
Package ‘uwot’
March 16, 2020

Title The Uniform Manifold Approximation and Projection (UMAP) Method
for Dimensionality Reduction

Version 0.1.8

Description An implementation of the Uniform Manifold Approximation and
Projection dimensionality reduction by McInnes et al. (2018)
<arXiv:1802.03426>. It also provides means to transform new data and to
carry out supervised dimensionality reduction. An implementation of the
related LargeVis method of Tang et al. (2016) <arXiv:1602.00370> is also
provided. This is a complete re-implementation in R (and C++, via the 'Rcpp'
package): no Python installation is required. See the uwot website
(<https://github.com/jlmelville/uwot>) for more documentation and examples.

License GPL-3

URL https://github.com/jlmelville/uwot

BugReports https://github.com/jlmelville/uwot/issues

Encoding UTF-8

LazyData true

Suggests testthat, covr

RoxygenNote 7.1.0

Depends Matrix

LinkingTo Rcpp, RcppProgress, RcppAnnoy, dqrng

Imports Rcpp, methods, FNN, RSpectra, RcppAnnoy (>= 0.0.11), irlba

NeedsCompilation yes

Author James Melville [aut, cre],
Aaron Lun [ctb],
Mohamed Nadhir Djekidel [ctb]

Maintainer James Melville <jlmelville@gmail.com>

Repository CRAN

Date/Publication 2020-03-16 12:20:02 UTC

1

https://github.com/jlmelville/uwot
https://github.com/jlmelville/uwot/issues

2 load_uwot

R topics documented:
load_uwot . 2
lvish . 3
save_uwot . 9
tumap . 11
umap . 18
umap_transform . 26
unload_uwot . 28

Index 30

load_uwot Save or Load a Model

Description

Functions to write a UMAP model to a file, and to restore.

Usage

load_uwot(file, verbose = FALSE)

Arguments

file name of the file where the model is to be saved or read from.

verbose if TRUE, log information to the console.

Value

The model saved at file, for use with umap_transform. Additionally, it contains an extra item:
‘mod_dir‘, which contains the path to the temporary working directory used during loading of the
model. This directory cannot be removed until this model has been unloaded by using unload_uwot.

See Also

save_uwot, unload_uwot

Examples

iris_train <- iris[c(1:10, 51:60),]
iris_test <- iris[100:110,]

create model
model <- umap(iris_train, ret_model = TRUE, n_epochs = 20)

save without unloading: this leaves behind a temporary working directory
model_file <- tempfile("iris_umap")
model <- save_uwot(model, file = model_file)

lvish 3

The model can continue to be used
test_embedding <- umap_transform(iris_test, model)

To manually unload the model from memory when finished and to clean up
the working directory (this doesn't touch your model file)
unload_uwot(model)

At this point, model cannot be used with umap_transform, this would fail:
test_embedding2 <- umap_transform(iris_test, model)

restore the model: this also creates a temporary working directory
model2 <- load_uwot(file = model_file)
test_embedding2 <- umap_transform(iris_test, model2)

Unload and clean up the loaded model temp directory
unload_uwot(model2)

clean up the model file
unlink(model_file)

save with unloading: this deletes the temporary working directory but
doesn't allow the model to be re-used
model3 <- umap(iris_train, ret_model = TRUE, n_epochs = 20)
model_file3 <- tempfile("iris_umap")
model3 <- save_uwot(model3, file = model_file3, unload = TRUE)

lvish Dimensionality Reduction with a LargeVis-like method

Description

Carry out dimensionality reduction of a dataset using a method similar to LargeVis (Tang et al.,
2016).

Usage

lvish(
X,
perplexity = 50,
n_neighbors = perplexity * 3,
n_components = 2,
metric = "euclidean",
n_epochs = -1,
learning_rate = 1,
scale = "maxabs",
init = "lvrandom",
init_sdev = NULL,

4 lvish

repulsion_strength = 7,
negative_sample_rate = 5,
nn_method = NULL,
n_trees = 50,
search_k = 2 * n_neighbors * n_trees,
n_threads = NULL,
n_sgd_threads = 0,
grain_size = 1,
kernel = "gauss",
pca = NULL,
pca_center = TRUE,
pcg_rand = TRUE,
fast_sgd = FALSE,
ret_nn = FALSE,
ret_extra = c(),
tmpdir = tempdir(),
verbose = getOption("verbose", TRUE)

)

Arguments

X Input data. Can be a data.frame, matrix, dist object or sparseMatrix. A
sparse matrix is interpreted as a distance matrix and both implicit and explicit
zero entries are ignored. Set zero distances you want to keep to an arbitrarily
small non-zero value (e.g. 1e-10). Matrix and data frames should contain one
observation per row. Data frames will have any non-numeric columns removed,
although factor columns will be used if explicitly included via metric (see the
help for metric for details). Can be NULL if precomputed nearest neighbor data
is passed to nn_method, and init is not "spca" or "pca".

perplexity Controls the size of the local neighborhood used for manifold approximation.
This is the analogous to n_neighbors in umap. Change this, rather than n_neighbors.

n_neighbors The number of neighbors to use when calculating the perplexity. Usually
set to three times the value of the perplexity. Must be at least as large as
perplexity.

n_components The dimension of the space to embed into. This defaults to 2 to provide easy
visualization, but can reasonably be set to any integer value in the range 2 to
100.

metric Type of distance metric to use to find nearest neighbors. One of:
• "euclidean" (the default)
• "cosine"

• "manhattan"

• "hamming"

• "categorical" (see below)
Only applies if nn_method = "annoy" (for nn_method = "fnn", the distance
metric is always "euclidean").
If X is a data frame or matrix, then multiple metrics can be specified, by passing
a list to this argument, where the name of each item in the list is one of the

lvish 5

metric names above. The value of each list item should be a vector giving the
names or integer ids of the columns to be included in a calculation, e.g. metric
= list(euclidean = 1:4,manhattan = 5:10).
Each metric calculation results in a separate fuzzy simplicial set, which are inter-
sected together to produce the final set. Metric names can be repeated. Because
non-numeric columns are removed from the data frame, it is safer to use column
names than integer ids.
Factor columns can also be used by specifying the metric name "categorical".
Factor columns are treated different from numeric columns and although multi-
ple factor columns can be specified in a vector, each factor column specified is
processed individually. If you specify a non-factor column, it will be coerced to
a factor.
For a given data block, you may override the pca and pca_center arguments
for that block, by providing a list with one unnamed item containing the column
names or ids, and then any of the pca or pca_center overrides as named items,
e.g. metric = list(euclidean = 1:4,manhattan = list(5:10,pca_center
= FALSE)). This exists to allow mixed binary and real-valued data to be in-
cluded and to have PCA applied to both, but with centering applied only to
the real-valued data (it is typical not to apply centering to binary data before
PCA is applied).

n_epochs Number of epochs to use during the optimization of the embedded coordinates.
The default is calculate the number of epochs dynamically based on dataset
size, to give the same number of edge samples as the LargeVis defaults. This
is usually substantially larger than the UMAP defaults. If n_epochs = 0, then
coordinates determined by "init" will be returned.

learning_rate Initial learning rate used in optimization of the coordinates.

scale Scaling to apply to X if it is a data frame or matrix:

• "none" or FALSE or NULL No scaling.
• "Z" or "scale" or TRUE Scale each column to zero mean and variance 1.
• "maxabs" Center each column to mean 0, then divide each element by the

maximum absolute value over the entire matrix.
• "range" Range scale the entire matrix, so the smallest element is 0 and the

largest is 1.
• "colrange" Scale each column in the range (0,1).

For lvish, the default is "maxabs", for consistency with LargeVis.

init Type of initialization for the coordinates. Options are:

• "spectral" Spectral embedding using the normalized Laplacian of the
fuzzy 1-skeleton, with Gaussian noise added.

• "normlaplacian". Spectral embedding using the normalized Laplacian of
the fuzzy 1-skeleton, without noise.

• "random". Coordinates assigned using a uniform random distribution be-
tween -10 and 10.

• "lvrandom". Coordinates assigned using a Gaussian distribution with stan-
dard deviation 1e-4, as used in LargeVis (Tang et al., 2016) and t-SNE.

6 lvish

• "laplacian". Spectral embedding using the Laplacian Eigenmap (Belkin
and Niyogi, 2002).

• "pca". The first two principal components from PCA of X if X is a data
frame, and from a 2-dimensional classical MDS if X is of class "dist".

• "spca". Like "pca", but each dimension is then scaled so the standard
deviation is 1e-4, to give a distribution similar to that used in t-SNE and
LargeVis. This is an alias for init = "pca",init_sdev = 1e-4.

• "agspectral" An "approximate global" modification of "spectral" which
all edges in the graph to a value of 1, and then sets a random number of
edges (negative_sample_rate edges per vertex) to 0.1, to approximate
the effect of non-local affinities.

• A matrix of initial coordinates.
For spectral initializations, ("spectral", "normlaplacian", "laplacian"), if
more than one connected component is identified, each connected component is
initialized separately and the results are merged. If verbose = TRUE the number
of connected components are logged to the console. The existence of multiple
connected components implies that a global view of the data cannot be attained
with this initialization. Either a PCA-based initialization or increasing the value
of n_neighbors may be more appropriate.

init_sdev If non-NULL, scales each dimension of the initialized coordinates (including any
user-supplied matrix) to this standard deviation. By default no scaling is carried
out, except when init = "spca", in which case the value is 0.0001. Scaling
the input may help if the unscaled versions result in initial coordinates with
large inter-point distances or outliers. This usually results in small gradients
during optimization and very little progress being made to the layout. Shrinking
the initial embedding by rescaling can help under these circumstances. Scaling
the result of init = "pca" is usually recommended and init = "spca" as an
alias for init = "pca",init_sdev = 1e-4 but for the spectral initializations the
scaled versions usually aren’t necessary unless you are using a large value of
n_neighbors (e.g. n_neighbors = 150 or higher).

repulsion_strength

Weighting applied to negative samples in low dimensional embedding optimiza-
tion. Values higher than one will result in greater weight being given to negative
samples.

negative_sample_rate

The number of negative edge/1-simplex samples to use per positive edge/1-
simplex sample in optimizing the low dimensional embedding.

nn_method Method for finding nearest neighbors. Options are:
• "fnn". Use exact nearest neighbors via the FNN package.
• "annoy" Use approximate nearest neighbors via the RcppAnnoy package.

By default, if X has less than 4,096 vertices, the exact nearest neighbors are
found. Otherwise, approximate nearest neighbors are used. You may also pass
precalculated nearest neighbor data to this argument. It must be a list consisting
of two elements:

• "idx". A n_vertices x n_neighbors matrix containing the integer in-
dexes of the nearest neighbors in X. Each vertex is considered to be its own
nearest neighbor, i.e. idx[,1] == 1:n_vertices.

https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=RcppAnnoy

lvish 7

• "dist". A n_vertices x n_neighbors matrix containing the distances of
the nearest neighbors.

Multiple nearest neighbor data (e.g. from two different precomputed metrics)
can be passed by passing a list containing the nearest neighbor data lists as
items. The n_neighbors parameter is ignored when using precomputed nearest
neighbor data.

n_trees Number of trees to build when constructing the nearest neighbor index. The
more trees specified, the larger the index, but the better the results. With search_k,
determines the accuracy of the Annoy nearest neighbor search. Only used if the
nn_method is "annoy". Sensible values are between 10 to 100.

search_k Number of nodes to search during the neighbor retrieval. The larger k, the more
the accurate results, but the longer the search takes. With n_trees, determines
the accuracy of the Annoy nearest neighbor search. Only used if the nn_method
is "annoy".

n_threads Number of threads to use (except during stochastic gradient descent). Default
is half the number of concurrent threads supported by the system. For nearest
neighbor search, only applies if nn_method = "annoy". If n_threads > 1, then
the Annoy index will be temporarily written to disk in the location determined
by tempfile.

n_sgd_threads Number of threads to use during stochastic gradient descent. If set to > 1, then
results will not be reproducible, even if ‘set.seed‘ is called with a fixed seed
before running. Set to "auto" go use the same value as n_threads.

grain_size The minimum amount of work to do on each thread. If this value is set high
enough, then less than n_threads or n_sgd_threads will be used for process-
ing, which might give a performance improvement if the overhead of thread
management and context switching was outweighing the improvement due to
concurrent processing. This should be left at default (1) and work will be spread
evenly over all the threads specified.

kernel Type of kernel function to create input probabilities. Can be one of "gauss"
(the default) or "knn". "gauss" uses the usual Gaussian weighted similarities.
"knn" assigns equal probabilities to every edge in the nearest neighbor graph,
and zero otherwise, using perplexity nearest neighbors. The n_neighbors
parameter is ignored in this case.

pca If set to a positive integer value, reduce data to this number of columns using
PCA. Doesn’t applied if the distance metric is "hamming", or the dimensions
of the data is larger than the number specified (i.e. number of rows and columns
must be larger than the value of this parameter). If you have > 100 columns
in a data frame or matrix, reducing the number of columns in this way may
substantially increase the performance of the nearest neighbor search at the cost
of a potential decrease in accuracy. In many t-SNE applications, a value of 50
is recommended, although there’s no guarantee that this is appropriate for all
settings.

pca_center If TRUE, center the columns of X before carrying out PCA. For binary data, it’s
recommended to set this to FALSE.

pcg_rand If TRUE, use the PCG random number generator (O’Neill, 2014) during opti-
mization. Otherwise, use the faster (but probably less statistically good) Taus-
worthe "taus88" generator. The default is TRUE.

8 lvish

fast_sgd If TRUE, then the following combination of parameters is set: pcg_rand = TRUE
and n_sgd_threads = "auto". The default is FALSE. Setting this to TRUE will
speed up the stochastic optimization phase, but give a potentially less accu-
rate embedding, and which will not be exactly reproducible even with a fixed
seed. For visualization, fast_sgd = TRUE will give perfectly good results. For
more generic dimensionality reduction, it’s safer to leave fast_sgd = FALSE. If
fast_sgd = TRUE, then user-supplied values of pcg_rand and n_sgd_threads,
are ignored.

ret_nn If TRUE, then in addition to the embedding, also return nearest neighbor data
that can be used as input to nn_method to avoid the overhead of repeatedly
calculating the nearest neighbors when manipulating unrelated parameters (e.g.
min_dist, n_epochs, init). See the "Value" section for the names of the list
items. If FALSE, just return the coordinates. Note that the nearest neighbors
could be sensitive to data scaling, so be wary of reusing nearest neighbor data if
modifying the scale parameter.

ret_extra A vector indicating what extra data to return. May contain any combination of
the following strings:

• "nn" same as setting ‘ret_nn = TRUE‘.
• "P" the high dimensional probability matrix. The graph is returned as a

sparse symmetric N x N matrix of class dgCMatrix-class, where a non-zero
entry (i, j) gives the input probability (or similarity or affinity) of the edge
connecting vertex i and vertex j. Note that the graph is further sparsified by
removing edges with sufficiently low membership strength that they would
not be sampled by the probabilistic edge sampling employed for optimiza-
tion and therefore the number of non-zero elements in the matrix is depen-
dent on n_epochs. If you are only interested in the fuzzy input graph (e.g.
for clustering), setting ‘n_epochs = 0‘ will avoid any further sparsifying.

tmpdir Temporary directory to store nearest neighbor indexes during nearest neighbor
search. Default is tempdir. The index is only written to disk if n_threads > 1
and nn_method = "annoy"; otherwise, this parameter is ignored.

verbose If TRUE, log details to the console.

Details

lvish differs from the official LargeVis implementation in the following:

• Only the nearest-neighbor index search phase is multi-threaded.

• Matrix input data is not normalized.

• The n_trees parameter cannot be dynamically chosen based on data set size.

• Nearest neighbor results are not refined via the neighbor-of-my-neighbor method. The search_k
parameter is twice as large than default to compensate.

• Gradient values are clipped to 4.0 rather than 5.0.

• Negative edges are generated by uniform sampling of vertexes rather than their degree ^ 0.75.

• The default number of samples is much reduced. The default number of epochs, n_epochs,
is set to 5000, much larger than for umap, but may need to be increased further depending on
your dataset. Using init = "spectral" can help.

save_uwot 9

Note that the grain_size parameter no longer does anything and is present to avoid break back-
wards compatibility only.

Value

A matrix of optimized coordinates, or:

• if ret_nn = TRUE (or ret_extra contains "nn"), returns the nearest neighbor data as a list
called nn. This contains one list for each metric calculated, itself containing a matrix idx
with the integer ids of the neighbors; and a matrix dist with the distances. The nn list (or a
sub-list) can be used as input to the nn_method parameter.

• if ret_extra contains "P", returns the high dimensional probability matrix as a sparse matrix
called P, of type dgCMatrix-class.

The returned list contains the combined data from any combination of specifying ret_nn and
ret_extra.

References

Tang, J., Liu, J., Zhang, M., & Mei, Q. (2016, April). Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th International Conference on World Wide Web (pp. 287-297).
International World Wide Web Conferences Steering Committee. https://arxiv.org/abs/1602.
00370

Examples

Default number of epochs is much larger than for UMAP, assumes random
initialization. Use perplexity rather than n_neighbors to control the size
of the local neighborhood 20 epochs may be too small for a random
initialization
iris_lvish <- lvish(iris,

perplexity = 50, learning_rate = 0.5,
init = "random", n_epochs = 20

)

save_uwot Save or Load a Model

Description

Functions to write a UMAP model to a file, and to restore.

Usage

save_uwot(model, file, unload = FALSE, verbose = FALSE)

https://arxiv.org/abs/1602.00370
https://arxiv.org/abs/1602.00370

10 save_uwot

Arguments

model a UMAP model create by umap.

file name of the file where the model is to be saved or read from.

unload if TRUE, unload all nearest neighbor indexes for the model. The model will no
longer be valid for use in umap_transform and the temporary working directory
used during model saving will be deleted. You will need to reload the model with
‘load_uwot‘ to use the model. If FALSE, then the model can be re-used without
reloading, but you must manually unload the NN index when you are finished
using it if you want to delete the temporary working directory. To unload man-
ually, use unload_uwot. The absolute path of the working directory is found in
the ‘mod_dir‘ item of the return value.

verbose if TRUE, log information to the console.

Value

model with one extra item: ‘mod_dir‘, which contains the path to the working directory. If unload
= FALSE then this directory still exists after this function returns, and can be cleaned up with
unload_uwot. If you don’t care about cleaning up this directory, or unload = TRUE, then you can
ignore the return value.

See Also

load_uwot, unload_uwot

Examples

iris_train <- iris[c(1:10, 51:60),]
iris_test <- iris[100:110,]

create model
model <- umap(iris_train, ret_model = TRUE, n_epochs = 20)

save without unloading: this leaves behind a temporary working directory
model_file <- tempfile("iris_umap")
model <- save_uwot(model, file = model_file)

The model can continue to be used
test_embedding <- umap_transform(iris_test, model)

To manually unload the model from memory when finished and to clean up
the working directory (this doesn't touch your model file)
unload_uwot(model)

At this point, model cannot be used with umap_transform, this would fail:
test_embedding2 <- umap_transform(iris_test, model)

restore the model: this also creates a temporary working directory
model2 <- load_uwot(file = model_file)
test_embedding2 <- umap_transform(iris_test, model2)

tumap 11

Unload and clean up the loaded model temp directory
unload_uwot(model2)

clean up the model file
unlink(model_file)

save with unloading: this deletes the temporary working directory but
doesn't allow the model to be re-used
model3 <- umap(iris_train, ret_model = TRUE, n_epochs = 20)
model_file3 <- tempfile("iris_umap")
model3 <- save_uwot(model3, file = model_file3, unload = TRUE)

tumap Dimensionality Reduction Using t-Distributed UMAP (t-UMAP)

Description

A faster (but less flexible) version of the UMAP gradient. For more detail on UMAP, see the umap
function.

Usage

tumap(
X,
n_neighbors = 15,
n_components = 2,
metric = "euclidean",
n_epochs = NULL,
learning_rate = 1,
scale = FALSE,
init = "spectral",
init_sdev = NULL,
set_op_mix_ratio = 1,
local_connectivity = 1,
bandwidth = 1,
repulsion_strength = 1,
negative_sample_rate = 5,
nn_method = NULL,
n_trees = 50,
search_k = 2 * n_neighbors * n_trees,
n_threads = NULL,
n_sgd_threads = 0,
grain_size = 1,
y = NULL,
target_n_neighbors = n_neighbors,
target_metric = "euclidean",
target_weight = 0.5,

12 tumap

pca = NULL,
pca_center = TRUE,
pcg_rand = TRUE,
fast_sgd = FALSE,
ret_model = FALSE,
ret_nn = FALSE,
ret_extra = c(),
tmpdir = tempdir(),
verbose = getOption("verbose", TRUE)

)

Arguments

X Input data. Can be a data.frame, matrix, dist object or sparseMatrix. A
sparse matrix is interpreted as a distance matrix and both implicit and explicit
zero entries are ignored. Set zero distances you want to keep to an arbitrarily
small non-zero value (e.g. 1e-10). Matrix and data frames should contain one
observation per row. Data frames will have any non-numeric columns removed,
although factor columns will be used if explicitly included via metric (see the
help for metric for details). Can be NULL if precomputed nearest neighbor data
is passed to nn_method, and init is not "spca" or "pca".

n_neighbors The size of local neighborhood (in terms of number of neighboring sample
points) used for manifold approximation. Larger values result in more global
views of the manifold, while smaller values result in more local data being pre-
served. In general values should be in the range 2 to 100.

n_components The dimension of the space to embed into. This defaults to 2 to provide easy
visualization, but can reasonably be set to any integer value in the range 2 to
100.

metric Type of distance metric to use to find nearest neighbors. One of:

• "euclidean" (the default)
• "cosine"

• "manhattan"

• "hamming"

• "categorical" (see below)

Only applies if nn_method = "annoy" (for nn_method = "fnn", the distance
metric is always "euclidean").
If X is a data frame or matrix, then multiple metrics can be specified, by passing
a list to this argument, where the name of each item in the list is one of the
metric names above. The value of each list item should be a vector giving the
names or integer ids of the columns to be included in a calculation, e.g. metric
= list(euclidean = 1:4,manhattan = 5:10).
Each metric calculation results in a separate fuzzy simplicial set, which are inter-
sected together to produce the final set. Metric names can be repeated. Because
non-numeric columns are removed from the data frame, it is safer to use column
names than integer ids.

tumap 13

Factor columns can also be used by specifying the metric name "categorical".
Factor columns are treated different from numeric columns and although multi-
ple factor columns can be specified in a vector, each factor column specified is
processed individually. If you specify a non-factor column, it will be coerced to
a factor.
For a given data block, you may override the pca and pca_center arguments
for that block, by providing a list with one unnamed item containing the column
names or ids, and then any of the pca or pca_center overrides as named items,
e.g. metric = list(euclidean = 1:4,manhattan = list(5:10,pca_center
= FALSE)). This exists to allow mixed binary and real-valued data to be in-
cluded and to have PCA applied to both, but with centering applied only to
the real-valued data (it is typical not to apply centering to binary data before
PCA is applied).

n_epochs Number of epochs to use during the optimization of the embedded coordinates.
By default, this value is set to 500 for datasets containing 10,000 vertices or less,
and 200 otherwise. If n_epochs = 0, then coordinates determined by "init"
will be returned.

learning_rate Initial learning rate used in optimization of the coordinates.

scale Scaling to apply to X if it is a data frame or matrix:

• "none" or FALSE or NULL No scaling.
• "Z" or "scale" or TRUE Scale each column to zero mean and variance 1.
• "maxabs" Center each column to mean 0, then divide each element by the

maximum absolute value over the entire matrix.
• "range" Range scale the entire matrix, so the smallest element is 0 and the

largest is 1.
• "colrange" Scale each column in the range (0,1).

For t-UMAP, the default is "none".

init Type of initialization for the coordinates. Options are:

• "spectral" Spectral embedding using the normalized Laplacian of the
fuzzy 1-skeleton, with Gaussian noise added.

• "normlaplacian". Spectral embedding using the normalized Laplacian of
the fuzzy 1-skeleton, without noise.

• "random". Coordinates assigned using a uniform random distribution be-
tween -10 and 10.

• "lvrandom". Coordinates assigned using a Gaussian distribution with stan-
dard deviation 1e-4, as used in LargeVis (Tang et al., 2016) and t-SNE.

• "laplacian". Spectral embedding using the Laplacian Eigenmap (Belkin
and Niyogi, 2002).

• "pca". The first two principal components from PCA of X if X is a data
frame, and from a 2-dimensional classical MDS if X is of class "dist".

• "spca". Like "pca", but each dimension is then scaled so the standard
deviation is 1e-4, to give a distribution similar to that used in t-SNE. This
is an alias for init = "pca",init_sdev = 1e-4.

• "agspectral" An "approximate global" modification of "spectral" which
all edges in the graph to a value of 1, and then sets a random number of

14 tumap

edges (negative_sample_rate edges per vertex) to 0.1, to approximate
the effect of non-local affinities.

• A matrix of initial coordinates.

For spectral initializations, ("spectral", "normlaplacian", "laplacian"), if
more than one connected component is identified, each connected component is
initialized separately and the results are merged. If verbose = TRUE the number
of connected components are logged to the console. The existence of multiple
connected components implies that a global view of the data cannot be attained
with this initialization. Either a PCA-based initialization or increasing the value
of n_neighbors may be more appropriate.

init_sdev If non-NULL, scales each dimension of the initialized coordinates (including any
user-supplied matrix) to this standard deviation. By default no scaling is carried
out, except when init = "spca", in which case the value is 0.0001. Scaling
the input may help if the unscaled versions result in initial coordinates with
large inter-point distances or outliers. This usually results in small gradients
during optimization and very little progress being made to the layout. Shrinking
the initial embedding by rescaling can help under these circumstances. Scaling
the result of init = "pca" is usually recommended and init = "spca" as an
alias for init = "pca",init_sdev = 1e-4 but for the spectral initializations the
scaled versions usually aren’t necessary unless you are using a large value of
n_neighbors (e.g. n_neighbors = 150 or higher).

set_op_mix_ratio

Interpolate between (fuzzy) union and intersection as the set operation used to
combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both
fuzzy set operations use the product t-norm. The value of this parameter should
be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0
will use a pure fuzzy intersection.

local_connectivity

The local connectivity required – i.e. the number of nearest neighbors that
should be assumed to be connected at a local level. The higher this value the
more connected the manifold becomes locally. In practice this should be not
more than the local intrinsic dimension of the manifold.

bandwidth The effective bandwidth of the kernel if we view the algorithm as similar to
Laplacian Eigenmaps. Larger values induce more connectivity and a more global
view of the data, smaller values concentrate more locally.

repulsion_strength

Weighting applied to negative samples in low dimensional embedding optimiza-
tion. Values higher than one will result in greater weight being given to negative
samples.

negative_sample_rate

The number of negative edge/1-simplex samples to use per positive edge/1-
simplex sample in optimizing the low dimensional embedding.

nn_method Method for finding nearest neighbors. Options are:

• "fnn". Use exact nearest neighbors via the FNN package.
• "annoy" Use approximate nearest neighbors via the RcppAnnoy package.

https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=RcppAnnoy

tumap 15

By default, if X has less than 4,096 vertices, the exact nearest neighbors are
found. Otherwise, approximate nearest neighbors are used. You may also pass
precalculated nearest neighbor data to this argument. It must be a list consisting
of two elements:

• "idx". A n_vertices x n_neighbors matrix containing the integer in-
dexes of the nearest neighbors in X. Each vertex is considered to be its own
nearest neighbor, i.e. idx[,1] == 1:n_vertices.

• "dist". A n_vertices x n_neighbors matrix containing the distances of
the nearest neighbors.

Multiple nearest neighbor data (e.g. from two different precomputed metrics)
can be passed by passing a list containing the nearest neighbor data lists as
items. The n_neighbors parameter is ignored when using precalculated nearest
neighbor data.

n_trees Number of trees to build when constructing the nearest neighbor index. The
more trees specified, the larger the index, but the better the results. With search_k,
determines the accuracy of the Annoy nearest neighbor search. Only used if the
nn_method is "annoy". Sensible values are between 10 to 100.

search_k Number of nodes to search during the neighbor retrieval. The larger k, the more
the accurate results, but the longer the search takes. With n_trees, determines
the accuracy of the Annoy nearest neighbor search. Only used if the nn_method
is "annoy".

n_threads Number of threads to use (except during stochastic gradient descent). Default
is half the number of concurrent threads supported by the system. For nearest
neighbor search, only applies if nn_method = "annoy". If n_threads > 1, then
the Annoy index will be temporarily written to disk in the location determined
by tempfile.

n_sgd_threads Number of threads to use during stochastic gradient descent. If set to > 1, then
results will not be reproducible, even if ‘set.seed‘ is called with a fixed seed
before running. Set to "auto" go use the same value as n_threads.

grain_size The minimum amount of work to do on each thread. If this value is set high
enough, then less than n_threads or n_sgd_threads will be used for process-
ing, which might give a performance improvement if the overhead of thread
management and context switching was outweighing the improvement due to
concurrent processing. This should be left at default (1) and work will be spread
evenly over all the threads specified.

y Optional target data for supervised dimension reduction. Can be a vector, matrix
or data frame. Use the target_metric parameter to specify the metrics to use,
using the same syntax as metric. Usually either a single numeric or factor
column is used, but more complex formats are possible. The following types are
allowed:

• Factor columns with the same length as X. NA is allowed for any observation
with an unknown level, in which case UMAP operates as a form of semi-
supervised learning. Each column is treated separately.

• Numeric data. NA is not allowed in this case. Use the parameter target_n_neighbors
to set the number of neighbors used with y. If unset, n_neighbors is
used. Unlike factors, numeric columns are grouped into one block unless

16 tumap

target_metric specifies otherwise. For example, if you wish columns a
and b to be treated separately, specify target_metric = list(euclidean
= "a",euclidean = "b"). Otherwise, the data will be effectively treated as
a matrix with two columns.

• Nearest neighbor data, consisting of a list of two matrices, idx and dist.
These represent the precalculated nearest neighbor indices and distances,
respectively. This is the same format as that expected for precalculated data
in nn_method. This format assumes that the underlying data was a numeric
vector. Any user-supplied value of the target_n_neighbors parameter is
ignored in this case, because the the number of columns in the matrices is
used for the value. Multiple nearest neighbor data using different metrics
can be supplied by passing a list of these lists.

Unlike X, all factor columns included in y are automatically used.
target_n_neighbors

Number of nearest neighbors to use to construct the target simplicial set. Default
value is n_neighbors. Applies only if y is non-NULL and numeric.

target_metric The metric used to measure distance for y if using supervised dimension reduc-
tion. Used only if y is numeric.

target_weight Weighting factor between data topology and target topology. A value of 0.0
weights entirely on data, a value of 1.0 weights entirely on target. The default
of 0.5 balances the weighting equally between data and target. Only applies if y
is non-NULL.

pca If set to a positive integer value, reduce data to this number of columns using
PCA. Doesn’t applied if the distance metric is "hamming", or the dimensions
of the data is larger than the number specified (i.e. number of rows and columns
must be larger than the value of this parameter). If you have > 100 columns
in a data frame or matrix, reducing the number of columns in this way may
substantially increase the performance of the nearest neighbor search at the cost
of a potential decrease in accuracy. In many t-SNE applications, a value of 50
is recommended, although there’s no guarantee that this is appropriate for all
settings.

pca_center If TRUE, center the columns of X before carrying out PCA. For binary data, it’s
recommended to set this to FALSE.

pcg_rand If TRUE, use the PCG random number generator (O’Neill, 2014) during opti-
mization. Otherwise, use the faster (but probably less statistically good) Taus-
worthe "taus88" generator. The default is TRUE.

fast_sgd If TRUE, then the following combination of parameters is set: pcg_rand = TRUE
and n_sgd_threads = "auto". The default is FALSE. Setting this to TRUE will
speed up the stochastic optimization phase, but give a potentially less accu-
rate embedding, and which will not be exactly reproducible even with a fixed
seed. For visualization, fast_sgd = TRUE will give perfectly good results. For
more generic dimensionality reduction, it’s safer to leave fast_sgd = FALSE. If
fast_sgd = TRUE, then user-supplied values of pcg_rand and n_sgd_threads,
are ignored.

ret_model If TRUE, then return extra data that can be used to add new data to an existing
embedding via umap_transform. The embedded coordinates are returned as the

tumap 17

list item embedding. If FALSE, just return the coordinates. This parameter can
be used in conjunction with ret_nn and ret_extra. Note that some settings
are incompatible with the production of a UMAP model: external neighbor data
(passed via a list to nn_method), and factor columns that were included via
the metric parameter. In the latter case, the model produced is based only on
the numeric data. A transformation using new data is possible, but the factor
columns in the new data are ignored.

ret_nn If TRUE, then in addition to the embedding, also return nearest neighbor data
that can be used as input to nn_method to avoid the overhead of repeatedly
calculating the nearest neighbors when manipulating unrelated parameters (e.g.
min_dist, n_epochs, init). See the "Value" section for the names of the list
items. If FALSE, just return the coordinates. Note that the nearest neighbors
could be sensitive to data scaling, so be wary of reusing nearest neighbor data
if modifying the scale parameter. This parameter can be used in conjunction
with ret_model and ret_extra.

ret_extra A vector indicating what extra data to return. May contain any combination of
the following strings:

• "model" Same as setting ‘ret_model = TRUE‘.
• "nn" Same as setting ‘ret_nn = TRUE‘.
• "fgraph" the high dimensional fuzzy graph (i.e. the fuzzy simplicial set

of the merged local views of the input data). The graph is returned as a
sparse symmetric N x N matrix of class dgCMatrix-class, where a non-zero
entry (i, j) gives the membership strength of the edge connecting vertex
i and vertex j. This can be considered analogous to the input probability
(or similarity or affinity) used in t-SNE and LargeVis. Note that the graph
is further sparsified by removing edges with sufficiently low membership
strength that they would not be sampled by the probabilistic edge sampling
employed for optimization and therefore the number of non-zero elements
in the matrix is dependent on n_epochs. If you are only interested in the
fuzzy input graph (e.g. for clustering), setting ‘n_epochs = 0‘ will avoid
any further sparsifying.

tmpdir Temporary directory to store nearest neighbor indexes during nearest neighbor
search. Default is tempdir. The index is only written to disk if n_threads > 1
and nn_method = "annoy"; otherwise, this parameter is ignored.

verbose If TRUE, log details to the console.

Details

By setting the UMAP curve parameters a and b to 1, you get back the Cauchy distribution as used
in t-SNE and LargeVis. It also results in a substantially simplified gradient expression. This can
give a speed improvement of around 50%.

Note that the grain_size parameter no longer does anything and is present to avoid break back-
wards compatibility only.

Value

A matrix of optimized coordinates, or:

18 umap

• if ret_model = TRUE (or ret_extra contains "model"), returns a list containing extra infor-
mation that can be used to add new data to an existing embedding via umap_transform. In
this case, the coordinates are available in the list item embedding.

• if ret_nn = TRUE (or ret_extra contains "nn"), returns the nearest neighbor data as a list
called nn. This contains one list for each metric calculated, itself containing a matrix idx
with the integer ids of the neighbors; and a matrix dist with the distances. The nn list (or a
sub-list) can be used as input to the nn_method parameter.

• if ret_extra contains "fgraph" returns the high dimensional fuzzy graph as a sparse matrix
called fgraph, of type dgCMatrix-class.

The returned list contains the combined data from any combination of specifying ret_model,
ret_nn and ret_extra.

Examples

iris_tumap <- tumap(iris, n_neighbors = 50, learning_rate = 0.5)

umap Dimensionality Reduction with UMAP

Description

Carry out dimensionality reduction of a dataset using the Uniform Manifold Approximation and
Projection (UMAP) method (McInnes & Healy, 2018). Some of the following help text is lifted
verbatim from the Python reference implementation at https://github.com/lmcinnes/umap.

Usage

umap(
X,
n_neighbors = 15,
n_components = 2,
metric = "euclidean",
n_epochs = NULL,
learning_rate = 1,
scale = FALSE,
init = "spectral",
init_sdev = NULL,
spread = 1,
min_dist = 0.01,
set_op_mix_ratio = 1,
local_connectivity = 1,
bandwidth = 1,
repulsion_strength = 1,
negative_sample_rate = 5,
a = NULL,
b = NULL,

https://github.com/lmcinnes/umap

umap 19

nn_method = NULL,
n_trees = 50,
search_k = 2 * n_neighbors * n_trees,
approx_pow = FALSE,
y = NULL,
target_n_neighbors = n_neighbors,
target_metric = "euclidean",
target_weight = 0.5,
pca = NULL,
pca_center = TRUE,
pcg_rand = TRUE,
fast_sgd = FALSE,
ret_model = FALSE,
ret_nn = FALSE,
ret_extra = c(),
n_threads = NULL,
n_sgd_threads = 0,
grain_size = 1,
tmpdir = tempdir(),
verbose = getOption("verbose", TRUE)

)

Arguments

X Input data. Can be a data.frame, matrix, dist object or sparseMatrix. A
sparse matrix is interpreted as a distance matrix and both implicit and explicit
zero entries are ignored. Set zero distances you want to keep to an arbitrarily
small non-zero value (e.g. 1e-10). Matrix and data frames should contain one
observation per row. Data frames will have any non-numeric columns removed,
although factor columns will be used if explicitly included via metric (see the
help for metric for details). Can be NULL if precomputed nearest neighbor data
is passed to nn_method, and init is not "spca" or "pca".

n_neighbors The size of local neighborhood (in terms of number of neighboring sample
points) used for manifold approximation. Larger values result in more global
views of the manifold, while smaller values result in more local data being pre-
served. In general values should be in the range 2 to 100.

n_components The dimension of the space to embed into. This defaults to 2 to provide easy
visualization, but can reasonably be set to any integer value in the range 2 to
100.

metric Type of distance metric to use to find nearest neighbors. One of:

• "euclidean" (the default)
• "cosine"

• "manhattan"

• "hamming"

• "categorical" (see below)

Only applies if nn_method = "annoy" (for nn_method = "fnn", the distance
metric is always "euclidean").

20 umap

If X is a data frame or matrix, then multiple metrics can be specified, by passing
a list to this argument, where the name of each item in the list is one of the
metric names above. The value of each list item should be a vector giving the
names or integer ids of the columns to be included in a calculation, e.g. metric
= list(euclidean = 1:4,manhattan = 5:10).
Each metric calculation results in a separate fuzzy simplicial set, which are inter-
sected together to produce the final set. Metric names can be repeated. Because
non-numeric columns are removed from the data frame, it is safer to use column
names than integer ids.
Factor columns can also be used by specifying the metric name "categorical".
Factor columns are treated different from numeric columns and although multi-
ple factor columns can be specified in a vector, each factor column specified is
processed individually. If you specify a non-factor column, it will be coerced to
a factor.
For a given data block, you may override the pca and pca_center arguments
for that block, by providing a list with one unnamed item containing the column
names or ids, and then any of the pca or pca_center overrides as named items,
e.g. metric = list(euclidean = 1:4,manhattan = list(5:10,pca_center
= FALSE)). This exists to allow mixed binary and real-valued data to be in-
cluded and to have PCA applied to both, but with centering applied only to
the real-valued data (it is typical not to apply centering to binary data before
PCA is applied).

n_epochs Number of epochs to use during the optimization of the embedded coordinates.
By default, this value is set to 500 for datasets containing 10,000 vertices or less,
and 200 otherwise. If n_epochs = 0, then coordinates determined by "init"
will be returned.

learning_rate Initial learning rate used in optimization of the coordinates.

scale Scaling to apply to X if it is a data frame or matrix:

• "none" or FALSE or NULL No scaling.
• "Z" or "scale" or TRUE Scale each column to zero mean and variance 1.
• "maxabs" Center each column to mean 0, then divide each element by the

maximum absolute value over the entire matrix.
• "range" Range scale the entire matrix, so the smallest element is 0 and the

largest is 1.
• "colrange" Scale each column in the range (0,1).

For UMAP, the default is "none".

init Type of initialization for the coordinates. Options are:

• "spectral" Spectral embedding using the normalized Laplacian of the
fuzzy 1-skeleton, with Gaussian noise added.

• "normlaplacian". Spectral embedding using the normalized Laplacian of
the fuzzy 1-skeleton, without noise.

• "random". Coordinates assigned using a uniform random distribution be-
tween -10 and 10.

• "lvrandom". Coordinates assigned using a Gaussian distribution with stan-
dard deviation 1e-4, as used in LargeVis (Tang et al., 2016) and t-SNE.

umap 21

• "laplacian". Spectral embedding using the Laplacian Eigenmap (Belkin
and Niyogi, 2002).

• "pca". The first two principal components from PCA of X if X is a data
frame, and from a 2-dimensional classical MDS if X is of class "dist".

• "spca". Like "pca", but each dimension is then scaled so the standard
deviation is 1e-4, to give a distribution similar to that used in t-SNE. This
is an alias for init = "pca",init_sdev = 1e-4.

• "agspectral" An "approximate global" modification of "spectral" which
all edges in the graph to a value of 1, and then sets a random number of
edges (negative_sample_rate edges per vertex) to 0.1, to approximate
the effect of non-local affinities.

• A matrix of initial coordinates.

For spectral initializations, ("spectral", "normlaplacian", "laplacian"), if
more than one connected component is identified, each connected component is
initialized separately and the results are merged. If verbose = TRUE the number
of connected components are logged to the console. The existence of multiple
connected components implies that a global view of the data cannot be attained
with this initialization. Either a PCA-based initialization or increasing the value
of n_neighbors may be more appropriate.

init_sdev If non-NULL, scales each dimension of the initialized coordinates (including any
user-supplied matrix) to this standard deviation. By default no scaling is carried
out, except when init = "spca", in which case the value is 0.0001. Scaling
the input may help if the unscaled versions result in initial coordinates with
large inter-point distances or outliers. This usually results in small gradients
during optimization and very little progress being made to the layout. Shrinking
the initial embedding by rescaling can help under these circumstances. Scaling
the result of init = "pca" is usually recommended and init = "spca" as an
alias for init = "pca",init_sdev = 1e-4 but for the spectral initializations the
scaled versions usually aren’t necessary unless you are using a large value of
n_neighbors (e.g. n_neighbors = 150 or higher).

spread The effective scale of embedded points. In combination with min_dist, this
determines how clustered/clumped the embedded points are.

min_dist The effective minimum distance between embedded points. Smaller values will
result in a more clustered/clumped embedding where nearby points on the man-
ifold are drawn closer together, while larger values will result on a more even
dispersal of points. The value should be set relative to the spread value, which
determines the scale at which embedded points will be spread out.

set_op_mix_ratio

Interpolate between (fuzzy) union and intersection as the set operation used to
combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both
fuzzy set operations use the product t-norm. The value of this parameter should
be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0
will use a pure fuzzy intersection.

local_connectivity

The local connectivity required – i.e. the number of nearest neighbors that
should be assumed to be connected at a local level. The higher this value the

22 umap

more connected the manifold becomes locally. In practice this should be not
more than the local intrinsic dimension of the manifold.

bandwidth The effective bandwidth of the kernel if we view the algorithm as similar to
Laplacian Eigenmaps. Larger values induce more connectivity and a more global
view of the data, smaller values concentrate more locally.

repulsion_strength

Weighting applied to negative samples in low dimensional embedding optimiza-
tion. Values higher than one will result in greater weight being given to negative
samples.

negative_sample_rate

The number of negative edge/1-simplex samples to use per positive edge/1-
simplex sample in optimizing the low dimensional embedding.

a More specific parameters controlling the embedding. If NULL these values are
set automatically as determined by min_dist and spread.

b More specific parameters controlling the embedding. If NULL these values are
set automatically as determined by min_dist and spread.

nn_method Method for finding nearest neighbors. Options are:

• "fnn". Use exact nearest neighbors via the FNN package.
• "annoy" Use approximate nearest neighbors via the RcppAnnoy package.

By default, if X has less than 4,096 vertices, the exact nearest neighbors are
found. Otherwise, approximate nearest neighbors are used. You may also pass
precalculated nearest neighbor data to this argument. It must be a list consisting
of two elements:

• "idx". A n_vertices x n_neighbors matrix containing the integer in-
dexes of the nearest neighbors in X. Each vertex is considered to be its own
nearest neighbor, i.e. idx[,1] == 1:n_vertices.

• "dist". A n_vertices x n_neighbors matrix containing the distances of
the nearest neighbors.

Multiple nearest neighbor data (e.g. from two different precomputed metrics)
can be passed by passing a list containing the nearest neighbor data lists as
items. The n_neighbors parameter is ignored when using precomputed nearest
neighbor data.

n_trees Number of trees to build when constructing the nearest neighbor index. The
more trees specified, the larger the index, but the better the results. With search_k,
determines the accuracy of the Annoy nearest neighbor search. Only used if the
nn_method is "annoy". Sensible values are between 10 to 100.

search_k Number of nodes to search during the neighbor retrieval. The larger k, the more
the accurate results, but the longer the search takes. With n_trees, determines
the accuracy of the Annoy nearest neighbor search. Only used if the nn_method
is "annoy".

approx_pow If TRUE, use an approximation to the power function in the UMAP gradient, from
https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/.

y Optional target data for supervised dimension reduction. Can be a vector, matrix
or data frame. Use the target_metric parameter to specify the metrics to use,

https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=RcppAnnoy
https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/

umap 23

using the same syntax as metric. Usually either a single numeric or factor
column is used, but more complex formats are possible. The following types are
allowed:

• Factor columns with the same length as X. NA is allowed for any observation
with an unknown level, in which case UMAP operates as a form of semi-
supervised learning. Each column is treated separately.

• Numeric data. NA is not allowed in this case. Use the parameter target_n_neighbors
to set the number of neighbors used with y. If unset, n_neighbors is
used. Unlike factors, numeric columns are grouped into one block unless
target_metric specifies otherwise. For example, if you wish columns a
and b to be treated separately, specify target_metric = list(euclidean
= "a",euclidean = "b"). Otherwise, the data will be effectively treated as
a matrix with two columns.

• Nearest neighbor data, consisting of a list of two matrices, idx and dist.
These represent the precalculated nearest neighbor indices and distances,
respectively. This is the same format as that expected for precalculated data
in nn_method. This format assumes that the underlying data was a numeric
vector. Any user-supplied value of the target_n_neighbors parameter is
ignored in this case, because the the number of columns in the matrices is
used for the value. Multiple nearest neighbor data using different metrics
can be supplied by passing a list of these lists.

Unlike X, all factor columns included in y are automatically used.
target_n_neighbors

Number of nearest neighbors to use to construct the target simplicial set. Default
value is n_neighbors. Applies only if y is non-NULL and numeric.

target_metric The metric used to measure distance for y if using supervised dimension reduc-
tion. Used only if y is numeric.

target_weight Weighting factor between data topology and target topology. A value of 0.0
weights entirely on data, a value of 1.0 weights entirely on target. The default
of 0.5 balances the weighting equally between data and target. Only applies if y
is non-NULL.

pca If set to a positive integer value, reduce data to this number of columns using
PCA. Doesn’t applied if the distance metric is "hamming", or the dimensions
of the data is larger than the number specified (i.e. number of rows and columns
must be larger than the value of this parameter). If you have > 100 columns
in a data frame or matrix, reducing the number of columns in this way may
substantially increase the performance of the nearest neighbor search at the cost
of a potential decrease in accuracy. In many t-SNE applications, a value of 50
is recommended, although there’s no guarantee that this is appropriate for all
settings.

pca_center If TRUE, center the columns of X before carrying out PCA. For binary data, it’s
recommended to set this to FALSE.

pcg_rand If TRUE, use the PCG random number generator (O’Neill, 2014) during opti-
mization. Otherwise, use the faster (but probably less statistically good) Taus-
worthe "taus88" generator. The default is TRUE.

24 umap

fast_sgd If TRUE, then the following combination of parameters is set: pcg_rand = TRUE,
n_sgd_threads = "auto" and approx_pow = TRUE. The default is FALSE. Set-
ting this to TRUE will speed up the stochastic optimization phase, but give a
potentially less accurate embedding, and which will not be exactly reproducible
even with a fixed seed. For visualization, fast_sgd = TRUE will give perfectly
good results. For more generic dimensionality reduction, it’s safer to leave
fast_sgd = FALSE. If fast_sgd = TRUE, then user-supplied values of pcg_rand,
n_sgd_threads, and approx_pow are ignored.

ret_model If TRUE, then return extra data that can be used to add new data to an existing
embedding via umap_transform. The embedded coordinates are returned as the
list item embedding. If FALSE, just return the coordinates. This parameter can
be used in conjunction with ret_nn and ret_extra. Note that some settings
are incompatible with the production of a UMAP model: external neighbor data
(passed via a list to nn_method), and factor columns that were included via
the metric parameter. In the latter case, the model produced is based only on
the numeric data. A transformation using new data is possible, but the factor
columns in the new data are ignored.

ret_nn If TRUE, then in addition to the embedding, also return nearest neighbor data
that can be used as input to nn_method to avoid the overhead of repeatedly
calculating the nearest neighbors when manipulating unrelated parameters (e.g.
min_dist, n_epochs, init). See the "Value" section for the names of the list
items. If FALSE, just return the coordinates. Note that the nearest neighbors
could be sensitive to data scaling, so be wary of reusing nearest neighbor data
if modifying the scale parameter. This parameter can be used in conjunction
with ret_model and ret_extra.

ret_extra A vector indicating what extra data to return. May contain any combination of
the following strings:

• "model" Same as setting ‘ret_model = TRUE‘.
• "nn" Same as setting ‘ret_nn = TRUE‘.
• "fgraph" the high dimensional fuzzy graph (i.e. the fuzzy simplicial set

of the merged local views of the input data). The graph is returned as a
sparse symmetric N x N matrix of class dgCMatrix-class, where a non-zero
entry (i, j) gives the membership strength of the edge connecting vertex
i and vertex j. This can be considered analogous to the input probability
(or similarity or affinity) used in t-SNE and LargeVis. Note that the graph
is further sparsified by removing edges with sufficiently low membership
strength that they would not be sampled by the probabilistic edge sampling
employed for optimization and therefore the number of non-zero elements
in the matrix is dependent on n_epochs. If you are only interested in the
fuzzy input graph (e.g. for clustering), setting ‘n_epochs = 0‘ will avoid
any further sparsifying.

n_threads Number of threads to use (except during stochastic gradient descent). Default
is half the number of concurrent threads supported by the system. For nearest
neighbor search, only applies if nn_method = "annoy". If n_threads > 1, then
the Annoy index will be temporarily written to disk in the location determined
by tempfile.

umap 25

n_sgd_threads Number of threads to use during stochastic gradient descent. If set to > 1, then
results will not be reproducible, even if ‘set.seed‘ is called with a fixed seed
before running. Set to "auto" go use the same value as n_threads.

grain_size The minimum amount of work to do on each thread. If this value is set high
enough, then less than n_threads or n_sgd_threads will be used for process-
ing, which might give a performance improvement if the overhead of thread
management and context switching was outweighing the improvement due to
concurrent processing. This should be left at default (1) and work will be spread
evenly over all the threads specified.

tmpdir Temporary directory to store nearest neighbor indexes during nearest neighbor
search. Default is tempdir. The index is only written to disk if n_threads > 1
and nn_method = "annoy"; otherwise, this parameter is ignored.

verbose If TRUE, log details to the console.

Details

Note that the grain_size parameter no longer does anything and is present to avoid break back-
wards compatibility only.

Value

A matrix of optimized coordinates, or:

• if ret_model = TRUE (or ret_extra contains "model"), returns a list containing extra infor-
mation that can be used to add new data to an existing embedding via umap_transform. In
this case, the coordinates are available in the list item embedding.

• if ret_nn = TRUE (or ret_extra contains "nn"), returns the nearest neighbor data as a list
called nn. This contains one list for each metric calculated, itself containing a matrix idx
with the integer ids of the neighbors; and a matrix dist with the distances. The nn list (or a
sub-list) can be used as input to the nn_method parameter.

• if ret_extra contains "fgraph" returns the high dimensional fuzzy graph as a sparse matrix
called fgraph, of type dgCMatrix-class.

The returned list contains the combined data from any combination of specifying ret_model,
ret_nn and ret_extra.

References

Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems (pp. 585-591). http://papers.
nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.
pdf

McInnes, L., & Healy, J. (2018). UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction arXiv preprint arXiv:1802.03426. https://arxiv.org/abs/1802.03426

O’Neill, M. E. (2014). PCG: A family of simple fast space-efficient statistically good algorithms
for random number generation (Report No. HMC-CS-2014-0905). Harvey Mudd College.

Tang, J., Liu, J., Zhang, M., & Mei, Q. (2016, April). Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th International Conference on World Wide Web (pp. 287-297).

http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
https://arxiv.org/abs/1802.03426

26 umap_transform

International World Wide Web Conferences Steering Committee. https://arxiv.org/abs/1602.
00370

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learn-
ing Research, 9 (2579-2605). http://www.jmlr.org/papers/v9/vandermaaten08a.html

Examples

iris30 <- iris[c(1:10, 51:60, 101:110),]

Non-numeric columns are automatically removed so you can pass data frames
directly in a lot of cases without pre-processing
iris_umap <- umap(iris30, n_neighbors = 5, learning_rate = 0.5, init = "random", n_epochs = 20)

Faster approximation to the gradient and return nearest neighbors
iris_umap <- umap(iris30, n_neighbors = 5, approx_pow = TRUE, ret_nn = TRUE, n_epochs = 20)

Can specify min_dist and spread parameters to control separation and size
of clusters and reuse nearest neighbors for efficiency
nn <- iris_umap$nn
iris_umap <- umap(iris30, n_neighbors = 5, min_dist = 1, spread = 5, nn_method = nn, n_epochs = 20)

Supervised dimension reduction using the 'Species' factor column
iris_sumap <- umap(iris30, n_neighbors = 5, min_dist = 0.001, y = iris30$Species,

target_weight = 0.5, n_epochs = 20)

Calculate Petal and Sepal neighbors separately (uses intersection of the resulting sets):
iris_umap <- umap(iris30, metric = list(

"euclidean" = c("Sepal.Length", "Sepal.Width"),
"euclidean" = c("Petal.Length", "Petal.Width")

))

umap_transform Add New Points to an Existing Embedding

Description

Carry out an embedding of new data using an existing embedding. Requires using the result of
calling umap or tumap with ret_model = TRUE.

Usage

umap_transform(
X,
model,
init_weighted = TRUE,
search_k = NULL,
tmpdir = tempdir(),

https://arxiv.org/abs/1602.00370
https://arxiv.org/abs/1602.00370
http://www.jmlr.org/papers/v9/vandermaaten08a.html

umap_transform 27

n_epochs = NULL,
n_threads = NULL,
n_sgd_threads = 0,
grain_size = 1,
verbose = FALSE

)

Arguments

X The new data to be transformed, either a matrix of data frame. Must have the
same columns in the same order as the input data used to generate the model.

model Data associated with an existing embedding.

init_weighted If TRUE, then initialize the embedded coordinates of X using a weighted aver-
age of the coordinates of the nearest neighbors from the original embedding in
model, where the weights used are the edge weights from the UMAP smoothed
knn distances. Otherwise, use an unweighted average.

search_k Number of nodes to search during the neighbor retrieval. The larger k, the more
the accurate results, but the longer the search takes. Default is the value used in
building the model is used.

tmpdir Temporary directory to store nearest neighbor indexes during nearest neighbor
search. Default is tempdir. The index is only written to disk if n_threads > 1;
otherwise, this parameter is ignored.

n_epochs Number of epochs to use during the optimization of the embedded coordinates.
A value between 30 -100 is a reasonable trade off between speed and thorough-
ness. By default, this value is set to one third the number of epochs used to build
the model.

n_threads Number of threads to use, (except during stochastic gradient descent). Default
is half the number of concurrent threads supported by the system.

n_sgd_threads Number of threads to use during stochastic gradient descent. If set to > 1, then
results will not be reproducible, even if ‘set.seed‘ is called with a fixed seed
before running.

grain_size Minimum batch size for multithreading. If the number of items to process in a
thread falls below this number, then no threads will be used. Used in conjunction
with n_threads and n_sgd_threads.

verbose If TRUE, log details to the console.

Details

Note that some settings are incompatible with the production of a UMAP model via umap: external
neighbor data (passed via a list to the argument of the nn_method parameter), and factor columns
that were included in the UMAP calculation via the metric parameter. In the latter case, the model
produced is based only on the numeric data. A transformation is possible, but factor columns in the
new data are ignored.

Value

A matrix of coordinates for X transformed into the space of the model.

28 unload_uwot

Examples

iris_train <- iris[1:100,]
iris_test <- iris[101:150,]

You must set ret_model = TRUE to return extra data needed
iris_train_umap <- umap(iris_train, ret_model = TRUE)
iris_test_umap <- umap_transform(iris_test, iris_train_umap)

unload_uwot Unload a Model

Description

Unloads the UMAP model. This prevents the model being used with umap_transform, but allows
the temporary working directory associated with saving or loading the model to be removed.

Usage

unload_uwot(model, cleanup = TRUE, verbose = FALSE)

Arguments

model a UMAP model create by umap.

cleanup if TRUE, attempt to delete the temporary working directory that was used in either
the save or load of the model.

verbose if TRUE, log information to the console.

See Also

save_uwot, load_uwot

Examples

iris_train <- iris[c(1:10, 51:60),]
iris_test <- iris[100:110,]

create model
model <- umap(iris_train, ret_model = TRUE, n_epochs = 20)

save without unloading: this leaves behind a temporary working directory
model_file <- tempfile("iris_umap")
model <- save_uwot(model, file = model_file)

The model can continue to be used
test_embedding <- umap_transform(iris_test, model)

To manually unload the model from memory when finished and to clean up

unload_uwot 29

the working directory (this doesn't touch your model file)
unload_uwot(model)

At this point, model cannot be used with umap_transform, this would fail:
test_embedding2 <- umap_transform(iris_test, model)

restore the model: this also creates a temporary working directory
model2 <- load_uwot(file = model_file)
test_embedding2 <- umap_transform(iris_test, model2)

Unload and clean up the loaded model temp directory
unload_uwot(model2)

clean up the model file
unlink(model_file)

save with unloading: this deletes the temporary working directory but
doesn't allow the model to be re-used
model3 <- umap(iris_train, ret_model = TRUE, n_epochs = 20)
model_file3 <- tempfile("iris_umap")
model3 <- save_uwot(model3, file = model_file3, unload = TRUE)

Index

data.frame, 4, 12, 19
dgCMatrix-class, 8, 9, 17, 18, 24, 25
dist, 4, 12, 19

load_uwot, 2, 10, 28
lvish, 3

matrix, 4, 12, 19

save_uwot, 2, 9, 28
sparseMatrix, 4, 12, 19

tempdir, 8, 17, 25, 27
tempfile, 7, 15, 24
tumap, 11, 26

umap, 4, 8, 10, 11, 18, 26–28
umap_transform, 2, 10, 16, 18, 24, 25, 26, 28
unload_uwot, 2, 10, 28

30

	load_uwot
	lvish
	save_uwot
	tumap
	umap
	umap_transform
	unload_uwot
	Index

