
Package ‘uplift’
February 20, 2015

Version 0.3.5

Date 2014-03-17

Title Uplift Modeling

Description An integrated package for building and testing uplift models

Author Leo Guelman

Maintainer Leo Guelman <leo.guelman@gmail.com>

License GPL-2 | GPL-3

Depends R (>= 3.0.0), RItools, MASS, coin, tables, penalized

Repository CRAN

NeedsCompilation no

Date/Publication 2014-03-17 21:08:06

R topics documented:
uplift-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ccif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
checkBalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
explore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
modelProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
niv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
predict.ccif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
predict.upliftRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
qini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
rvtu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
sim_pte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
tian_transf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
trt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
upliftKNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
upliftRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
varImportance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Index 31

1



2 ccif

uplift-package Uplift Modeling

Description

An integrated package for building and testing uplift models.

Details

Package: uplift
Type: Package
Version: 0.3.4
Date: 2014-01-03
Depends: R (>= 3.0.0), RItools, MASS, coin, tables, penalized
License: GPL-2 | GPL-3

Author(s)

Leo Guelman <leo.guelman@gmail.com>

ccif Causal Conditional Inference Forest

Description

ccif implements recursive partitioning in a causal conditional inference framework.

Usage

## S3 method for class 'formula'
ccif(formula, data, ...)

## Default S3 method:
ccif(
x,
y,
ct,
mtry = floor(sqrt(ncol(x))),
ntree = 100,
split_method = c("ED", "Chisq", "KL", "L1", "Int"),
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interaction.depth = NULL,
pvalue = 0.05,
bonferroni = FALSE,
minsplit = 20,
minbucket_ct0 = round(minsplit/4),
minbucket_ct1 = round(minsplit/4),
keep.inbag = FALSE,
verbose = FALSE,
...)

## S3 method for class 'ccif'
print(x, ...)

Arguments

data A data frame containing the variables in the model. It should include a variable
reflecting the binary treatment assignment of each observation (coded as 0/1).

x, formula a data frame of predictors or a formula describing the model to be fitted. A
special term of the form trt() must be used in the model equation to identify
the binary treatment variable. For example, if the treatment is represented by a
variable named treat, then the right hand side of the formula must include the
term +trt(treat).

y a binary response (numeric) vector.

ct a binary (numeric) vector representing the treatment assignment (coded as 0/1).

mtry the number of variables to be tested in each node; the default is floor(sqrt(ncol(x))).

ntree the number of trees to generate in the forest; default is ntree = 100.

split_method the split criteria used at each node of each tree; Possible values are: "ED" (Eu-
clidean distance), "Chisq" (Chi-squared divergence), "KL" (Kullback-Leibler
divergence), "Int" (Interaction method).

interaction.depth

The maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc.

pvalue the maximum acceptable pvalue required in order to make a split.

bonferroni apply a bonferroni adjustment to pvalue.

minsplit the minimum number of observations that must exist in a node in order for a
split to be attempted.

minbucket_ct0 the minimum number of control observations in any terminal <leaf> node.

minbucket_ct1 the minimum number of treatment observations in any terminal <leaf> node.

keep.inbag if set to TRUE, an nrow(x) by ntree matrix is returned, whose entries are the
"in-bag" samples in each tree.

verbose print status messages?

... Additional arguments passed to independence_test{coin}. See details.
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Details

Causal conditional inference trees estimate personalized treatment effects (a.k.a. uplift) by binary
recursive partitioning in a conditional inference framework. Roughly, the algorithm works as fol-
lows: 1) For each terminal node in the tree we test the global null hypothesis of no interaction
effect between the treatment T and any of the n covariates selected at random from the set of p
covariates (n ≤ p). Stop if this hypothesis cannot be rejected. Otherwise select the input variable
with strongest interaction effect. The interaction effect is measured by a p-value corresponding to
a permutation test (Strasser and Weber, 1999) for the partial null hypothesis of independence be-
tween each input variable and a transformed response. Specifically, the response is transformed so
the impact of the input variable on the response has a causal interpretation for the treatment effect
(see details in Guelman et al. 2013) 2) Implement a binary split in the selected input variable. 3)
Recursively repeate steps 1) and 2).

The independence test between each input and the transformed response is performed by calling
independence_test{coin}. Additional arguments may be passed to this function via ‘. . .’.

All split methods are described in Guelman et al. (2013a, 2013b).

This function is very slow at the moment. It was built as a prototype in R. A future version of
this package will provide an interface to C++ for this function, which is expected to significantly
improve speed.

Value

An object of class ccif, which is a list with the following components:

call the original call to ccif

trees the tree structure that was learned

split_method the split criteria used at each node of each tree

ntree the number of trees used

mtry the number of variables tested at each node

var.names a character vector with the name of the predictors

var.class a character vector containing the class of each predictor variable

inbag an nrow(x) by ntree matrix showing the in-bag samples used by each tree

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013a). Uplift random forests. Cybernetics &
Systems, forthcoming.

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013b). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.

Hothorn, T., Hornik, K. and Zeileis, A. (2006).Unbiased recursive partitioning: A conditional in-
ference framework. Journal of Computational and Graphical Statistics, 15(3): 651-674.
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Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical
Methods of Statistics, 8: 220-250.

Examples

library(uplift)

### Simulate train data

set.seed(12345)
dd <- sim_pte(n = 100, p = 6, rho = 0, sigma = sqrt(2), beta.den = 4)

dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit model

form <- as.formula(paste('y ~', 'trt(treat) +', paste('X', 1:6, sep = '', collapse = "+")))

fit1 <- ccif(formula = form,
data = dd,
ntree = 50,
split_method = "Int",
distribution = approximate (B=999),
pvalue = 0.05,
verbose = TRUE)

print(fit1)
summary(fit1)

checkBalance Standardized Differences for Stratified Comparisons

Description

This function is simply a wrapper for xBalance{RItools}. Given covariates, a treatment vari-
able, and (optionally) a stratifying factor, it calculates standardized mean differences along each
covariate, and tests for conditional independence of the treatment variable and the covariates.

Usage

checkBalance(formula, data, report = "all", ...)

Arguments

formula A formula containing an indicator of treatment assignment on the left hand side
and covariates at right.

data A data frame in which the formula and (optionally) strata are to be evaluated.
report Character vector listing measures to report for each stratification; a subset of

c("adj.means","adj.mean.diffs", "adj.mean.diffs.null.sd", "chisquare.test", "std.diffs","z.scores","p.values","all").
P-values reported are two-sided for the null-hypothesis of no effect. The option
"all" requests all measures.
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... Additional arguments passed to xBalance{RItools}.

Details

See help("xBalance") for details.

Value

An object of class c("xbal", "list"). There are plot, print, and xtable methods for class
xbal.

Note

Evidence pertaining to the hypothesis that a treatment variable is not associated with differences
in covariate values is assessed by comparing the differences of means (or regression coefficients),
without standardization, to their distributions under hypothetical shuffles of the treatment variable,
a permutation or randomization distribution. For the unstratified comparison, this reference dis-
tribution consists of differences (more generally, regression coefficients) when the treatment vari-
able is permuted without regard to strata. For the stratified comparison, the reference distribution
is determined by randomly permuting the treatment variable within strata, then re-calculating the
treatment-control differences (regressions of each covariate on the permuted treatment variable).
Significance assessments are based on the large-sample Normal approximation to these reference
distributions.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Hansen, B.B. and Bowers, J. (2008). Covariate Balance in Simple, Stratified and Clustered Com-
parative Studies. Statistical Science 23.

Kalton, G. (1968). Standardization: A technique to control for extraneous variables. Applied
Statistics 17, 118-136.

Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

checkBalance(treat ~ X1 + X2 + X3 + X4 + X5 + X6 , data = dd)
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explore Explore Data for Uplift Modeling

Description

This function provides a basic exploratory tool for uplift modeling, by computing the average value
of the response variable for each predictor and treatment assignment.

Usage

explore(formula,
data,
subset,
na.action = na.pass,
nbins = 4,
continuous = 4,
direction = 1)

Arguments

formula a formula expression of the form response ~ predictors. A special term of the
form trt() must be used in the model equation to identify the binary treatment
variable. For example, if the treatment is represented by a variable named treat,
then the right hand side of the formula must include the term +trt(treat).

data a data.frame in which to interpret the variables named in the formula.

subset expression indicating which subset of the rows of data should be included. All
observations are included by default.

na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is na.action = na.pass.

nbins the number of bins created from numeric predictors. The bins are created based
on quantiles, with a default value of 4 (quartiles).

continuous specifies the threshold for when a variable is considered to be continuous (when
there are at least continuous unique values). The default is 4. Factor variables
are always considered to be categorical no matter how many levels they have.

direction possible values are 1 (default) if uplift should be computed as the difference in
the average response between treatment and control, or 2 between control and
treatment. This only affects the uplift calculation as produced in the output.

Value

A list of matrices, one for each variable. The columns represent: the number of responses over
the control group, the number of the responses over the treated group, the average response for the
control, the average response for the treatment, and the uplift (difference between treatment and
control average response).
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Author(s)

Leo Guelman <leo.guelman@gmail.com>

Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

eda <- explore(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd)

modelProfile Profile a Fitted Uplift Model

Description

This function can be used to profile a fitted uplift model. Given a vector of scores (uplift predic-
tions), it computes basic summary statistics for each predictor by score quantile.

Usage

modelProfile(formula, data, groups = 10,
group_label = c("I", "D"), digits_numeric = 1, digits_factor = 4,
exclude_na = FALSE, LaTex = FALSE)

Arguments

formula a formula expression of the form score ~ predictors, where the LHS of the model
formula should include the predictions from a fitted model.

data a data.frame in which to interpret the variables named in the formula.

groups number of groups of equal observations in which to partition the data set to show
results. The default value is 10 (deciles). Other possible values are 5 and 20.

group_label possible values are "I" or "D", for group number labels which are increasing or
decreasing with the model score, respectively.

digits_numeric number of digits to show for numeric predictors.

digits_factor number of digits to show for factor predictors.

exclude_na should the results exclude observations with missing values in any of the vari-
ables named in the formula?

LaTex should the function output LaTex code?



modelProfile 9

Details

This function ranks the variable supplied in the LHS of the model formula and classifies it into
groups of equal number of observations. It subsequently calls the function tabular from the
tables package to compute the average of each numeric predictor and the distribution of each
factor within each group.

Value

An object of S3 class tabular. See help("tabular") in the tables package for details.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

Examples

library(uplift)

### Simulate data
set.seed(12345)
dd <- sim_pte(n = 1000, p = 5, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0) # required coding for upliftRF

### Fit upliftRF model
fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + trt(treat),

data = dd,
mtry = 3,
ntree = 50,
split_method = "KL",
minsplit = 100,
verbose = TRUE)

### Fitted values on train data
pred <- predict(fit1, dd)

### Compute uplift predictions
uplift_pred <- pred[, 1] - pred[, 2]

### Put together data, predictions and add some dummy factors for illustration only
dd2 <- data.frame(dd, uplift_pred, F1 = gl(2, 50, labels = c("A", "B")),

F2 = gl(4, 25, labels = c("a", "b", "c", "d")))

### Profile data based on fitted model
modelProfile(uplift_pred ~ X1 + X2 + X3 + F1 + F2,

data = dd2,
groups = 10,
group_label = "D",
digits_numeric = 2,
digits_factor = 4,
exclude_na = FALSE,
LaTex = FALSE)
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niv Adjusted Net Information Value

Description

This function produces an adjusted net information value for each variable specified in the right
hand side of the formula. This can be a helpful exploratory tool to (preliminary) determine the
predictive power of each variable for uplift.

Usage

niv(formula, data, subset, na.action = na.pass, B = 10, direction = 1,
nbins = 10, continuous = 4, plotit = TRUE, ...)

Arguments

formula a formula expression of the form response ~ predictors. A special term of the
form trt() must be used in the model equation to identify the binary treatment
variable. For example, if the treatment is represented by a variable named treat,
then the right hand side of the formula must include the term +trt(treat).

data a data.frame in which to interpret the variables named in the formula.

subset expression indicating which subset of the rows of data should be included. All
observations are included by default.

na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is na.action = na.pass.

B the number of bootstrap samples used to compute the adjusted net information
value.

direction if set to 1 (default), the net weight of evidence is computed as the difference
between the weight of evidence of the treatment and control groups, or if 2, it
is computed as the difference between the weight of evidence of the control and
treatment groups. This will not change the adjusted net information value, but
only the sign of the net weight of evidence values.

nbins the number of bins created from numeric predictors. The bins are created based
on quantiles, with a default value of 10 (deciles).

continuous specifies the threshold for when a variable is considered to be continuous (when
there are at least continuous unique values). The default is 4. Factor variables
are always considered to be categorical no matter how many levels they have.

plotit plot the adjusted net information value for each variable?

... additional arguments passed to barplot.
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Details

The ordinary information value (commonly used in credit scoring applications) is given by

IV =

G∑
i=1

(P (x = i|y = 1)− P (x = i|y = 0))×WOEi

where G is the number of groups created from a numeric predictor or categories from a categorical
predictor, and WOEi = ln(P (x=i|y=1)

P (x=i|y=0) ).

The net information value is the natural extension of the IV for the case of uplift. It is computed as

NIV = 100×
G∑
i=1

(P (x = i|y = 1)T×P (x = i|y = 0)C−P (x = i|y = 0)T×P (x = i|y = 1)C)×NWOEi

where NWOEi = WOET
i −WOEC

i

The adjusted net information value is computed as follows:

1. Take B bootstrap samples and compute the NIV for each variable on each sample

2. Compute the mean of the NIV (NIVmean) and sd of the NIV (NIVsd) for each variable over all
the B bootstraps

3. The adjusted NIV for a given variable is computed by adding a penalty term to the mean NIV:
NIVmean − NIVsd√

B
.

Value

A list with two components:

niv_val a matrix with the following columns: niv (the average net information value for
each variable over all bootstrap samples), penalty (the penalty term calculated
as described in the details above), the adjusted information value (the difference
between the prior two colums)

nwoe a list of matrices, one for each variable. The columns represent: the distribu-
tion of the responses (y=1) over the treated group (ct1.y1), the distribution
of the non-responses (y=0) over the treated group (ct1.y0), the distribution
of the responses (y=1) over the control group (ct0.y1), the distribution of the
non-responses (y=0) over the control group (ct0.y0), the weight-of-evidence
over the treated group (ct1.woe), the weight-of-evidence over the control group
ct0.woe, and the net weigh-of-evidence (nwoe).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Larsen, K. (2009). Net lift models. In: M2009 - 12th Annual SAS Data Mining Conference.
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Examples

library(uplift)

set.seed(12345)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

niv.1 <- niv(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd)
niv.1$niv
niv.1$nwoe

performance Performance Assessment for Uplift Models

Description

Provides a method for assessing performance for uplift models.

Usage

performance(pr.y1_ct1, pr.y1_ct0, y, ct, direction = 1, groups = 10)

Arguments

pr.y1_ct1 the predicted probability Prob(y = 1|treated, x).

pr.y1_ct0 the predicted probability Prob(y = 1|control, x).

y the actual observed value of the response.

ct a binary (numeric) vector representing the treatment assignment (coded as 0/1).

direction possible values are 1 (default) if the objective is to maximize the difference in
the response for Treatment minus Control, and 2 for Control minus Treatment.

groups number of groups of equal observations in which to partition the data set to show
results. The default value is 10 (deciles). Other possible values are 5 and 20.

Details

Model performance is estimated by: 1. computing the difference in the predicted conditional class
probabilities Prob(y = 1|treated, x) and Prob(y = 1|control, x), 2. ranking the difference and
grouping it into ’buckets’ with equal number of observations each, and 3. computing the actual
difference in the mean of the response variable between the treatment and the control groups for
each bucket.



performance 13

Value

An object of class performance, which is a matrix with the following columns: (group) the number
of groups, (n.ct1) the number of observations in the treated group, (n.ct0) the number of observa-
tions in the control group, (n.y1_ct1) the number of observation in the treated group with response
= 1, (n.y1_ct0) the number of observation in the control group with response = 1, (r.y1_ct1) the
mean of the response for the treated group, (r.y1_ct0) the mean of the response for the control
group, and (uplift) the difference between r.y1_ct1 and r.y1_ct0 (if direction = 1).

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Uplift random forests. Cybernetics &
Systems, forthcoming.

Examples

library(uplift)

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",

minsplit = 200, # need small trees as there is strong uplift effects in the data
verbose = TRUE)

print(fit1)
summary(fit1)

### get variable importance

varImportance(fit1, plotit = TRUE, normalize = TRUE)

### predict on new data

dd_new <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)

### evaluate model performance

perf <- performance(pred[, 1], pred[, 2], dd_new$y, dd_new$treat, direction = 1)
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plot(perf[, 8] ~ perf[, 1], type ="l", xlab = "Decile", ylab = "uplift")

predict.ccif Predictions from a Fitted Causal Conditional Inference Forest Model

Description

prediction of new data using causal conditional inference forest.

Usage

## S3 method for class 'ccif'
predict(object, newdata, n.trees = object$ntree, predict.all = FALSE, ...)

Arguments

object an object of class ccif, as that created by the function ccif.

newdata a data frame containing the values at which predictions are required.

n.trees number of trees used in the prediction; The default is object$ntree.

predict.all should the predictions of all trees be kept?

... not used.

Details

At the moment, all predictors passed for fitting the uplift model must also be present in newdata,
even if they are not used as split variables by any of the trees in the forest.

Value

If predict.all = FALSE, a matrix of predictions containing the conditional class probabilities:
pr.y1_ct1 represents Prob(y = 1|treated, x) and pr.y1_ct0 represents Prob(y = 1|control, x).
This is computed as the average of the individual predictions over all trees.

If predict.all = TRUE, the returned object is a list with two components: pred.avg is the predic-
tion (as described above) and individual is a list of matrices containing the individual predictions
from each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.
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Examples

library(uplift)

### Simulate train data

set.seed(12345)
dd <- sim_pte(n = 100, p = 6, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Fit model

form <- as.formula(paste('y ~', 'trt(treat) +', paste('X', 1:6, sep = '', collapse = "+")))

fit1 <- ccif(formula = form,
data = dd,
ntree = 50,
split_method = "Int",
pvalue = 0.05,
verbose = TRUE)

### Predict on new data

dd_new <- sim_pte(n = 200, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)

pred <- predict(fit1, dd_new)

predict.upliftRF Predictions from a Fitted Uplift Random Forest Model

Description

prediction of new data using uplift random forest.

Usage

## S3 method for class 'upliftRF'
predict(object, newdata, n.trees = object$ntree, predict.all = FALSE, ...)

Arguments

object an object of class upliftRF, as that created by the function upliftRF.

newdata a data frame containing the values at which predictions are required.

n.trees number of trees used in the prediction; The default is object$ntree.

predict.all should the predictions of all trees be kept?

... not used.
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Details

At the moment, all predictors passed for fitting the uplift model must also be present in newdata,
even if they are not used as split variables by any of the trees in the forest.

Value

If predict.all = FALSE, a matrix of predictions containing the conditional class probabilities:
pr.y1_ct1 represents Prob(y = 1|treated, x) and pr.y1_ct0 represents Prob(y = 1|control, x).
This is computed as the average of the individual predictions over all trees.

If predict.all = TRUE, the returned object is a list with two components: pred.avg is the predic-
tion (as described above) and individual is a list of matrices containing the individual predictions
from each tree.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Uplift random forests. Cybernetics &
Systems, forthcoming.

See Also

upliftRF

Examples

library(uplift)

### simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",

minsplit = 200, # need small trees as there is strong uplift effects in the data
verbose = TRUE)

summary(fit1)

### predict on new data

dd_new <- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
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dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)
head(pred)

qini Computes the Qini Coefficient Q

Description

This function computes the Qini coefficient from a performance object (as created by the function
performance).

Usage

## S3 method for class 'performance'
qini(x, direction = 1, plotit = TRUE, ...)

Arguments

x an object of class performance.

direction possible values are 1 (default) if the objective is to maximize the difference in
the response for Treatment minus Control, and 2 for Control minus Treatment.

plotit plot the incremental gains from the fitted model?

... additional arguments passed to plot.

Details

Qini coefficients represent a natural generalizations of the Gini coefficient to the case of uplift. Qini
is defined as the area between the actual incremental gains curve from the fitted model and the area
under the diagonal corresponding to random targeting. See the references for details.

Value

A list with the following components

Qini the Qini coefficient as defined above.

inc.gains the incremental gain values from the fitted model.
random.inc.gains

the random incremental gains.

Author(s)

Leo Guelman <leo.guelman@gmail.com>
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References

Radcliffe, N. and Surry, P. (2011). Real-World Uplift Modelling with Significance-Based Uplift
Trees. Portrait Technical Report, TR-2011-1.

Radcliffe, N. (2007). Using control groups to target on predicted lift: Building and assessing uplift
models. Direct Marketing Analytics Journal, An Annual Publication from the Direct Marketing
Association Analytics Council, pages 14-21.

Examples

library(uplift)

### simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",

minsplit = 200, # need small trees as there is strong uplift effects in the data
verbose = TRUE)

print(fit1)
summary(fit1)

### predict on new data

dd_new <- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)

pred <- predict(fit1, dd_new)

### evaluate model performance

perf <- performance(pred[, 1], pred[, 2], dd_new$y, dd_new$treat, direction = 1)

### compute Qini coefficient

Q <- qini(perf, plotit = TRUE)
Q

rvtu Response Variable Transform for Uplift Modeling
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Description

This function transforms the data frame supplied in the function call by creating a new response
variable and an equal number of control and treated observations. This transformed data set can be
subsequently used with any conventional supervised learning algorithm to model uplift.

Usage

rvtu(formula, data, subset, na.action = na.pass,
method = c("undersample", "oversample", "weights", "none"))

Arguments

formula a formula expression of the form response ~ predictors. A special term of the
form trt() must be used in the model equation to identify the binary treatment
variable. For example, if the treatment is represented by a variable named treat,
then the right hand side of the formula must include the term +trt(treat).

data a data.frame in which to interpret the variables named in the formula.

subset expression indicating which subset of the rows of data should be included. All
observations are included by default.

na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is na.action = na.pass.

method the method used to create the transformed data set. It must be one of "under-
sample", "oversample", "weights" or "none", with no default. See details.

Details

The transformed response variable z equals 1 if the observation has a response value of 1 and has
been treated, or if it has a response value of 0 and has not been treated. Intuitively, z equals 1 if
we know that, for a given case, the outcome in the treatment group would have been at least as
good as in the control group, had we known for this case the outcome in both groups. Under equal
proportion of control and treated observations, it is easy to prove that 2 ∗ Prob(z = 1|x) − 1 =
Prob(y = 1|treated, x)− Prob(y = 1|control, x) (Jaskowski and Jaroszewicz, 2012).

If the data has an equal number of control and treated observations, then method = "none" must
be used. Otherwise, any of the other methods must be used.

If method = "undersample", a random sample without replacement is drawn from the treated
class (i.e., treated/control) with the majority of observations, such that the returned data frame will
have balanced treated/control proportions.

If method = "oversample", a random sample with replacement is drawn from the treated class with
the minority of observations, such that the returned data frame will have balanced treated/control
proportions.

If method = "weights", the returned data frame will have a weight variable w assigned to each ob-
servation. The weight assigned to the treated (control) equals 1 - proportion of treated observations
(proportion of treated observations).



20 sim_pte

Value

A data frame including the predictor variables (RHS of the formula expression), the treatment (ct =
1) and control (ct = 0) assignment, the original response variable (LHS of the formula expression),
and the transformed response variable for uplift modeling z. If method = "weights" an additional
weight variable w is included.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Jaskowski, M. and Jaroszewicz, S. (2012) Uplift Modeling for Clinical Trial Data. In ICML 2012
Workshop on Machine Learning for Clinical Data Analysis, Edinburgh, Scotland.

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.

Examples

library(uplift)

### Simulate data

set.seed(1)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### Transform response variable for uplift modeling
dd2 <- rvtu(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat), data = dd, method = "none")

### Fit a Logistic model to the transformed response
glm.uplift <- glm(z ~ X1 + X2 + X3 + X4 + X5 + X6, data = dd2, family = "binomial")

### Test fitted model on new data
dd_new <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd_new$treat <- ifelse(dd_new$treat == 1, 1, 0)
pred <- predict(glm.uplift, dd_new, type = "response")
perf <- performance(2 * pred - 1, rep(0, length(pred)), dd_new$y, dd_new$treat, direction = 1)
perf

sim_pte Simulations for Personalized Treatment Effects

Description

Numerical simulation for treatment effect heterogeneity estimation as described in Tian et al. (2012)
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Usage

sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)

Arguments

n number of observations.

p number of predictors.

rho covariance between predictors.

sigma multiplier of error term.

beta.den size of main effects relative to interaction effects. See details.

Details

sim_pte simulates data according to the following specification:

Y = I(

p∑
j=1

βjXj +

p∑
j=1

γjXjT + σ0ε > 0)

,

where γ = (1/2,−1/2, 1/2,−1/2, 0, ..., 0), β = (−1)j+1I(3 ≤ j ≤ 10)/beta.den, (X1, . . . , Xp)
follows a mean zero multivariate normal distribution with a compound symmetric variance-covariance
matrix, (1− ρ)Ip + ρ1T1, T = [−1, 1] is the treatment indicator and ε is N(0, 1).

In this case, the "true" treatment effect score (Prob(Y = 1|T = 1) − Prob(Y = 1|T = −1)) is
given by

Φ(

∑p
j=1(βj + γj)Xj

σ0
)− Φ(

∑p
j=1(βj − γj)Xj

σ0
)

.

Value

A data frame including the response variable (Y ), the treatment (treat=1) and control (treat=-1)
assignment, the predictor variables (X) and the "true" treatment effect score (ts)

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Tian, L., Alizadeh, A., Gentles, A. and Tibshirani, R. 2012. A simple method for detecting interac-
tions between a treatment and a large number of covariates. Submitted on Dec 2012. arXiv:1212.2995
[stat.ME].

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.
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Examples

library(uplift)
### Simulate train data

set.seed(12345)
dd <- sim_pte(n = 1000, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0) # required coding for upliftRF

### Fit model

form <- as.formula(paste('y ~', 'trt(treat) +', paste('X', 1:10, sep = '', collapse = "+")))

fit1 <- upliftRF(formula = form,
data = dd,
ntree = 100,
split_method = "Int",
interaction.depth = 3,
minsplit = 100,
minbucket_ct0 = 50,
minbucket_ct1 = 50,
verbose = TRUE)

summary(fit1)

tian_transf Modify Covariates for Uplift Modeling

Description

This function transforms the data frame supplied in the function call by creating a new set of modi-
fied covariates and an equal number of control and treated observations. This transformed data set
can be subsequently used with any conventional supervised learning algorithm to model uplift.

Usage

tian_transf(formula, data, subset, na.action = na.pass,
method = c("undersample", "oversample", "none"),
standardize = TRUE, cts = FALSE)

Arguments

formula a formula expression of the form response ~ predictors. A special term of the
form trt() must be used in the model equation to identify the binary treatment
variable. For example, if the treatment is represented by a variable named treat,
then the right hand side of the formula must include the term +trt(treat).

data a data.frame in which to interpret the variables named in the formula.

subset expression indicating which subset of the rows of data should be included. All
observations are included by default.
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na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is na.action = na.pass.

method the method used to create the transformed data set. It must be one of "under-
sample", "oversample" or "none", with no default. See details.

standardize If TRUE, each variable is standardized to have unit L2 norm, otherwise it is left
alone. Default is TRUE.

cts if TRUE, contrasts for factors are created in a special way. See details. Default
is FALSE.

Details

The covariates x supplied in the RHS of the model formula are transformed as w = z ∗ T/2, where
T = [−1, 1] is the treatment indicator and z is the matrix of standardize x variables.

If cts = TRUE, factors included in the formula are converted to dummy variables in a special way
that is more appropriate when the returned model frame is used to fit a penalized regression. In
this case, contrasts used for factors are given by penalized regression contrasts from the penalized
package. Unordered factors are turned into as many dummy variables as the factor has levels, except
when the number of levels is 2, in which case it returns a single contrast. This ensures a symmetric
treatment of all levels and guarantees that the fit does not depend on the ordering of the levels. See
help(contr.none) in penalized package. Ordered factors are turned into dummy variables that
code for the difference between successive levels (one dummy less than the number of levels). See
help(contr.diff) in penalized package.

If the data has an equal number of control and treated observations, then method = "none" should
be used. Otherwise, any of the other methods should be used.

If method = "undersample", a random sample without replacement is drawn from the treated
class (i.e., treated/control) with the majority of observations, such that the returned data frame will
have balanced treated/control proportions.

If method = "oversample", a random sample with replacement is drawn from the treated class with
the minority of observations, such that the returned data frame will have balanced treated/control
proportions.

Value

A model frame, including the modified covariates w (the prefix "T_" is added to the name of each
covariate to denote it has been modified), the treatment (ct = 1) and control (ct = 0) assignment
and the response variable (LHS of model formula). The intercept is omitted from the model frame.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Tian, L., Alizadeh, A., Gentles, A. and Tibshirani, R. 2012. A simple method for detecting interac-
tions between a treatment and a large number of covariates. Submitted on Dec 2012. arXiv:1212.2995
[stat.ME].
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Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.

Examples

library(uplift)

set.seed(1)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

dd2 <- tian_transf(y ~ X1 + X2 + X3 + trt(treat), data =dd, method = "none")
head(dd2)

trt Mark Treatment Term

Description

This is a dummy function, used to mark the treatment term in various functions within the uplift
package.

Usage

trt(x)

Arguments

x A numeric variable coded as 1 (treatment) and 0 (control).

Value

x, unchanged

Author(s)

Leo Guelman <leo.guelman@gmail.com>
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upliftKNN Uplift k-Nearest Neighbor

Description

upliftKNN implements k-nearest neighbor for uplift modeling.

Usage

upliftKNN(train, test, y, ct, k = 1, dist.method = "euclidean",
p = 2, ties.meth = "min", agg.method = "mean")

Arguments

train a matrix or data frame of training set cases.

test a matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case.

y a numeric response variable (must be coded as 0/1 for binary response).

ct factor or numeric vector representing the treatment to which each train case is
assigned. At least 2 groups are required (e.g. treatment and control). Multi-
treatments are also supported.

k number of neighbors considered.

dist.method the distance to be used in calculating the neighbors. Any method supported in
function dist is valid.

p the power of the Minkowski distance.

ties.meth method to handle ties for the kth neighbor. The default is "min" which uses all
ties. Alternatives include "max" which uses none if there are ties for the k-th
nearest neighbor, "random" which selects among the ties randomly and "first"
which uses the ties in their order in the data.

agg.method method to combine responses of the nearest neighbors, defaults to "mean". The
alternative is "majority".

Details

k-nearest neighbor for uplift modeling for a test set from a training set. For each case in the test
set, the k-nearest training set vectors for each treatment type are found. The response value for
the k-nearest training vectors is aggregated based on the function specified in agg.method. For
"majority", classification is decided by majority vote (with ties broken at random).

Value

A matrix of predictions for each test case and value of ct
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Note

The code logic follows closely the knn and knnflex packages, the later currently discontinued from
CRAN.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Su, X., Kang, J., Fan, J., Levine, R. A., and Yan, X. (2012). Facilitating score and causal inference
trees for large observational studies. Journal of Machine Learning Research, 13(10): 2955-2994.

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.

Examples

library(uplift)

### simulate data for uplift modeling

set.seed(1)

train <- sim_pte(n = 500, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
train$treat <- ifelse(train$treat == 1, 1, 0)

### Fit an Uplift k-Nearest Neighbor on test data

test <- sim_pte(n = 100, p = 10, rho = 0, sigma = sqrt(2), beta.den = 4)
test$treat <- ifelse(test$treat == 1, 1, 0)

fit1 <- upliftKNN(train[, 3:8], test[, 3:8], train$y, train$treat, k = 1,
dist.method = "euclidean", p = 2, ties.meth = "min", agg.method = "majority")

head(fit1)

upliftRF Uplift Random Forests

Description

upliftRF implements Random Forests with split criteria designed for binary uplift modeling tasks.
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Usage

## S3 method for class 'formula'
upliftRF(formula, data, ...)

## Default S3 method:
upliftRF(
x,
y,
ct,
mtry = floor(sqrt(ncol(x))),
ntree = 100,
split_method = c("ED", "Chisq", "KL", "L1", "Int"),
interaction.depth = NULL,
bag.fraction = 0.5,
minsplit = 20,
minbucket_ct0 = round(minsplit/4),
minbucket_ct1 = round(minsplit/4),
keep.inbag = FALSE,
verbose = FALSE,
...)

## S3 method for class 'upliftRF'
print(x, ...)

Arguments

data A data frame containing the variables in the model. It should include a variable
reflecting the binary treatment assignment of each observation (coded as 0/1).

x, formula a data frame of predictors or a formula describing the model to be fitted. A
special term of the form trt() must be used in the model equation to identify
the binary treatment variable. For example, if the treatment is represented by a
variable named treat, then the right hand side of the formula must include the
term +trt(treat).

y a binary response (numeric) vector.
ct a binary (numeric) vector representing the treatment assignment (coded as 0/1).
mtry the number of variables to be tested in each node; the default is floor(sqrt(ncol(x))).
ntree the number of trees to generate in the forest; default is ntree = 100.
split_method the split criteria used at each node of each tree; Possible values are: "ED" (Eu-

clidean distance), "Chisq" (Chi-squared divergence), "KL" (Kullback-Leibler
divergence), "Int" (Interaction method).

interaction.depth

The maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc. The default is to grow
trees to maximal depth, constrained on the arguments specified in minsplit
and minbucket.
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bag.fraction the fraction of the training set observations randomly selected for the purpose of
fitting each tree in the forest.

minsplit the minimum number of observations that must exist in a node in order for a
split to be attempted.

minbucket_ct0 the minimum number of control observations in any terminal <leaf> node.

minbucket_ct1 the minimum number of treatment observations in any terminal <leaf> node.

keep.inbag if set to TRUE, an nrow(x) by ntree matrix is returned, whose entries are the
"in-bag" samples in each tree.

verbose print status messages?

... optional parameters to be passed to the low level function upliftRF.default.

Details

Uplift Random Forests estimate personalized treatment effects (a.k.a. uplift) by binary recursive
partitioning. The algorithm and split methods are described in Guelman et al. (2013a, 2013b).

Value

An object of class upliftRF, which is a list with the following components:

call the original call to upliftRF

trees the tree structure that was learned

split_method the split criteria used at each node of each tree

ntree the number of trees used

mtry the number of variables tested at each node

var.names a character vector with the name of the predictors

var.class a character vector containing the class of each predictor variable

inbag an nrow(x) by ntree matrix showing the in-bag samples used by each tree

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013a). Uplift random forests. Cybernetics &
Systems, forthcoming.

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013b). Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal, and an insurance case study.
Submitted.

Su, X., Tsai, C., Wang, H., Nickerson, D., and Li, B. (2009). Subgroup Analysis via Recursive
Partitioning. Journal of Machine Learning Research, 10, 141-158.
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Examples

library(uplift)

### simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)
summary(fit1)

varImportance Extract Variable Importance from upliftRF or ccif Fitted Objects

Description

This is the extractor function for variable importance of predictors.

Usage

## S3 method for class 'upliftRF'
varImportance(x, n.trees = x$ntree, plotit = TRUE, normalize = TRUE, ...)

Arguments

x an object of class upliftRF or ccif.

n.trees number of trees used in the prediction; The default is x$ntree.

plotit plot variable importance?

normalize if set to TRUE, the importance is scaled to add up to 100.

... additional arguments passed to barplot.

Details

At each split in each tree, the improvement in the split-criterion is the importance measure attributed
to the splitting variable, and is accumulated over all the trees in the forest separately for each vari-
able.
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Value

A numeric vector with the variable importance.

Author(s)

Leo Guelman <leo.guelman@gmail.com>

References

Guelman, L., Guillen, M., and Perez-Marin A.M. (2013). Uplift random forests. Cybernetics &
Systems, forthcoming.

Examples

library(uplift)

### simulate data for uplift modeling

set.seed(123)
dd <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
dd$treat <- ifelse(dd$treat == 1, 1, 0)

### fit uplift random forest

fit1 <- upliftRF(y ~ X1 + X2 + X3 + X4 + X5 + X6 + trt(treat),
data = dd,
mtry = 3,
ntree = 100,
split_method = "KL",
minsplit = 200,
verbose = TRUE)

print(fit1)

### get variable importance

varImportance(fit1, plotit = TRUE, normalize = TRUE)
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