${\bf Package\ `utility Function Tools'}$

July 27, 2020

Title P-Spline Regression for Utility Functions and Derived Measures

Type Package

Description Predicts a smooth and continuous (individual) utility function from utility points, and computes measures of intensity for risk and higher order risk measures (or any other measure computed with user-written function) based on this utility function and its derivatives according to the method introduced in Schnei-
der (2017) http://hdl.handle.net/11858/00-1735-0000-002E-E306-0 .
Version 0.1.0
Maintainer Sebastian O. Schneider <sschneider@coll.mpg.de></sschneider@coll.mpg.de>
URL http://www.sebastianschneider.eu
License GPL-3
Imports spatstat
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Sebastian O. Schneider [aut, cre, prg], Giulia Baldini [edt, prg], Paul Eilers [ctb] (Functions tpower and bbase, see Package JOPS at http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz)
Repository CRAN
Date/Publication 2020-07-27 09:40:02 UTC
R topics documented:
bbase
compute_function
compute_higher_order_risk_preferences
compute_measures
derivative
estimate_model

2 bbase

evaluate_cross_validation	ı.						 									9
find_optimal_lambda .							 									10
tpower							 									11

Index 13

bbase Constructs a B-spline basis of degree 'deg' (Code by Paul Eilers, Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz).

Description

Constructs a B-spline basis of degree 'deg' (Code by Paul Eilers, Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.

Usage

```
bbase(x, x1 = min(x), xr = max(x), ndx = 20, deg = 6)
```

Arguments

x	values for the x axis.
xl	minimum value, default is the minimum value of the x-values.
xr	maximum value, default is maximum value of the x-values.
ndx	number of intervals to partition the distance between xl and xr.
deg	degree of the B-spline basis.

Value

a B-spline basis of degree deg and ndx + 1 internal knots.

```
x_{finegrid} \leftarrow seq(0.001, 1.0, (1.0 - 0.001) / 1000) bbase(x_{finegrid})
```

compute_function 3

·	Computes a continuous and smooth utility function from the given utility points
---	---

Description

Computes a continuous and smooth utility function from the given utility points

Usage

```
compute_function(
    x,
    y,
    ids = NULL,
    mode = 1,
    penalty_order = 4,
    lambda_max = 10000,
    current_lambda = 1,
    ndx = 20,
    deg = 6,
    verbose = 0
)
```

Arguments

х	a matrix or dataframe containing the certainty equivalents (x-values of utility points) for a given participant in each use case.
У	can be a vector or a matrix representing the corresponding utility values (y-values of utility points).
ids	a list containing the IDs of the participants. If not given, a list with IDs from 1 to $n_{\rm observations}$ will be created.
mode	an integer between 0 , 1 , 2 representing the three possible modes: multiple imputation, optimal classification or 'weak' classification. Default is optimal classification (1) .
penalty_order	highest dimension (i.e., derivative) to penalize. Must be lower than deg.
lambda_max	maximum lambda used for computing the optimal lambda. It is used only in multiple imputation (mode = 0) and optimal (mode = 1). The default value is 10000 .
current_lambda	lambda considered in the current iteration. Only used in multiple imputation (mode = 0) to create the combinations and as actual lambda value in 'weak' classification mode (mode = 2). The default value is 1 .
ndx	number of intervals to partition the distance between the lowest and highest x-values of the utility points.

deg degree of the B-spline basis. Determines the degree of the function to be estimated. If deg = 2, the estimated utility function will consist of quadratic function.

tions.

verbose shows some information while the program is running.

Value

A smooth and continuous utility function.

Examples

compute_higher_order_risk_preferences

Computes a continuous and smooth function according to the given utility points

Description

Computes a continuous and smooth function according to the given utility points

Usage

```
compute_higher_order_risk_preferences(
    X,
    y,
    ids = NULL,
    mode = 0,
    penalty_orders = c(4),
    ndx = 20,
    deg = 6,
    measures = c("risk-arrow-pratt", "crainich-eeckhoudt", "denuit-eeckhoudt"),
    ...,
    root_filename = NULL,
    verbose = 0
)
```

Arguments

х	a matrix or dataframe containing the certainty equivalents (x-values of utility points) for a given participant in each use case.
у	can be a vector or a matrix representing the corresponding utility values (y-values of utility points).
ids	a list containing the IDs of the participants. If not given, a list with IDs from 1 to $n_{\rm observations}$ will be created.
mode	an integer between 0, 1, 2 representing the three possible modes: multiple imputation, optimal classification or 'weak' classification. Default is optimal classification (1).
penalty_orders	vector or constant that contains the derivates that will be smoothened. The values in this vector should not be larger than 4.
ndx	number of intervals to partition the distance between the lowest and highest x -values of the utility points.
deg	degree of the B-spline basis. Determines the degree of the function to be estimated. If $deg = 2$, the estimated utility function will consist of quadratic functions.
measures	the utility based (intensity) measures to be computed.
	additional parameters for user-defined measures.
root_filename	filename containing the location of where the output files are going to be saved.
verbose	shows some information while the program is running.

Value

A smooth and continuous function.

6 compute_measures

compute_measures	Given a set of smooth and continuous functions, computes predefined and user-defined measures.
	and user-defined measures.

Description

Given a set of smooth and continuous functions, computes predefined and user-defined measures.

Usage

```
compute_measures(
   x_grids,
   coeffs,
   ids = NULL,
   ndx = 20,
   deg = 6,
   measures = c("risk-arrow-pratt", "crainich-eeckhoudt", "denuit-eeckhoudt"),
   ...
)
```

Arguments

x_grids	a dataframe of vectors of x values for a smooth and continuous function.
coeffs	a dataframe of coefficients for a smooth and continous function for each participant.
ids	a list containing the IDs of the participants. If not given, a list with IDs from 1 to n_observations will be created.
ndx	number of intervals to partition the distance between the lowest and highest x-values of the utility points.
deg	degree of the B-spline basis. Determines the degree of the function to be estimated. If deg = 2, the estimated utility function will consist of quadratic functions.
measures	a vector of measures to be computed.
	additional parameters for user-defined measures.

Value

A set of measurements.

derivative 7

```
seq(0.0004, 1.0, (1.0 - 0.0004) / 15))
compute_measures(x, y, ndx = 10, deg = 6)
# x_finegrid, coeff, ndx, deg are always there to be used
# The function should have additional unknown arguments (...) if the given parameters are not used
risk_arrow_pratt <- function(x_finegrid, coeff, ndx, deg){
    dy_rd <- derivative(x_finegrid, coeff, 1, ndx, deg)
    ddy_rd <- derivative(x_finegrid, coeff, 2, ndx, deg)
    return (-mean(ddy_rd, na.rm = TRUE) / mean(dy_rd, na.rm = TRUE))
}
measures = c("crainich-eeckhoudt", "denuit-eeckhoudt", risk_arrow_pratt)
compute_measures(x, y, ndx = 10, deg = 6, measures=measures)</pre>
```

derivative

Computes the derivative of a function

Description

Computes the derivative of a function

Usage

```
derivative(x, coeffs, degree = 1, ndx = 20, deg = 6)
```

Arguments

the x values for which the derivative should be computed.

the coefficient.

degree the degree of the derivative.

number of intervals to partition the distance between the lowest and highest x-values of the utility points.

deg degree of the B-spline basis. Determines the degree of the function to be estimated. If deg = 2, the estimated utility function will consist of quadratic functions.

Value

the derivative of the specified degree.

```
coeffs <- seq(0.000002, 1.0, (1.0 - 0.000002) / 25) x <- seq(0.01, 1.0, (1.0 - 0.01) / 5) derivative(x, coeffs)
```

8 estimate_model

estimate_model

Estimates the model

Description

Estimates the model

Usage

```
estimate_model(
   xi,
   yi,
   lambda = 1,
   n_penalty_dimensions = 1,
   penalty_order = 4,
   ndx = 20,
   deg = 6,
   cross_validation_mode = 0,
   return_estimate = 0,
   left_out_xi = c(),
   left_out_yi = c()
)
```

Arguments

xi a vector containing the certainty equivalents (x-values of utility points) for a

given participant in each use case.

yi can be a vector or a matrix representing the corresponding utility values (y-

values of utility points).

lambda is the penalization weight used to compute the initial estimate. The

default value is 1.

n_penalty_dimensions

number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2.

The default value is 1.

penalty_order highest dimension (i.e., derivative) to penalize. Must be lower than deg.

ndx number of intervals to partition the distance between the lowest and highest x-

values of the utility points.

degree of the B-spline basis. Determines the degree of the function to be esti-

mated. If deg = 2, the estimated utility function will consist of quadratic func-

tions.

cross_validation_mode

determines which cross validation mode should be used. If 0, then the cross validation method is leave-one-third-out. If 1, then the cross validation method is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.

return_estimate

parameter that indicates whether or not to return the (initially) estimated coefficients. Default is false.

left_out_xi needed for cross validation: the x-values of the points that are left out for fitting

the model, so that they can be predicted

left_out_yi needed for cross validation: the y-values of the points that are left out for fitting

the model, so that they can be predicted

Value

Returns the sum of residuals of the prediction of the left-out points using cross validation. If specified, additionally returns the estimated coefficients of the utility function (in the B-spline basis).

Examples

evaluate_cross_validation

Evaluates the cross validation function.

Description

Evaluates the cross validation function.

Usage

```
evaluate_cross_validation(
   xi,
   yi,
   lambda = 1,
   n_penalty_dimensions = 1,
   penalty_order = 4,
   ndx = 20,
   deg = 6,
   cross_validation_mode = 0
)
```

Arguments

xi a vector containing the certainty equivalents (x-values of utility points) for a given participant in each use case.

yi can be a vector or a matrix representing the corresponding utility values (y-values of utility points).

find_optimal_lambda

lambda is the penalization weight used to compute the initial estimate. The default value is 1.

n_penalty_dimensions

number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2.

The default value is 1.

penalty_order highest dimension (i.e., derivative) to penalize. Must be lower than deg.

ndx number of intervals to partition the distance between the lowest and highest x-

values of the utility points.

degree of the B-spline basis. Determines the degree of the function to be esti-

mated. If deg = 2, the estimated utility function will consist of quadratic func-

tions.

cross_validation_mode

determines which cross validation mode should be used. If 0, then the cross validation method is leave-one-third-out. If 1, then the cross validation method is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.

Value

Returns, for the given utility points and (possibly default) settings, the predictive quality of the estimated utility function according to cross validation as a function of a specified penalty weight lambda.

Examples

find_optimal_lambda

Finds an optimal penalty weight lambda given the parameters

Description

Finds an optimal penalty weight lambda given the parameters

Usage

```
find_optimal_lambda(
    xi,
    yi,
    lambda_max = 10000,
    n_penalty_dimensions = 1,
    penalty_order = 4,
    ndx = 20,
    deg = 6,
    cross_validation_mode = 0,
    grid_dim = 5
)
```

tpower 11

Arguments

xi	a vector containing the certainty equivalents (x-values of utility points) for a given participant in each use case.
yi	can be a vector or a matrix representing the corresponding utility values (y-values of utility points).
lambda_max	maximum lambda used for computing the optimal lambda. The default value is 10000 .
n_penalty_dimen	nsions
	number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2. The default value is 1.
penalty_order	highest dimension (i.e., derivative) to penalize. Must be lower than deg.
ndx	number of intervals to partition the distance between the lowest and highest x -values of the utility points.
deg	degree of the B-spline basis. Determines the degree of the function to be estimated. If deg = 2, the estimated utility function will consist of quadratic functions.
cross_validation	on_mode
	determines which cross validation mode should be used. If 0, then the cross validation method is leave-one-third-out. If 1, then the cross validation method is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.
grid_dim	dimension of the search grid for the initial grid search before the actual optimization. Default value is 5.

Value

the optimal lambda for the given set of utility points and (possibly default) settings according to the specified cross validation method.

Examples

tpower Truncated p-th power function. Helper function for creating the B-Spline basis (Code by Paul Eilers, Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz)

Description

Truncated p-th power function. Helper function for creating the B-Spline basis (Code by Paul Eilers, Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz)

12 tpower

Usage

```
tpower(x, t, p)
```

Arguments

x Function value.

t Point of truncation.

p degree of the truncated polynomial function.

Value

Returns a piece-wise defined basis functions for x > t.

```
tpower(1, 2, 3)
```

Index