jonge E (2019). validate: Data Validation Infrastructure. R package
version 0.9.2, URL https://CRAN.R-project.org/package=validate.

van der Loo M, de Jonge E (2020). “Data Validation.” Wiley StatsRef. Accepted for publi-
cation.

Vink G (2015). Restrictive Imputation of Incomplete Survey Data. Ph.D. thesis, Utrecht Uni-
versity. https://dspace.library.uu.nl/bitstream/handle/1874/308699/vink.pdf.

VTL task force, SDMX technical working group (2018). Validation and Transformation
Language. Version 2.0, URL https://sdmx.org.

yamlorg (2015). “YAML Aint Markup Language.” http://yaml.org/ (accessed 2015-08-13).

Mark P.J. van der Loo, Edwin de Jonge 31

Zhang LC, Pannekoek J (2015). “Optimal Adjustments for Inconsistency in Imputed Data.”
Survey methodology, 41(1), 127–144.

Affiliation:

Mark van der Loo, Edwin de Jonge
Research and Development
Statistics Netherlands
Henri Faasdreef 312
2492JP Den Haag, The Netherlands
E-mail: m.vanderloo@cbs.nl, e.dejonge@cbs.nl

