These are the currently implemented distributions.
| Name | univariateML function | Package | Parameters | Support | 
|---|---|---|---|---|
| Cauchy distribution | mlcauchy | stats | location,scale | \(\mathbb{R}\) | 
| Gumbel distribution | mlgumbel | extraDistr | mu,sigma | \(\mathbb{R}\) | 
| Laplace distribution | mllaplace | extraDistr | mu,sigma | \(\mathbb{R}\) | 
| Logistic distribution | mllogis | stats | location,scale | \(\mathbb{R}\) | 
| Normal distribution | mlnorm | stats | mean,sd | \(\mathbb{R}\) | 
| Student t distribution | mlstd | fGarch | mean,sd,nu | \(\mathbb{R}\) | 
| Generalized Error distribution | mlged | fGarch | mean,sd,nu | \(\mathbb{R}\) | 
| Skew Normal distribution | mlsnorm | fGarch | mean,sd,xi | \(\mathbb{R}\) | 
| Skew Student t distribution | mlsstd | fGarch | mean,sd,nu,xi | \(\mathbb{R}\) | 
| Skew Generalized Error distribution | mlsged | fGarch | mean,sd,nu,xi | \(\mathbb{R}\) | 
| Beta prime distribution | mlbetapr | extraDistr | shape1,shape2 | \((0, \infty)\) | 
| Exponential distribution | mlexp | stats | rate | \([0, \infty)\) | 
| Gamma distribution | mlgamma | stats | shape,rate | \((0, \infty)\) | 
| Inverse gamma distribution | mlinvgamma | extraDistr | alpha,beta | \((0, \infty)\) | 
| Inverse Gaussian distribution | mlinvgauss | actuar | mean,shape | \((0, \infty)\) | 
| Inverse Weibull distribution | mlinvweibull | actuar | shape,rate | \((0, \infty)\) | 
| Log-logistic distribution | mlllogis | actuar | shape,rate | \((0, \infty)\) | 
| Log-normal distribution | mllnorm | stats | meanlog,sdlog | \((0, \infty)\) | 
| Lomax distribution | mllomax | extraDistr | lambda,kappa | \([0, \infty)\) | 
| Rayleigh distribution | mlrayleigh | extraDistr | sigma | \([0, \infty)\) | 
| Weibull distribution | mlweibull | stats | shape,scale | \((0, \infty)\) | 
| Log-gamma distribution | mllgamma | actuar | shapelog,ratelog | \((1, \infty)\) | 
| Pareto distribution | mlpareto | extraDistr | a,b | \([b, \infty)\) | 
| Beta distribution | mlbeta | stats | shape1,shape2 | \((0, 1)\) | 
| Kumaraswamy distribution | mlkumar | extraDistr | a,b | \((0, 1)\) | 
| Logit-normal | mllogitnorm | logitnorm | mu,sigma | \((0, 1)\) | 
| Uniform distribution | mlunif | stats | min,max | \([\min, \max]\) | 
| Power distribution | mlpower | extraDistr | alpha,beta | \([0, a)\) | 
This package follows a naming convention for the ml*** functions. To access the
documentation of the distribution associated with an ml*** function, write package::d***. 
For instance, to find the documentation for the log-gamma distribution write
?actuar::dlgamma
The maximum likelihood estimator of the Lomax distribution frequently fails to exist. For assume \(\kappa\to\lambda^{-1}\overline{x}^{-1}\) and \(\lambda\to0\). The density \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\kappa+1\right)}\) is approximately equal to \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\) when \(\lambda\) is small enough. Since \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\to\overline{x}^{-1}e^{-\overline{x}^{-1}x}\), the density converges to an exponential density.
eps = 0.1
x = seq(0, 3, length.out = 100)
plot(dexp, 0, 3, xlab = "x", ylab = "Density", main = "Exponential and Lomax")
lines(x, extraDistr::dlomax(x, lambda = eps, kappa = 1/eps), col = "red")