Examples with outcomes in {0,1}
library(grf)
library(ggplot2)
library(uplifteval)
#
# Case 1: randomized control trial, treatment propensity is feature independent and equal
# for treatment and control cases, 50-50
#
# Treatment/Response Train/Test
set.seed(123)
W = rbinom(n, 1, 0.5)
W.test = rbinom(n, 1, 0.5)
Y = rl(rl(X[,1]) * W - rl(X[,3]) * W + rnorm(n))
Y.test = rl(rl(X.test[,1]) * W.test - rl(X.test[,3]) * W.test + rnorm(n))
tau.forest = causal_forest(X, Y, W)
tau.hat = predict(tau.forest, X.test)
plot_uplift(tau.hat$predictions, W.test, Y.test)

#
# Case 2: randomized control trial, treatment propensity is feature independent but unequal
# for treatment and control cases, 80-20
#
# Treatment/Response Train/Test
set.seed(123)
W = rbinom(n, 1, 0.8)
W.test = rbinom(n, 1, 0.8)
Y = rl(rl(X[,1]) * W - rl(X[,3]) * W + rnorm(n))
Y.test = rl(rl(X.test[,1]) * W.test - rl(X.test[,3]) * W.test + rnorm(n))
table(W.test, Y.test)
## Y.test
## W.test 0 1
## 0 211 211
## 1 782 796
## 0 1
## 422 1578
