
Package ‘vader’
June 9, 2020

Title Valence Aware Dictionary and sEntiment Reasoner (VADER)

Version 0.1.1

Description A lexicon and rule-based sentiment analysis tool that is specifically
attuned to sentiments expressed in social media, and works well on texts from other
domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports tm

Depends R (>= 2.10)

Suggests spelling

Language en-US

NeedsCompilation no

Author Katherine Roehrick [aut, cre]

Maintainer Katherine Roehrick <kr.gitcode@gmail.com>

Repository CRAN

Date/Publication 2020-06-09 05:30:02 UTC

R topics documented:

get_vader . 2
vader_df . 3

Index 5

1

2 get_vader

get_vader Get a named vector of vader results for a single text document

Description

Use get_vader() to calculate the valence of a single text document.

Usage

get_vader(text, incl_nt = T, neu_set = T)

Arguments

text to be analyzed; for get_vader(), the text should be a character string

incl_nt defaults to T, indicates whether you wish to incl n’t contractions (e.g., can’t) in
negation analysis

neu_set defaults to T, indicates whether you wish to count neutral words in calculations

Value

A named vector containing the valence score for each word; an overall, compound valence score
for the text; the weighted percentage of positive, negative, and neutral words in the text; and the
frequency of the word "but".

References

For the original Python Code, please see:

• https://github.com/cjhutto/vaderSentiment

• https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vaderSentiment.py

For the original R Code, please see:

• https://github.com/nrguimaraes/sentimentSetsR/blob/master/R/ruleBasedSentimentFunctions.R

Modifications to the above scripts include, but are not limited to:

• ALL CAPS fx: updated to account for non-alpha words; i.e. "I’M 100 PERCENT SURE"
would previously have been counted as mixed case due to the use of numbers

• IDIOMS fx: added capacity to check for idioms that do not contain any words found in the
Vader Lexicon

• WORDS+EMOT: strip punctuation while preserving ALL emoticons found in dictionary

• Option to turn on/off neutral count

N.B.

In the examples below, "yesn’t" is an internet neologism meaning "no", "maybe yes, maybe no",
"didn’t", etc.

vader_df 3

See Also

vader_df to get vader results for multiple text documents

Examples

get_vader("I yesn't like it")
get_vader("I yesn't like it", incl_nt = FALSE)
get_vader("I yesn't like it", neu_set = FALSE)

vader_df Get a dataframe of vader results for multiple text documents

Description

Use vader_df() to calculate the valence of multiple texts contained within a vector or column in a
dataframe.

Usage

vader_df(text, incl_nt = T, neu_set = T)

Arguments

text to be analyzed; for vader_df(), the text should be a single vector (e.g. 1 column)

incl_nt defaults to T, indicates whether you wish to incl n’t contractions (e.g., can’t) in
negation analysis

neu_set defaults to T, indicates whether you wish to count neutral words in calculations

Value

A dataframe containing the valence score for each word; an overall, compound valence score for the
text; the weighted percentage of positive, negative, and neutral words in the text; and the frequency
of the word "but".

N.B.

In the examples below, "yesn’t" is an internet neologism meaning "no", "maybe yes, maybe no",
"didn’t", etc.

See Also

get_vader to get vader results for a single text document

4 vader_df

Examples

vader_df(c("I'm happy", "I'm yesn't happy"))
vader_df(c("I'm happy", "I'm yesn't happy"), incl_nt = FALSE)
vader_df(c("I'm happy", "I'm yesn't happy"), neu_set = FALSE)

Index

get_vader, 2, 3

vader_df, 3, 3

5

	get_vader
	vader_df
	Index

