Package ‘tune’

July 8, 2020
Title Tidy Tuning Tools
Version 0.1.1

Description The ability to tune models is important. 'tune’ contains functions and
classes to be used in conjunction with other 'tidymodels' packages for
finding reasonable values of hyper-parameters in models, pre-processing
methods, and post-processing steps.

License MIT + file LICENSE

URL https://github.com/tidymodels/tune, https://tune.tidymodels.org
Depends R (>=2.10)

Imports dplyr (>=0.8.5), rlang (>= 0.4.0), tibble (>= 2.1.3), purrr
(>=0.3.2), dials (>=0.0.4), recipes (>= 0.1.9), utils,
ggplot2, glue, cli (>=2.0.0), crayon, yardstick, rsample,
tidyr, GPfit, foreach, parsnip (>= 0.0.4), workflows (>=
0.1.0), hardhat (>= 0.1.0), lifecycle, vctrs (>=0.3.0)

Suggests testthat, knitr, covr, kernlab, randomForest, modeldata,
xml2, spelling

Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Language en-US
NeedsCompilation no

Author Max Kuhn [aut, cre],
RStudio [cph]

Maintainer Max Kuhn <max@rstudio.com>
Repository CRAN
Date/Publication 2020-07-08 18:00:02 UTC


https://github.com/tidymodels/tune
https://tune.tidymodels.org

2

R topi

Index

autoplot.tune_results

cs documented:

autoplot.tune_results . . . . . .. L. e e e 2
collect_predictions . . . . . . . . . . . . . e e 4
conf_mat resampled . . . . ... ... 6
control_bayes . . . . . . .. L e 7
control_grid . . . . . . L. e 8
coord_obs_pred . . . . ... 9
example_ames_knn . . . . . ..o 10
expo_decay . . . .. .. e 12
EXITACL_TECIPE .+ . v v v v e o e e e e e e e e e e e e e e e e e e e e 13
filter_parameters . . . . . . . . ... e e e e e 14
finalize_model . . . . . . . . . . .. e e e 15
fit_resamples . . . . .. L. e e e 16
last_fit . . . . . e e 19
Prob_improve . . . . . . . ... e e 20
show_best . . . . . . e e 22
TUNE . . . o o e e e e e e e 23
tuNe_bayes . . . . .. e e e e e e e 24
tune_grid . . . ... e e e e 28

33

autoplot.tune_results Plot tuning search results

Description

Plot tuning search results

Usage
## S3 method for class 'tune_results'
autoplot(
object,
type = c("marginals”, "parameters"”, "performance"),
metric = NULL,
width = NULL,
)
Arguments
object A tibble of results from tune_grid() or tune_bayes().
type A single character value. Choices are "marginals” (for a plot of each predictor

versus performance; see Details below), "parameters” (each parameter versus
search iteration), or "performance” (performance versus iteration). The latter
two choices are only used for tune_bayes().



autoplot.tune_results 3

metric A character vector or NULL for which metric to plot. By default, all metrics will
be shown via facets.

width A number for the width of the confidence interval bars when type = "performance”.
A value of zero prevents them from being shown.

For plots with a regular grid, this is passed to format() and is applied to a
parameter used to color points. Otherwise, it is not used.

Details

When the results of tune_grid() are used with autoplot(), it tries to determine whether a regular
grid was used.

Regular grids:

For regular grids with one or more numeric tuning parameters, the parameter with the most unique
values is used on the x-axis. If there are categorical parameters, the first is used to color the
geometries. All other parameters are used in column faceting.

The plot has the performance metric(s) on the y-axis. If there are multiple metrics, these are
row-faceted.

If there are more than five tuning parameters, the "marginal effects" plots are used instead.

Irregular grids:

For space-filling or random grids, a marginal effect plot is created. A panel is made for each
numeric parameter so that each parameter is on the x-axis and performance is on the y-xis. If
there are multiple metrics, these are row-faceted.

A single categorical parameter is shown as colors. If there are two or more non-numeric pa-
rameters, an error is given. A similar result occurs is only non-numeric parameters are in the
grid. In these cases, we suggest using collect_metrics() and ggplot() to create a plot that is
appropriate for the data.

If a parameter has an associated transformation associated with it (as determined by the parameter
object used to create it), the plot shows the values in the transformed units (and is labeled with the
transformation type).

Parameters are labeled using the labels found in the parameter object except when an identifier
was used (e.g. neighbors = tune("K")).

Value

A ggplot2 object.

See Also

tune_grid(), tune_bayes()

Examples

# For grid search:
data("example_ames_knn")

# Plot the tuning parameter values versus performance



4 collect_predictions

autoplot(ames_grid_search, metric = "rmse")

# For iterative search:
# Plot the tuning parameter values versus performance
autoplot(ames_iter_search, metric = "rmse"”, type = "marginals”)

# Plot tuning parameters versus iterations
autoplot(ames_iter_search, metric = "rmse”, type = "parameters"”)

# Plot performance over iterations
autoplot(ames_iter_search, metric = "rmse”, type = "performance")

collect_predictions Obtain and format results produced by tuning functions

Description

Obtain and format results produced by tuning functions

Usage

collect_predictions(x, summarize = FALSE, parameters = NULL)

collect_metrics(x, summarize = TRUE)

Arguments
X The results of tune_grid(), tune_bayes(), fit_resamples(),orlast_fit().
For collect_predictions(), the control option save_pred = TRUE should have
been used.
summarize A logical; should metrics be summarized over resamples (TRUE) or return the
values for each individual resample. Note that, if x is created by last_fit(),
summarize has no effect. For the other object types, the method of summarizing
predictions is detailed below.
parameters An optional tibble of tuning parameter values that can be used to filter the pre-
dicted values before processing. This tibble should only have columns for each
tuning parameter identifier (e.g. "my_param” if tune("my_param”) was used).
Value

A tibble. The column names depend on the results and the mode of the model.

For collect_metrics() and collect_predictions(), when unsummarized, there are columns
for each tuning parameter (using the id from tune(), if any). collect_metrics() also has
columns .metric, and .estimator. When the results are summarized, there are columns for mean,
n, and std_err. When not summarized, the additional columns for the resampling identifier(s) and
.estimate.



collect_predictions 5

For collect_predictions(), there are additional columns for the resampling identifier(s), columns
for the predicted values (e.g., .pred, .pred_class, etc.), and a column for the outcome(s) using
the original column name(s) in the data.

collect_predictions() can summarize the various results over replicate out-of-sample predic-
tions. For example, when using the bootstrap, each row in the original training set has multiple
holdout predictions (across assessment sets). To convert these results to a format where every train-
ing set same has a single predicted value, the results are averaged over replicate predictions.

For regression cases, the numeric predictions are simply averaged. For classification models, the
problem is more complex. When class probabilities are used, these are averaged and then re-
normalized to make sure that they add to one. If hard class predictions also exist in the data,
then these are determined from the summarized probability estimates (so that they match). If only
hard class predictions are in the results, then the mode is used to summarize.

Examples

data("example_ames_knn")
# The parameters for the model:
parameters(ames_wflow)

# Summarized over resamples
collect_metrics(ames_grid_search)

# Per-resample values
collect_metrics(ames_grid_search, summarize = FALSE)

library(parsnip)
library(rsample)
library(dplyr)
library(recipes)
library(tibble)

Im_mod <-linear_reg() %>% set_engine("1m")
set.seed(93599150)

car_folds <- vfold_cv(mtcars, v = 2, repeats = 3)
ctrl <- control_resamples(save_pred = TRUE)

spline_rec <-
recipe(mpg ~ ., data = mtcars) %>%
step_ns(disp, deg_free = tune("df"))
grid <- tibble(df = 3:6)

resampled <- tune_grid(spline_rec, lm_mod, resamples = car_folds,
control = ctrl, grid = grid)

collect_predictions(resampled) %>% arrange(.row)
collect_predictions(resampled, summarize = TRUE) %>% arrange(.row)



6 conf_mat_resampled

collect_predictions(resampled, summarize = TRUE, grid[1,]) %>% arrange(.row)

conf_mat_resampled Compute average confusion matrix across resamples

Description

For classification problems, conf_mat_resampled() computes a separate confusion matrix for
each resample then averages the cell counts.

Usage

conf_mat_resampled(x, parameters = NULL, tidy = TRUE)

Arguments
X An object with class tune_results that was used with a classification model
that was run with control_x(save_pred = TRUE).
parameters A tibble with a single tuning parameter combination. Only one tuning parameter
combination (if any were used) is allowed here.
tidy Should the results come back in a tibble (TRUE) or a matrix.
Value

A tibble or matrix with the average cell count across resamples.

Examples

library(parsnip)
library(rsample)
library(dplyr)

data(two_class_dat, package = "modeldata")

set.seed(2393)
res <-
logistic_reg() %>%
set_engine("glm") %>%
fit_resamples(Class ~ ., resamples = vfold_cv(two_class_dat, v = 3),
control = control_resamples(save_pred = TRUE))

conf_mat_resampled(res)
conf_mat_resampled(res, tidy = FALSE)



control_bayes 7

control_bayes Control aspects of the Bayesian search process

Description

Control aspects of the Bayesian search process

Usage

control_bayes(

verbose = FALSE,

no_improve = 10L,

uncertain = Inf,

seed = sample.int(10%5, 1),
extract = NULL,

save_pred = FALSE,
time_limit = NA,

pkgs = NULL,
save_workflow = FALSE
)
Arguments

verbose A logical for logging results as they are generated. Despite this argument, warn-
ings and errors are always shown. If using a dark IDE theme, some logging mes-
sages might be hard to see. If this is the case, try setting the tidymodels.dark
option with options(tidymodels.dark = TRUE) to print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

uncertain The number of iterations with no improvement before an uncertainty sample is
created where a sample with high predicted variance is chosen (i.e., in a region
that has not yet been explored). The iteration counter is reset after each uncer-
tainty sample. For example, if uncertain = 10, this condition is triggered every
10 samples with no improvement.

seed An integer for controlling the random number stream.

extract An optional function with at least one argument (or NULL) that can be used to
retain arbitrary objects from the model fit object, recipe, or other elements of the
workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each
model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should
execute. The elapsed time is evaluated at internal checkpoints and, if over
time, the results at that time are returned (with a warning). This means that
the time_limit is not an exact limit, but a minimum time limit.

pkgs An optional character string of R package names that should be loaded (by

namespace) during parallel processing.



save_workflow

attribute.

Details

control_grid

A logical for whether the workflow should be appended to the output as an

For extract, this function can be used to output the model object, the recipe (if used), or some
components of either or both. When evaluated, the function’s sole argument has a fitted workflow

If the formula method is used, the recipe element will be NULL.

The results of the extract function are added to a list column in the output called .extracts.
Each element of this list is a tibble with tuning parameter column and a list column (also called
.extracts) that contains the results of the function. If no extraction function is used, there is no
.extracts column in the resulting object. See tune_bayes() for more specific details.

Note that for collect_predictions(), it is possible that each row of the original data point might
be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-
validation are used, there will be multiple rows since the sample data point has been evaluated
multiple times. This may cause issues when merging the predictions with the original data.

control_grid

Control aspects of the grid search process

Description

Control aspects of the grid search process

Usage

control_grid(

)

verbose = FALSE,
allow_par = TRUE,
extract = NULL,
save_pred = FALSE,
pkgs = NULL,
save_workflow = FALSE

control_resamples(

verbose = FALSE,
allow_par = TRUE,
extract = NULL,
save_pred = FALSE,
pkgs = NULL,
save_workflow = FALSE



coord_obs_pred 9

Arguments

verbose A logical for logging results as they are generated. Despite this argument, warn-
ings and errors are always shown. If using a dark IDE theme, some logging mes-
sages might be hard to see. If this is the case, try setting the tidymodels.dark
option with options(tidymodels.dark = TRUE) to print lighter colors.

allow_par A logical to allow parallel processing (if a parallel backend is registered).

extract An optional function with at least one argument (or NULL) that can be used to
retain arbitrary objects from the model fit object, recipe, or other elements of the
workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each
model evaluated.

pkgs An optional character string of R package names that should be loaded (by

namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an
attribute.

Details

For extract, this function can be used to output the model object, the recipe (if used), or some
components of either or both. When evaluated, the function’s sole argument has a fitted workflow
If the formula method is used, the recipe element will be NULL.

The results of the extract function are added to a list column in the output called .extracts.
Each element of this list is a tibble with tuning parameter column and a list column (also called
.extracts) that contains the results of the function. If no extraction function is used, there is no
.extracts column in the resulting object. See tune_bayes() for more specific details.

Note that for collect_predictions(), it is possible that each row of the original data point might
be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-
validation are used, there will be multiple rows since the sample data point has been evaluated
multiple times. This may cause issues when merging the predictions with the original data.

control_resamples() is an alias for control_grid() and is meant to be used with fit_resamples().

coord_obs_pred Use same scale for plots of observed vs predicted values

Description

For regression models, coord_obs_pred() can be used in a ggplot to make the x- and y-axes have
the same exact scale along with an aspect ratio of one.

Usage

coord_obs_pred(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")



10 example_ames_knn

Arguments
ratio Aspect ratio, expressed as y / x. Defaults to 1.0.
x1lim, ylim Limits for the x and y axes.
expand Not currently used.
clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.
Value
A ggproto object.
Examples

data(solubility_test, package = "modeldata”)

library(ggplot2)

p <- ggplot(solubility_test, aes(x = solubility, y = prediction)) +
geom_abline(lty = 2) +
geom_point(alpha = 0.5)

p

p + coord_fixed()

p + coord_obs_pred()

example_ames_knn Example Analysis of Ames Housing Data

Description

Example Analysis of Ames Housing Data

Details

These objects are the results of an analysis of the Ames housing data. A K-nearest neighbors model
was used with a small predictor set that included natural spline transformations of the Longitude
and Latitude predictors. The code used to generate these examples was:



example_ames_knn 11

library(tidymodels)
library(tune)
library(AmesHousing)

ames <- make_ames()

set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")

ames_train <- training(data_split)

set.seed(2453)
rs_splits <- vfold_cv(ames_train, strata = "Sale_Price")

ames_rec <-
recipe(Sale_Price ~ ., data = ames_train) %>%
step_log(Sale_Price, base = 10) %>%
step_YeoJohnson(Lot_Area, Gr_Liv_Area) %>%
step_other(Neighborhood, threshold = .1) %>%
step_dummy(all_nominal()) %>%
step_zv(all_predictors()) %>%
step_ns(Longitude, deg_free = tune("lon")) %>%
step_ns(Latitude, deg_free = tune("lat"))

knn_model <-

nearest_neighbor(
mode = "regression”,
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()

) %>%

set_engine("kknn")

ames_wflow <-
workflow() %>%
add_recipe(ames_rec) %>%
add_model (knn_model)

ames_set <-
parameters(ames_wflow) %>%
update(K = neighbors(c(1, 50)))

set.seed(7014)
ames_grid <-



12 expo_decay

ames_set %>%
grid_max_entropy(size = 10)

ames_grid_search <-
tune_grid(
ames_wflow,
resamples = rs_splits,
grid = ames_grid

)

set.seed(2082)
ames_iter_search <-
tune_bayes(
ames_wflow,
resamples = rs_splits,
param_info = ames_set,
initial = ames_grid_search,
iter = 15

important note: Since the rsample split columns contain a reference to the same data, saving them
to disk can results in large object sizes when the object is later used. In essence, R replaces all of
those references with the actual data. For this reason, we saved zero-row tibbles in their place.
This doesn’t affect how we use these objects in examples but be advised that using some rsample
functions on them will cause issues.

Value

ames_wflow A workflow object
ames_grid_search,ames_iter_search
Results of model tuning.

Examples
library(tune)

ames_grid_search
ames_iter_search

expo_decay Exponential decay function

Description

expo_decay() can be used to increase or decrease a function exponentially over iterations. This
can be used to dynamically set parameters for acquisition functions as iterations of Bayesian opti-
mization proceed.



extract_recipe 13

Usage

expo_decay(iter, start_val, limit_val, slope = 1/5)

Arguments
iter An integer for the current iteration number.
start_val The number returned for the first iteration.
limit_val The number that the process converges to over iterations.
slope A coefficient for the exponent to control the rate of decay. The sign of the slope
controls the direction of decay.
Details

Note that, when used with the acquisition functions in tune(), a wrapper would be required since
only the first argument would be evaluated during tuning.

Value

A single numeric value.

Examples

library(tibble)
library(purrr)
library(ggplot2)
library(dplyr)
tibble(
iter = 1:40,
value = map_dbl(
1:40,
expo_decay,
start_val = .1,
limit_val =
slope =1/
)
) %>%
ggplot(aes(x = iter, y =value)) + geom_path()

9,
5

extract_recipe Convenience functions to extract model or recipe

Description

When extracting the fitted results, the workflow is easily accessible. If there is only interest in the
recipe or model, these functions can be used as shortcuts



14 filter_parameters

Usage

extract_recipe(x)

extract_model (x)

Arguments

X A fitted workflow object.

Value

A fitted model or recipe. If a formula is used instead of a recipe, extract_recipe() returns NULL.

filter_parameters Remove some tuning parameter results

Description

For objects produced by the tune_*() functions, there may only be a subset of tuning parameter
combinations of interest. For large data sets, it might be helpful to be able to remove some results.
This function trims the .metrics column of unwanted results as well as columns .predictions
and .extracts (if they were requested).

Usage
filter_parameters(x, ..., parameters = NULL)
Arguments
X An object of class tune_results that has multiple tuning parameters.
Expressions that return a logical value, and are defined in terms of the tuning
parameter values. If multiple expressions are included, they are combined with
the & operator. Only rows for which all conditions evaluate to TRUE are kept.
parameters A tibble of tuning parameter values that can be used to filter the predicted values
before processing. This tibble should only have columns for tuning parameter
identifiers (e.g. "my_param” if tune("my_param”) was used). There can be
multiple rows and one or more columns. If used, this parameter must be
named.
Details

Removing some parameter combinations might affect the results of autoplot () for the object.

Value

A version of x where the lists columns only retain the parameter combinations in parameters or
satisfied by the filtering logic.



finalize_model 15

Examples

library(dplyr)
library(tibble)

# For grid search:
data("example_ames_knn")

B oo
# select all combinations using the 'rank' weighting scheme

ames_grid_search %>%
collect_metrics()

filter_parameters(ames_grid_search, weight_func == "rank") %>%
collect_metrics()

rank_only <- tibble::tibble(weight_func = "rank")
filter_parameters(ames_grid_search, parameters = rank_only) %>%
collect_metrics()

e e L P e
# Keep only the results from the numerically best combination

ames_iter_search %>%
collect_metrics()

best_param <- select_best(ames_iter_search, metric = "rmse")
ames_iter_search %>%

filter_parameters(parameters = best_param) %>%
collect_metrics()

finalize_model Splice final parameters into objects

Description

The finalize_* functions take a list or tibble of tuning parameter values and update objects with
those values.

Usage

finalize_model(x, parameters)
finalize_recipe(x, parameters)

finalize_workflow(x, parameters)



16 fit_resamples

Arguments
X A recipe, parsnip model specification, or workflow.
parameters A list or 1-row tibble of parameter values. Note that the column names of the
tibble should be the id fields attached to tune (). For example, in the Examples
section below, the model has tune("K"). In this case, the parameter tibble
should be "K" and not "neighbors".
Value

An updated version of x.

Examples

data("example_ames_knn")

library(parsnip)
knn_model <-
nearest_neighbor(
mode = "regression”,
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()
) %%
set_engine("kknn")

lowest_rmse <- select_best(ames_grid_search, metric = "rmse")
lowest_rmse

knn_model
finalize_model (knn_model, lowest_rmse)

fit_resamples Fit multiple models via resampling

Description

fit_resamples() computes a set of performance metrics across one or more resamples. It does not
perform any tuning (see tune_grid() and tune_bayes() for that), and is instead used for fitting a
single model+recipe or model+formula combination across many resamples.

Usage

fit_resamples(object, ...)

## S3 method for class 'model_spec'
fit_resamples(



fit_resamples 17

object,

preprocessor,

resamples,

metrics = NULL,

control = control_resamples()

## S3 method for class 'workflow'
fit_resamples(

object,
resamples,
metrics = NULL,
control = control_resamples()
)
Arguments
object A parsnip model specification or a workflows: :workflow(). No tuning pa-

rameters are allowed.
Currently unused.

preprocessor A traditional model formula or a recipe created using recipes: :recipe().

resamples A resample rset created from an rsample function such as rsample: :vfold_cv().
metrics A yardstick::metric_set(), or NULL to compute a standard set of metrics.
control A control_resamples() object used to fine tune the resampling process.

Performance Metrics

To use your own performance metrics, the yardstick: :metric_set () function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)

Each metric is calculated for each candidate model.
If no metric set is provided, one is created:
* For regression models, the root mean squared error and coefficient of determination are com-
puted.
* For classification, the area under the ROC curve and overall accuracy are computed.
Note that the metrics also determine what type of predictions are estimated during tuning. For

example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.



18 fit_resamples

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.

collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When control (save_preds = TRUE), the output tibble contains a list column called . predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (. row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called . pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.

This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().

Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single argument.
The value of the argument that is given to the function in each resample is a workflow object (see
workflows: :workflow() for more information). There are two helper functions that can be used
to easily pull out the recipe (if any) and/or the model: extract_recipe() and extract_model().

As an example, if there is interest in getting each model back, one could use:
extract = function (x) extract_model(x)

Note that the function given to the extract argument is evaluated on every model that is fir (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

See Also

control_resamples(), collect_predictions(), collect_metrics()

Examples

library(recipes)
library(rsample)
library(parsnip)



last_fit 19

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
step_ns(disp) %>%
step_ns(wt)

lin_mod <- linear_reg() %>%
set_engine("1m")

control <- control_resamples(save_pred = TRUE)

spline_res <- fit_resamples(lin_mod, spline_rec, folds, control = control)

spline_res
show_best(spline_res, metric = "rmse”)
last_fit Fit the final best model to the training set and evaluate the test set
Description

last_fit() emulates the process where, after determining the best model, the final fit on the entire
training set is needed and is then evaluated on the test set.

Usage
last_fit(object, ...)

## S3 method for class 'model_spec'
last_fit(object, preprocessor, split, ..., metrics = NULL)

## S3 method for class 'workflow'

last_fit(object, split, ..., metrics = NULL)
Arguments
object A parsnip model specification or a workflows: :workflow(). No tuning pa-

rameters are allowed.

Currently unused.
preprocessor A traditional model formula or a recipe created using recipes: :recipe().
split An rsplit object created from rsample::initial_split().

metrics A yardstick: :metric_set(), or NULL to compute a standard set of metrics.



20 prob_improve

Details

This function is intended to be used after fitting a variety of models and the final tuning parameters
(if any) have been finalized. The next step would be to fit using the entire training set and verify
performance using the test data.

Value
A single row tibble that emulates the structure of fit_resamples(). However, a list column called

.workflow is also attached with the fitted model (and recipe, if any) that used the training set.

Examples

library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
step_ns(disp)

lin_mod <- linear_reg() %>%
set_engine("1m")

spline_res <- last_fit(lin_mod, spline_rec, split = tr_te_split)
spline_res

# test set results
spline_res$.metrics[[1]]

# or use a workflow

library(workflows)
spline_wfl <-

workflow() %>%
add_recipe(spline_rec) %>%
add_model (1in_mod)

last_fit(spline_wfl, split = tr_te_split)

prob_improve Acquisition function for scoring parameter combinations

Description

These functions can be used to score candidate tuning parameter combinations as a function of their
predicted mean and variation.



prob_improve 21
Usage

prob_improve(trade_off = @, eps = .Machine$double.eps)

exp_improve(trade_off = @, eps = .Machine$double.eps)

conf_bound(kappa = 0.1)

Arguments
trade_off A number or function that describes the trade-off between exploitation and ex-
ploration. Smaller values favor exploitation.
eps A small constant to avoid division by zero.
kappa A positive number (or function) that corresponds to the multiplier of the stan-
dard deviation in a confidence bound (e.g. 1.96 in normal-theory 95 percent
confidence intervals). Smaller values lean more towards exploitation.
Details

The acquisition functions often combine the mean and variance predictions from the Gaussian pro-
cess model into an objective to be optimized.

For this documentation, we assume that the metric in question is better when maximized (e.g. accu-
racy, the coefficient of determination, etc).

The expected improvement of a point x is based on the predicted mean and variation at that point
as well as the current best value (denoted here as x_b). The vignette linked below contains the
formulas for this acquisition function. When the trade_off parameter is greater than zero, the
acquisition function will down-play the effect of the mean prediction and give more weight to the
variation. This has the effect of searching for new parameter combinations that are in areas that
have yet to be sampled.

Note that for exp_improve() and prob_improve(), the trade_off value is in the units of the
outcome. The functions are parameterized so that the trade_off value should always be non-
negative.

The confidence bound function does not take into account the current best results in the data.
If a function is passed to exp_improve() or prob_improve(), the function can have multiple ar-
guments but only the first (the current iteration number) is given to the function. In other words,
the function argument should have defaults for all but the first argument. See expo_decay() as an
example of a function.

Value
An object of class prob_improve, exp_improve, or conf_bounds along with an extra class of
acquisition_function.

See Also

tune_bayes (), expo_decay()



22 show_best

Examples

prob_improve ()

show_best Investigate best tuning parameters

Description

show_best () displays the top sub-models and their performance estimates.

Usage
show_best(x, metric = NULL, n =5, ...)
select_best(x, metric = NULL, ...)
select_by_pct_loss(x, ..., metric = NULL, limit = 2)
select_by_one_std_err(x, ..., metric = NULL)
Arguments
X The results of tune_grid() or tune_bayes().
metric A character value for the metric that will be used to sort the models. (See https:
//tidymodels.github.io/yardstick/articles/metric-types.html for more
details). Not required if a single metric exists in x. If there are multiple metric
and none are given, the first in the metric set is used (and a warning is issued).
n An integer for the number of top results/rows to return.
For select_by_one_std_err() and select_by_pct_loss(), this argument is
passed directly to dplyr: :arrange() so that the user can sort the models from
most simple to most complex. See the examples below. At least one term is
required for these two functions.
limit The limit of loss of performance that is acceptable (in percent units). See details
below.
Details

select_best() finds the tuning parameter combination with the best performance values.

select_by_one_std_err() uses the "one-standard error rule" (Breiman _el at, 1984) that selects
the most simple model that is within one standard error of the numerically optimal results.

select_by_pct_loss() selects the most simple model whose loss of performance is within some
acceptable limit.

For percent loss, suppose the best model has an RMSE of 0.75 and a simpler model has an RMSE of
1. The percent loss would be (1.00 -0.75)/1.00 * 100, or 25 percent. Note that loss will always
be non-negative.


https://tidymodels.github.io/yardstick/articles/metric-types.html
https://tidymodels.github.io/yardstick/articles/metric-types.html

tune 23

Value
A tibble with columns for the parameters. show_best() also includes columns for performance

metrics.

References

Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and Regression
Trees. Monterey, CA: Wadsworth.

Examples

data("example_ames_knn")

show_best(ames_iter_search, metric = "rmse"”

select_best(ames_iter_search, metric = "rsq")

# To find the least complex model within one std error of the numerically

# optimal model, the number of nearest neighbors are sorted from the largest
# number of neighbors (the least complex class boundary) to the smallest

# (corresponding to the most complex model).
select_by_one_std_err(ames_grid_search, metric = "rmse”, desc(K))

# Now find the least complex model that has no more than a 5% loss of RMSE:

select_by_pct_loss(ames_grid_search, metric = "rmse”,
limit = 5, desc(K))

tune A placeholder function for argument values that are to be tuned.

Description

tune() is used when a parameter will be specified at a later date.

Usage

tune(id = "")

Arguments

id A single character value that can be used to differentiate parameters that are used
in multiple places but have the same name, or if the user wants a note associated
with the parameter.



24

Value

A call object that echos the user input.

See Also

tune_grid(), tune_bayes()

Examples

tune()
class(tune())
tune("your name here")

# How ‘tune()‘ is used in practice:

library(parsnip)

nearest_neighbor(
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()

)

tune_bayes

tune_bayes

Bayesian optimization of model parameters.

Description

tune_bayes() uses models to generate new candidate tuning parameter combinations based on

previous results.

Usage

tune_bayes(object, ...)

## S3 method for class 'model_spec'

tune_bayes(
object,
preprocessor,
resamples,
iter = 10,
param_info = NULL,
metrics = NULL,

objective = exp_improve(),

initial = 5,
control = control_bayes()



tune_bayes

## S3 method
tune_bayes(
object,

resamples,

iter = 10,
param_info
metrics =
objective
initial =
control =

Arguments

object

preprocessor
resamples
iter

param_info

metrics

objective

initial

control

Details

25

for class 'workflow'

= NULL,
NULL,

exp_improve(),

control_bayes()

A parsnip model specification or a workflows: :workflow().

Not currently used.

A traditional model formula or a recipe created using recipes: :recipe().
An rset() object.

The maximum number of search iterations.

A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

A yardstick::metric_set() object containing information on how models
will be evaluated for performance. The first metric in metrics is the one that
will be optimized.

A character string for what metric should be optimized or an acquisition function
object.

An initial set of results in a tidy format (as would result from tune_grid()) ora
positive integer. It is suggested that the number of initial results be greater than
the number of parameters being optimized.

A control object created by control_bayes()

The optimization starts with a set of initial results, such as those generated by tune_grid(). If
none exist, the function will create several combinations and obtain their performance estimates.

Using one of the performance estimates as the model outcome, a Gaussian process (GP) model is
created where the previous tuning parameter combinations are used as the predictors.

A large grid of potential hyperparameter combinations is predicted using the model and scored
using an acquisition function. These functions usually combine the predicted mean and variance
of the GP to decide the best parameter combination to try next. For more information, see the
documentation for exp_improve() and the corresponding package vignette.

The best combination is evaluated using resampling and the process continues.



26 tune_bayes

Value

A tibble of results that mirror those generated by tune_grid(). However, these results contain
an .iter column and replicate the rset object multiple times over iterations (at limited additional
memory costs).

Parallel Processing

The foreach package is used here. To execute the resampling iterations in parallel, register a
parallel backend function. See the documentation for foreach: : foreach() for examples.

For the most part, warnings generated during training are shown as they occur and are associated
with a specific resample when control (verbose = TRUE). They are (usually) not aggregated until
the end of processing.

For Bayesian optimization, parallel processing is used to estimate the resampled performance values
once a new candidate set of values are estimated.

Initial Values

The results of tune_grid(), or a previous run of tune_bayes() can be used in the initial ar-
gument. initial can also be a positive integer. In this case, a space-filling design will be used to
populate a preliminary set of results. For good results, the number of initial values should be more
than the number of parameters being optimized.

Parameter Ranges and Values

In some cases, the tuning parameter values depend on the dimensions of the data (they are said
to contain unknown values). For example, mtry in random forest models depends on the number
of predictors. In such cases, the unknowns in the tuning parameter object must be determined
beforehand and passed to the function via the param_info argument. dials::finalize() can
be used to derive the data-dependent parameters. Otherwise, a parameter set can be created via
dials::parameters(), and the dials update() function can be used to specify the ranges or
values.

Performance Metrics

To use your own performance metrics, the yardstick: :metric_set () function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)
Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

* For regression models, the root mean squared error and coefficient of determination are com-
puted.

* For classification, the area under the ROC curve and overall accuracy are computed.



tune_bayes 27

Note that the metrics also determine what type of predictions are estimated during tuning. For
example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.

collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When control (save_preds = TRUE), the output tibble contains a list column called . predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (. row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called .pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.

This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().

Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single argument.
The value of the argument that is given to the function in each resample is a workflow object (see
workflows: :workflow() for more information). There are two helper functions that can be used
to easily pull out the recipe (if any) and/or the model: extract_recipe() and extract_model().

As an example, if there is interest in getting each model back, one could use:
extract = function (x) extract_model(x)

Note that the function given to the extract argument is evaluated on every model that is fir (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

See Also

control_bayes(), tune(), autoplot. tune_results(), show_best(), select_best(), collect_predictions(),
collect_metrics(), prob_improve(), exp_improve(), conf_bound(), fit_resamples()



28 tune_grid

tune_grid Model tuning via grid search

Description

tune_grid() computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-defined set
of tuning parameters that correspond to a model or recipe across one or more resamples of the data.

Usage

tune_grid(object, ...)

## S3 method for class 'model_spec'
tune_grid(

object,

preprocessor,

resamples,

param_info = NULL,

grid = 10,

metrics = NULL,

control = control_grid()

)

## S3 method for class 'workflow'
tune_grid(

object,

resamples,

param_info = NULL,

grid = 10,

metrics = NULL,

control = control_grid()

Arguments

object A parsnip model specification or a workflows: :workflow().

Not currently used.
preprocessor A traditional model formula or a recipe created using recipes: :recipe().
resamples An rset() object.

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.



tune_grid 29

grid A data frame of tuning combinations or a positive integer. The data frame should
have columns for each parameter being tuned and rows for tuning parameter
candidates. An integer denotes the number of candidate parameter sets to be
created automatically.

metrics A yardstick::metric_set() or NULL.
control An object used to modify the tuning process.
Details

Suppose there are m tuning parameter combinations. tune_grid() may not require all m model/recipe
fits across each resample. For example:

* In cases where a single model fit can be used to make predictions for different parameter
values in the grid, only one fit is used. For example, for some boosted trees, if 100 iterations
of boosting are requested, the model object for 100 iterations can be used to make predictions
on iterations less than 100 (if all other parameters are equal).

* When the model is being tuned in conjunction with pre-processing and/or post-processing
parameters, the minimum number of fits are used. For example, if the number of PCA compo-
nents in a recipe step are being tuned over three values (along with model tuning parameters),
only three recipes are are trained. The alternative would be to re-train the same recipe multiple
times for each model tuning parameter.

The foreach package is used here. To execute the resampling iterations in parallel, register a
parallel backend function. See the documentation for foreach: : foreach() for examples.

For the most part, warnings generated during training are shown as they occur and are associated
with a specific resample when control (verbose = TRUE). They are (usually) not aggregated until
the end of processing.

Value

An updated version of resamples with extra list columns for .metrics and .notes (optional
columns are .predictions and .extracts). .notes contains warnings and errors that occur dur-
ing execution.

Parameter Grids

If no tuning grid is provided, a semi-random grid (via dials::grid_latin_hypercube()) is cre-
ated with 10 candidate parameter combinations.

When provided, the grid should have column names for each parameter and these should be named
by the parameter name or id. For example, if a parameter is marked for optimization using penalty
= tune(), there should be a column names tune. If the optional identifier is used, such as penalty
= tune(id = 'lambda'), then the corresponding column name should be lambda.

In some cases, the tuning parameter values depend on the dimensions of the data. For example,
mtry in random forest models depends on the number of predictors. In this case, the default tuning
parameter object requires an upper range. dials::finalize() can be used to derive the data-
dependent parameters. Otherwise, a parameter set can be created (via dials: :parameters() and
the dials update() function can be used to change the values. This updated parameter set can be
passed to the function via the param_info argument.



30 tune_grid

Performance Metrics

To use your own performance metrics, the yardstick: :metric_set () function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

* For regression models, the root mean squared error and coefficient of determination are com-
puted.

* For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For
example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.

collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When control (save_preds = TRUE), the output tibble contains a list column called .predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (. row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called . pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.

This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().

Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single argument.
The value of the argument that is given to the function in each resample is a workflow object (see
workflows: :workflow() for more information). There are two helper functions that can be used
to easily pull out the recipe (if any) and/or the model: extract_recipe() and extract_model().

As an example, if there is interest in getting each model back, one could use:



tune_grid 31

extract = function (x) extract_model(x)

Note that the function given to the extract argument is evaluated on every model that is fir (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

See Also

control_grid(), tune(), fit_resamples(), autoplot.tune_results(), show_best(), select_best(),
collect_predictions(), collect_metrics()

Examples

library(recipes)
library(rsample)
library(parsnip)
library(ggplot2)

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

# tuning recipe parameters:

spline_rec <-
recipe(mpg ~ ., data = mtcars) %>%
step_ns(disp, deg_free = tune("disp"”)) %>%
step_ns(wt, deg_free = tune("wt"))

lin_mod <-
linear_reg() %>%
set_engine("1m")

# manually create a grid
spline_grid <- expand.grid(disp = 2:5, wt = 2:5)

# Warnings will occur from making spline terms on the holdout data that are
# extrapolations.
spline_res <-

tune_grid(lin_mod, spline_rec, resamples = folds, grid = spline_grid)
spline_res

show_best(spline_res, metric = "rmse”)



32

# tune model parameters only (example requires the

car_rec <-
recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_predictors())

svm_mod <-
svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
set_engine("kernlab”) %>%
set_mode("regression”)

# Use a space-filling design with 7 points
set.seed(3254)

svm_res <- tune_grid(svm_mod, car_rec, resamples =
svm_res

show_best(svm_res, metric = "rmse")

autoplot(svm_res, metric = "rmse") +
scale_x_logl10()

‘kernlab* package)

folds, grid = 7)

tune_grid



Index

x datasets
example_ames_knn, 10

ames_grid_search (example_ames_knn), 10
ames_iter_search (example_ames_knn), 10
ames_wflow (example_ames_knn), 10
autoplot.tune_results, 2

autoplot. tune_results(), 27, 31

collect_metrics (collect_predictions), 4

collect_metrics(), 4, 18,27, 30, 31
collect_predictions, 4
collect_predictions(), 4, 5,8, 9, 18, 27,
30, 31
conf_bound (prob_improve), 20
conf_bound(), 27
conf_mat_resampled, 6
control_bayes, 7
control_bayes(), 25, 27
control_grid, 8
control_grid(), 9, 31
control_resamples (control_grid), 8
control_resamples(), 9, 17, 18
coord_obs_pred, 9

dials::finalize(), 26, 29
dials::grid_latin_hypercube(), 29
dials: :parameters(), 25, 26, 28, 29
dplyr::arrange(), 22

example_ames_knn, 10

exp_improve (prob_improve), 20
exp_improve(), 21, 25, 27
expo_decay, 12
expo_decay(), 12, 21

extract_model (extract_recipe), 13
extract_model(), I8, 27, 30
extract_recipe, 13
extract_recipe(), 18, 27, 30

filter_parameters, 14

33

finalize_model, 15

finalize_recipe (finalize_model), 15
finalize_workflow (finalize_model), 15
fit_resamples, 16
fit_resamples(), 4,9, 16,27, 31
foreach: :foreach(), 26, 29

last_fit, 19
last_fit(),4, 19

prob_improve, 20
prob_improve(), 21, 27

recipes::recipe(), 17, 19, 25, 28
rsample::initial_split(), 19
rsample::vfold_cv(), 17

select_best (show_best), 22
select_best(), 22, 27, 31
select_by_one_std_err (show_best), 22
select_by_one_std_err(), 22
select_by_pct_loss (show_best), 22
select_by_pct_loss(), 22
show_best, 22
show_best(), 22, 23, 27, 31

tidyr: :unnest(), 18, 27, 30

tune, 23

tune(), 4, 13, 23,27, 31

tune_bayes, 24
tune_bayes(), 24,8, 9, 16, 21, 22, 24, 26
tune_grid, 28
tune_grid(), 24, 16, 22, 24-26, 28, 29

unknown, 26

workflows: :workflow(), 17-19, 25, 27, 28,
30

yardstick: :metric_set(), 17, 19, 25, 26,
29, 30



	autoplot.tune_results
	collect_predictions
	conf_mat_resampled
	control_bayes
	control_grid
	coord_obs_pred
	example_ames_knn
	expo_decay
	extract_recipe
	filter_parameters
	finalize_model
	fit_resamples
	last_fit
	prob_improve
	show_best
	tune
	tune_bayes
	tune_grid
	Index

