Package ‘tsibble’

July 24, 2020

Type Package
Title Tidy Temporal Data Frames and Tools
Version 0.9.2

Description Provides a 'tbl_ts' class (the 'tsibble’) for
temporal data in an data- and model-oriented format. The 'tsibble’
provides tools to easily manipulate and analyse temporal data, such as
filling in time gaps and aggregating over calendar periods.

License GPL-3
URL https://tsibble.tidyverts.org

BugReports https://github.com/tidyverts/tsibble/issues
Depends R (>=3.2.0)

Imports anytime (>= 0.3.1),
dplyr (>=1.0.0),
ellipsis (>=0.3.0),

lifecycle,

lubridate (>= 1.7.0),
methods,

purrr (>=0.2.3),

rlang (>= 0.4.6),
tibble (>= 3.0.0),
tidyselect (>= 1.0.0),
vetrs (>=0.3.1)

Suggests covr,
furrr,
ggplot2 (>=3.3.0),
hms,
knitr,
nanotime,
nycflights13 (>=1.0.0),
rmarkdown,
scales (>=1.1.0),
spelling,
testthat (>= 2.3.2),
tidyr (>=1.1.0),
timeDate

VignetteBuilder knitr

https://tsibble.tidyverts.org
https://github.com/tidyverts/tsibble/issues

R topics documented:

RdMacros lifecycle

ByteCompile true
Encoding UTF-8
Language en-GB

LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1

R topics documented:

Index

tsibble-package 3
aststbl_ts e 5
as_tibble.tbl_ts 5
as_tsibble e s 6
build_tsibble 9
COUNE_ZAPS « « o v v v v e et e e e e e e e e e e e e 10
difference e 11
fill_gaps e e e e 12
filter_index e e e 13
group_by_Keyo 14
guess_frequency e e 15
has_gaps e e e 16
holiday_aus L e 17
INdeX e e e e e e e e e 18
index_by 18
index_valid e 20
interval e 20
interval_pull L e 21
is_duplicated e 22
1S_tsibble L e e e 22
Key . . e 23
MEASUIES . « o v v v v e e e e e e e e e e e e e e e e e 24
new_data L L e 24
new_interval e 25
new_tsibble L e e 26
pedestrian L 27
SCAN_ZAPS « « v v o v e 27
slide_tsibble e e 28
stretch_tsibble e 29
tile_tsibble 30
HME_IN . . . L o o e s, 31
TOULISITL . . . o o ot e 32
tsibble 33
tsibble-tidyverse L. e 35
update_tsibble 36
yearmontho e e e 37
YEAQUATTET . . o . v v v v e 38
yearweek L e 39

41

tsibble-package 3

tsibble-package tsibble: tidy temporal data frames and tools

Description

The tsibble package provides a data class of tbl_ts to represent tidy temporal data. A tsibble
consists of a time index, key, and other measured variables in a data-centric format, which is built
on top of the tibble.

Index

An extensive range of indices are supported by tsibble:

¢ native time classes in R (such as Date, POSIXct, and difftime)

* tsibble’s new additions (such as yearweek, yearmonth, and yearquarter).

* other commonly-used classes: ordered, hms: :hms, lubridate: :period, and nanotime: :nanotime.
For a tb1l_ts of regular interval, a choice of index representation has to be made. For example, a
monthly data should correspond to time index created by yearmonth, instead of Date or POSIXct.
Because months in a year ensures the regularity, 12 months every year. However, if using Date, a

month containing days ranges from 28 to 31 days, which results in irregular time space. This is also
applicable to year-week and year-quarter.

Tsibble supports arbitrary index classes, as long as they can be ordered from past to future. To
support a custom class, you need to define index_valid() for the class and calculate the interval
through interval_pull().

Key
Key variable(s) together with the index uniquely identifies each record:

* Empty: an implicit variable. NULL resulting in a univariate time series.
* A single variable: For example, data(pedestrian) uses Sensor as the key.

* Multiple variables: For example, Declare key = c(Region, State,Purpose) for data(tourism).
Key can be created in conjunction with tidy selectors like starts_with().

Interval

The interval function returns the interval associated with the tsibble.

* Regular: the value and its time unit including "nanosecond", "microsecond"”, "millisecond",

"second", "minute"”, "hour", "day", "week", "month", "quarter", "year". An unrecognisable
time interval is labelled as "unit".
e Irregular: as_tsibble(regular = FALSE) gives the irregular tsibble. It is marked with !.

e Unknown: Not determined (?), if it’s an empty tsibble, or one entry for each key variable.
An interval is obtained based on the corresponding index representation:

* integerish numerics between 1582 and 2499: "year" (Y). Note the year of 1582 saw the begin-
ning of the Gregorian Calendar switch.

* yearquarter: "quarter" (Q)

4 tsibble-package

¢ yearmonth: "month" (M)

e yearweek: "week" (W)

* Date: "day" (D)

o difftime: "week" (W), "day" (D), "hour" (h), "minute" (m), "second" (s)

e POSIXt/hms: "hour" (h), "minute" (m), "second" (s), "millisecond" (us), "microsecond" (ms)

* period: "year" (Y), "month" (M), "day" (D), "hour" (h), "minute" (m), "second" (s), "millisec-
ond" (us), "microsecond" (ms)

* nanotime: "nanosecond" (ns)

e other numerics &ordered (ordered factor): "unit" When the interval cannot be obtained due

to the mismatched index format, an error is issued.

The interval is invariant to subsetting, such as filter(), slice(), and [.tbl_ts. However, if the
result is an empty tsibble, the interval is always unknown. When joining a tsibble with other data
sources and aggregating to different time scales, the interval gets re-calculated.

Time zone

Time zone corresponding to index will be displayed if index is POSIXct. ? means that the obtained

"

time zone is a zero-length character "".

Print options

The tsibble package fully utilises the print method from the tibble. Please refer to tibble::tibble-
package to change display options.

Author(s)

Maintainer: Earo Wang <earo.wang@gmail .com> (ORCID)
Authors:

¢ Di Cook (ORCID) [thesis advisor]
* Rob Hyndman (ORCID) [thesis advisor]
¢ Mitchell O’Hara-Wild (ORCID)

See Also
Useful links:

e https://tsibble.tidyverts.org
* Report bugs at https://github.com/tidyverts/tsibble/issues

Examples

create a tsibble w/o a key ----
tsibble(
date = as.Date("2017-01-01") + @:9,
value = rnorm(10)

)

create a tsibble with one key ----
tsibble(
gtr = rep(yearquarter("”2010-01") + 0:9, 3),

https://orcid.org/0000-0001-6448-5260
https://orcid.org/0000-0002-3813-7155
https://orcid.org/0000-0002-2140-5352
https://orcid.org/0000-0001-6729-7695
https://tsibble.tidyverts.org
https://github.com/tidyverts/tsibble/issues

as.ts.tbl_ts 5

non non

group = rep(c("x", "y", "z"), each = 10),
value = rnorm(30),

key = group
)
as.ts.tbl_ts Coerce a tsibble to a time series
Description
Stable
Usage
S3 method for class 'tbl_ts'
as.ts(x, value, frequency = NULL, fill = NA_real_, ...)
Arguments
X A tbl_ts object.
value A measured variable of interest to be spread over columns, if multiple measures.
frequency A smart frequency with the default NULL. If set, the preferred frequency is passed
to ts().
fill A value to replace missing values.

Ignored for the function.

Value

A ts object.

Examples

a monthly series
x1 <- as_tsibble(AirPassengers)
as.ts(x1)

as_tibble.tbl_ts Coerce to a tibble or data frame

Description

Coerce to a tibble or data frame

Usage

S3 method for class 'tbl_ts'
as_tibble(x, ...)

Arguments

X

Examples

as_tsibble

A tbl_ts.
Ignored.

as_tibble(pedestrian)

as_tsibble

Coerce to a tsibble object

Description

Stable

Usage

as_tsibble(
X,
key = NULL,
index,

regular = TRUE,
validate = TRUE,

.drop = TRUE,

)...

S3 method for class 'ts'

as_tsibble(x,

., tz = "UTC")

S3 method for class 'mts'

as_tsibble(x,

Arguments

X

key

index

regular

validate

.drop

tz

pivot_longer

., tz = "UTC", pivot_longer = TRUE)

Other objects to be coerced to a tsibble (tb1_ts).

Variable(s) that uniquely determine time indices. NULL for empty key, and c()
for multiple variables. It works with tidy selector (e.g. dplyr: :starts_with()).

A variable to specify the time index variable.

Regular time interval (TRUE) or irregular (FALSE). The interval is determined by
the greatest common divisor of index column, if TRUE.

TRUE suggests to verify that each key or each combination of key variables leads
to unique time indices (i.e. a valid tsibble). If you are sure that it’s a valid input,
specify FALSE to skip the checks.

If TRUE, empty key groups are dropped.
Other arguments passed on to individual methods.
Time zone. May be useful when a ts object is more frequent than daily.

TRUE gives a "longer" form of the data, otherwise as is.

as_tsibble 7

Details

A tsibble is sorted by its key first and index.

Value

A tsibble object.

Index
An extensive range of indices are supported by tsibble:

* native time classes in R (such as Date, POSIXct, and difftime)

* tsibble’s new additions (such as yearweek, yearmonth, and yearquarter).

* other commonly-used classes: ordered, hms: :hms, lubridate: :period, and nanotime: :nanotime.
For a tb1l_ts of regular interval, a choice of index representation has to be made. For example, a
monthly data should correspond to time index created by yearmonth, instead of Date or POSIXct.
Because months in a year ensures the regularity, 12 months every year. However, if using Date, a

month containing days ranges from 28 to 31 days, which results in irregular time space. This is also
applicable to year-week and year-quarter.

Tsibble supports arbitrary index classes, as long as they can be ordered from past to future. To
support a custom class, you need to define index_valid() for the class and calculate the interval
through interval_pull().

Key
Key variable(s) together with the index uniquely identifies each record:

* Empty: an implicit variable. NULL resulting in a univariate time series.
* A single variable: For example, data(pedestrian) uses Sensor as the key.

* Multiple variables: For example, Declare key = c(Region, State,Purpose) for data(tourism).
Key can be created in conjunction with tidy selectors like starts_with().

Interval

The interval function returns the interval associated with the tsibble.

* Regular: the value and its time unit including "nanosecond", "microsecond", "millisecond",

"second", "minute", "hour", "day", "week", "month", "quarter", "year". An unrecognisable
time interval is labelled as "unit".
e Irregular: as_tsibble(regular = FALSE) gives the irregular tsibble. It is marked with !.

* Unknown: Not determined (?), if it’s an empty tsibble, or one entry for each key variable.
An interval is obtained based on the corresponding index representation:
* integerish numerics between 1582 and 2499: "year" (Y). Note the year of 1582 saw the begin-
ning of the Gregorian Calendar switch.
* yearquarter: "quarter" (Q)
e yearmonth: "month" (M)
* yearweek: "week" (W)

* Date: "day" (D)

8 as_tsibble

o difftime: "week" (W), "day" (D), "hour" (h), "minute" (m), "second" (s)

e POSIXt/hms: "hour" (h), "minute" (m), "second" (s), "millisecond" (us), "microsecond" (ms)

* period: "year" (Y), "month" (M), "day" (D), "hour" (h), "minute" (m), "second" (s), "millisec-
ond" (us), "microsecond" (ms)

* nanotime: "nanosecond" (ns)

¢ other numerics &ordered (ordered factor): "unit" When the interval cannot be obtained due
to the mismatched index format, an error is issued.

The interval is invariant to subsetting, such as filter(), slice(), and [.tbl_ts. However, if the
result is an empty tsibble, the interval is always unknown. When joining a tsibble with other data
sources and aggregating to different time scales, the interval gets re-calculated.

See Also
tsibble

Examples

coerce tibble to tsibble w/o a key

tbl1 <- tibble(
date = as.Date("2017-01-01") + 0:9,
value = rnorm(10)

)

as_tsibble(tbl1)

supply the index to suppress the message

as_tsibble(tbl1, index = date)

coerce tibble to tsibble with a single variable for key
use “yearquarter()" to represent quarterly data
tbl2 <- tibble(
qtr = rep(yearquarter(”2010 Q1") + 0:9, 3),
group = rep(c("x", "y", "z"), each = 10),
value = rnorm(30)
)
"gtr"” is automatically considered as the index var
as_tsibble(tbl2, key = group)
as_tsibble(tbl2, key = group, index = qtr)

create a tsibble with multiple variables for key
use “yearmonth()™ to represent monthly data
tbl3 <- tibble(
mth rep(yearmonth(”2010 Jan") + 0:8, each = 3),
xyz = rep(c(”"x", "y", "z"), each = 9),
abc = rep(letters[1:3], times = 9),
value = rnorm(27)
)
as_tsibble(tbl3, key = c(xyz, abc))
coerce ts to tsibble
as_tsibble(AirPassengers)
as_tsibble(sunspot.year)
as_tsibble(sunspot.month)
as_tsibble(austres)
coerce mts to tsibble
z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
as_tsibble(z)
as_tsibble(z, pivot_longer = FALSE)

build_tsibble

build_tsibble

Low-level constructor for a tsibble object

Description

build_tsibble() creates a tbl_ts object with more controls. It is useful for creating a tbl_ts
internally inside a function, and it allows developers to determine if the time needs ordering and the
interval needs calculating.

Usage
build_tsibble(
X,
key = NULL,

key_data = NULL,

index,

index2 = index,
ordered = NULL,

interval
validate

TRUE,
TRUE,

.drop = key_drop_default(x)

)

Arguments

X

key
key_data

index

index2

ordered

interval

validate

.drop

Examples

A data.frame, tbl_df, tbl_ts, or other tabular objects.

Variable(s) that uniquely determine time indices. NULL for empty key, and c()
for multiple variables. It works with tidy selector (e.g. dplyr::starts_with()).
A data frame containing key variables and .rows. When a data frame is sup-
plied, the argument key will be ignored.

A variable to specify the time index variable.

A candidate of index to update the index to a new one when index_by. By
default, it’s identical to index

The default of NULL arranges the key variable(s) first and then index from past
to future. TRUE suggests to skip the ordering as x in the correct order. FALSE
checks the ordering and may give a warning.

TRUE automatically calculates the interval, and FALSE for irregular interval. Use
the specified interval via new_interval() as is.

TRUE suggests to verify that each key or each combination of key variables leads
to unique time indices (i.e. a valid tsibble). If you are sure that it’s a valid input,
specify FALSE to skip the checks.

If TRUE, empty key groups are dropped.

Prepare ~“pedestrian® to use a new index “Date” ----

pedestrian %>%
build_tsibble(

key = !lkey_vars(.), index = !!lindex(.), index2 = Date,
interval = interval(.)

)

10 count_gaps

count_gaps Count implicit gaps

Description

Count implicit gaps

Usage
count_gaps(.data, .full = FALSE, .name = c(”.from”, ".to", ".n"))
Arguments
.data A tsibble.
.full * FALSE inserts NA for each keyed unit within its own period.
* TRUE fills NA over the entire time span of the data (a.k.a. fully balanced
panel).
* start() pad NA to the same starting point (i.e. min(<index>)) across units.
* end() pad NA to the same ending point (i.e. max(<index>)) across units.
.name Strings to name new columns.
Value

A tibble contains:

* the "key" of the thl_ts
e "from": the starting time point of the gap
* ".to": the ending time point of the gap

* ".n": the number of implicit missing observations during the time period

See Also

Other implicit gaps handling: fill_gaps(), has_gaps(), scan_gaps()

Examples

ped_gaps <- pedestrian %>%
count_gaps(.full = TRUE)
ped_gaps
if (!requireNamespace("ggplot2”, quietly = TRUE)) {
stop(”"Please install the ggplot2 package to run these following examples.")
3

library(ggplot2)

ggplot(ped_gaps, aes(x = Sensor, colour = Sensor)) +
geom_linerange(aes(ymin = .from, ymax = .to)) +
geom_point(aes(y = .from)) +

geom_point(aes(y = .to)) +
coord_flip() +
theme(legend.position = "bottom")

difference

difference Lagged differences

Description

Stable

Usage

difference(x, lag = 1, differences = 1, default = NA, order_by = NULL)

Arguments
X Vector of values
lag A positive integer indicating which lag to use.
differences A positive integer indicating the order of the difference.
default Value used for non-existent rows. Defaults to NA.
order_by Override the default ordering to use another vector or column
Value

A numeric vector of the same length as x.

See Also

dplyr::lead and dplyr::lag

Examples

examples from base

difference(1:10, 2)

difference(1:10, 2, 2)

x <- cumsum(cumsum(1:10))

difference(x, lag = 2)

difference(x, differences = 2)

Use order_by if data not already ordered (example from dplyr)
library(dplyr, warn.conflicts = FALSE)

tsbl <- tsibble(year = 2000:2005, value = (0:5)*2, index = year)
scrambled <- tsbl %>% slice(sample(nrow(tsbl)))

wrong <- mutate(scrambled, diff = difference(value))
arrange(wrong, year)

right <- mutate(scrambled, diff = difference(value, order_by = year))
arrange(right, year)

12

fill_gaps

fill_gaps

Turn implicit missing values into explicit missing values

Description

Stable

Usage
fill_gaps(.data,

., .full = FALSE)

Arguments
.data A tsibble.
A set of name-value pairs. The values provided will only replace missing values
that were marked as "implicit", and will leave previously existing NA untouched.
* empty: filled with default NA.
* filled by values or functions.
.full * FALSE inserts NA for each keyed unit within its own period.
* TRUE fills NA over the entire time span of the data (a.k.a. fully balanced
panel).
* start() pad NA to the same starting point (i.e. min(<index>)) across units.
* end() pad NA to the same ending point (i.e. max(<index>)) across units.
See Also

tidyr::fill, tidyr::replace_na for handling missing values NA.

Other implicit gaps handling: count_gaps(), has_gaps(), scan_gaps()

Examples

harvest <- tsibble(

year = c(2010, 2011, 2013, 2011, 2012, 2014),
fruit = rep(c("kiwi"”, "cherry"), each = 3),

kilo = sample(1:10,

size = 6),

key = fruit, index = year

)

gaps as default “NA"

fill_gaps(harvest, .full = TRUE)
fill_gaps(harvest, .full = start())
fill_gaps(harvest, .full = end())

full_harvest <- fill_gaps(harvest, .full = FALSE)

full_harvest

replace gaps with a specific value

harvest %>%

fill_gaps(kilo = @L)

replace gaps using a function by variable

harvest %>%

filter_index 13

fill_gaps(kilo = sum(kilo))

replace gaps using a function for each group
harvest %>%

group_by_key() %>%

fill_gaps(kilo = sum(kilo))

leaves existing “NA™ untouched
harvest[2, 3] <- NA
harvest %>%
group_by_key() %>%
fill_gaps(kilo = sum(kilo, na.rm = TRUE))

replace NA
pedestrian %>%
group_by_key() %>%
fill_gaps(Count = as.integer(median(Count)))

if (!requireNamespace("tidyr"”, quietly = TRUE)) {
stop(”"Please install the 'tidyr' package to run these following examples.")
3
use fill() to fill “NA™ by previous/next entry
pedestrian %>%
group_by_key() %>%
fill_gaps() %>%
tidyr::fill(Count, .direction = "down")

filter_index A shorthand for filtering time index for a tsibble

Description

This shorthand respects time zones and encourages compact expressions.

Usage
filter_index(.data, ..., .preserve = FALSE)
Arguments
.data A tsibble.
Formulas that specify start and end periods (inclusive), or strings.

e ~endor . ~ end: from the very beginning to a specified ending period.

* start ~ end: from specified beginning to ending periods.

e start ~ .: from a specified beginning to the very end of the data. Sup-
ported index type: POSIXct (to seconds), Date, yearweek, yearmonth/yearmon,
yearquarter/yearqtr, hms/difftime & numeric.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),

the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

14 group_by_key

System Time Zone (''Europe/London'")

There is a known issue of an extra hour gained for a machine setting time zone to "Europe/London",
regardless of the time zone associated with the POSIXct inputs. It relates to anytime and Boost. Use
Sys.timezone() to check if the system time zone is "Europe/London". It would be recommended
to change the global environment "TZ" to other equivalent names: GB, GB-Eire, Europe/Belfast,
Europe/Guernsey, Europe/Isle_of_Man and Europe/Jersey as documented in ?Sys.timezone(),
using Sys.setenv(TZ = "GB") for example.

See Also

time_in for a vector of time index

Examples

from the starting time to the end of Feb, 2015
pedestrian %>%
filter_index(~ "2015-02")

entire Feb 2015, & from the beginning of Aug 2016 to the end
pedestrian %>%
filter_index("2015-02", "2016-08" ~ .)

multiple time windows
pedestrian %>%
filter_index(~"2015-02", "2015-08" ~ "2015-09", "2015-12" ~ "2016-02")

entire 2015
pedestrian %>%
filter_index("2015")

specific
pedestrian %>%

filter_index("2015-03-23" ~ "2015-10")
pedestrian %>%

filter_index("2015-03-23" ~ "2015-10-31")
pedestrian %>%

filter_index("2015-03-23 10" ~ "2015-10-31 12")

group_by_key Group by key variables

Description

Stable

Usage

group_by_key(.data, ..., .drop = key_drop_default(.data))

guess_frequency 15

Arguments
.data A tbl_ts object.
Ignored.
.drop When .drop = TRUE, empty groups are dropped. See group_by_drop_default()
for what the default value is for this argument.
Examples

tourism %>%
group_by_key ()

guess_frequency Guess a time frequency from other index objects

Description

Stable
A possible frequency passed to the ts() function

Usage

guess_frequency(x)

Arguments

non

X An index object including "yearmonth", "yearquarter”, "Date" and others.

Details

If a series of observations are collected more frequently than weekly, it is more likely to have
multiple seasonalities. This function returns a frequency value at its smallest. For example, hourly
data would have daily, weekly and annual frequencies of 24, 168 and 8766 respectively, and hence
it gives 24.

References

https://robjhyndman.com/hyndsight/seasonal-periods/

Examples

guess_frequency(yearquarter(”2016 Q1") + 0:7)
guess_frequency(yearmonth(”2016 Jan") + 0:23)
guess_frequency(seq(as.Date(”2017-01-01"), as.Date("2017-01-31"), by = 1))
guess_frequency(seq(

as.POSIXct("2017-01-01 00:00"), as.POSIXct("2017-01-10 23:00"),

by = "1 hour”

)

https://robjhyndman.com/hyndsight/seasonal-periods/

16 has_gaps

has_gaps Does a tsibble have implicit gaps in time?

Description

Does a tsibble have implicit gaps in time?

Usage

has_gaps(.data, .full = FALSE, .name = ".gaps")

Arguments
.data A tsibble.
.full * FALSE inserts NA for each keyed unit within its own period.
e TRUE fills NA over the entire time span of the data (a.k.a. fully balanced
panel).
* start() pad NA to the same starting point (i.e. min(<index>)) across units.
* end() pad NA to the same ending point (i.e. max(<index>)) across units.
.name Strings to name new columns.
Value

A tibble contains "key" variables and new column .gaps of TRUE/FALSE.

See Also

Other implicit gaps handling: count_gaps(), fill_gaps(), scan_gaps()

Examples

harvest <- tsibble(
year = c(2010, 2011, 2013, 2011, 2012, 2013),
fruit = rep(c("kiwi"”, "cherry"), each = 3),
kilo = sample(1:10, size = 6),
key = fruit, index = year
)
has_gaps(harvest)
has_gaps(harvest, .full = TRUE)
has_gaps(harvest, .full = start())
has_gaps(harvest, .full = end())

holiday_aus 17

holiday_aus Australian national and state-based public holiday

Description

Australian national and state-based public holiday

Usage
holiday_aus(year, state = "national"”)
Arguments
year A vector of integer(s) indicating year(s).
state A state in Australia including "ACT", "NSW", "NT", "QLD", "SA", "TAS",
"VIC", "WA", as well as "national".
Details

Not documented public holidays:

* AFL public holidays for Victoria
* Queen’s Birthday for Western Australia

* Royal Queensland Show for Queensland, which is for Brisbane only

This function requires "timeDate" to be installed.

Value

A tibble consisting of holiday labels and their associated dates in the year(s).

References

Public holidays

Examples

holiday_aus(2016, state = "VIC")
holiday_aus(2013:2016, state = "ACT")

https://www.australia.gov.au/about-australia/special-dates-and-events/public-holidays

18 index_by

index Return index variable from a tsibble

Description

Return index variable from a tsibble

Usage

index(x)
index_var(x)
index2(x)
index2_var(x)

Arguments

X A tsibble object.

Examples

index(pedestrian)
index_var(pedestrian)

index_by Group by time index and collapse with summarise()

Description

Stable

index_by () is the counterpart of group_by () in temporal context, but it only groups the time index.
The following operation is applied to each partition of the index, similar to group_by () but dealing
with index only. index_by() + summarise() will update the grouping index variable to be the new
index. Use ungroup() to remove the index grouping vars.

Usage

index_by(.data, ...)
Arguments

.data A tbl_ts.

If empty, grouping the current index. If not empty, a single expression is required
for either an existing variable or a name-value pair. A lambda expression is
supported, for example ~ as.Date(.) where . refers to the index variable. The
index functions that can be used, but not limited:

* lubridate::year: yearly aggregation

index_by 19

* yearquarter: quarterly aggregation

* yearmonth: monthly aggregation

» yearweek: weekly aggregation

* as.Date or lubridate::as_date: daily aggregation

* lubridate::ceiling_date, lubridate::floor_date, or lubridate::round_date: fine-
resolution aggregation

* Extract time components functions, such as lubridate: :hour () & lubridate: :day()

* other index functions from other packages or self-defined functions

Details

* A index_by()-ed tsibble is indicated by @ in the "Groups" when displaying on the screen.

Examples

pedestrian %>% index_by()
Monthly counts across sensors
library(dplyr, warn.conflicts = FALSE)
monthly_ped <- pedestrian %>%
group_by_key() %>%
index_by(Year_Month = ~ yearmonth(.)) %>%
summarise(
Max_Count = max(Count),
Min_Count = min(Count)

)
monthly_ped
index(monthly_ped)

Using existing variable
pedestrian %>%
group_by_key() %>%
index_by(Date) %>%
summarise(
Max_Count = max(Count),
Min_Count = min(Count)

Attempt to aggregate to 4-hour interval, with the effects of DST
pedestrian %>%
group_by_key() %>%
index_by(Date_Time4 = ~ lubridate::floor_date(., "4 hour")) %>%
summarise(Total_Count = sum(Count))

library(lubridate, warn.conflicts = FALSE)
Annual trips by Region and State
tourism %>%
index_by(Year = ~ year(.)) %>%
group_by(Region, State) %>%
summarise(Total = sum(Trips))

Rouding to financial year, using a custom function
financial_year <- function(date) {

year <- year(date)

ifelse(quarter(date) <= 2, year, year + 1)

}

20 interval

tourism %>%
index_by(Year = ~ financial_year(.)) %>%
summarise(Total = sum(Trips))

index_valid Add custom index support for a tsibble

Description

Stable
S3 method to add an index type support for a tsibble.

Usage

index_valid(x)

Arguments

X An object of index type supported by tsibble.

Details

This method is primarily used for adding an index type support in as_tsibble.

Value

TRUE/FALSE or NA (unsure)

See Also

interval_pull for obtaining interval for regularly spaced time.

Examples

index_valid(seq(as.Date("2017-01-01"), as.Date("2017-01-10"), by = 1))

interval Meta-information of a tsibble

Description

e interval () returns an interval of a tsibble.
* is_regular checks if a tsibble is spaced at regular time or not.
* is_ordered checks if a tsibble is ordered by key and index.

Usage

interval(x)
is_regular(x)

is_ordered(x)

interval_pull 21

Arguments

X A tsibble object.
Examples

interval (pedestrian)

is_regular(pedestrian)
is_ordered(pedestrian)

interval_pull Pull time interval from a vector

Description

Stable

Assuming regularly spaced time, the interval_pull() returns a list of time components as the
"interval" class.

Usage

interval_pull(x)

Arguments

X A vector of index-like class.

Details

Extend tsibble to support custom time indexes by defining S3 generics index_valid() and interval_pull()
for them.

Value

non non

An "interval" class (a list) includes "year", "quarter”, "month", "week", "day", "hour", "minute",
"second", "millisecond", "microsecond", "nanosecond", "unit".

Examples

x <- seq(as.Date("2017-10-01"), as.Date("2017-10-31"), by = 3)
interval_pull(x)

22 is_tsibble

is_duplicated Test duplicated observations determined by key and index variables

Description
Stable

* is_duplicated(): alogical scalar if the data exist duplicated observations.
e are_duplicated(): alogical vector, the same length as the row number of data.

* duplicates(): identical key-index data entries.

Usage
is_duplicated(data, key = NULL, index)

are_duplicated(data, key = NULL, index, from_last = FALSE)

duplicates(data, key = NULL, index)

Arguments
data A data frame for creating a tsibble.
key Variable(s) that uniquely determine time indices. NULL for empty key, and c()
for multiple variables. It works with tidy selector (e.g. dplyr: :starts_with()).
index A variable to specify the time index variable.
from_last TRUE does the duplication check from the last of identical elements.
Examples

harvest <- tibble(

year = c(2010, 2011, 2013, 2011, 2012, 2014, 2014),

fruit = c(rep(c("kiwi”, "cherry"), each = 3), "cherry"),

kilo = sample(1:10, size = 7)
)
is_duplicated(harvest, key = fruit, index = year)
are_duplicated(harvest, key = fruit, index = year)
are_duplicated(harvest, key = fruit, index = year, from_last = TRUE)
duplicates(harvest, key = fruit, index = year)

is_tsibble If the object is a tsibble

Description

Stable

Usage
is_tsibble(x)

is_grouped_ts(x)

key

Arguments

X An object.

Value

TRUE if the object inherits from the tbl_ts class.

Examples

A tibble is not a tsibble ----

tbl <- tibble(
date = seq(as.Date("2017-10-01"), as.Date("2017-10-31"), by = 1),
value = rnorm(31)

)

is_tsibble(tbl)

A tsibble ----
tsbl <- as_tsibble(tbl, index = date)
is_tsibble(tsbl)

23

key Return key variables

Description

key () returns a list of symbols; key_vars() gives a character vector.

Usage
key(x)

key_vars(x)

Arguments

X A tsibble.

Examples

key(pedestrian)
key_vars(pedestrian)

key(tourism)
key_vars(tourism)

24 new_data

measures Return measured variables

Description

Return measured variables

Usage

measures(x)

measured_vars(x)

Arguments

X A tbl_ts.

Examples

measures(pedestrian)
measures (tourism)

measured_vars(pedestrian)
measured_vars(tourism)

new_data New tsibble data and append new observations to a tsibble

Description

Stable

append_row(): add new rows to the start/end of a tsibble by filling a key-index pair and NA for
measured variables.

append_case() is an alias of append_row().

Usage

new_data(.data, n = 1L, ...)

S3 method for class 'tbl_ts'
new_data(.data, n = 1L, keep_all = FALSE, ...)

append_row(.data, n = 1L, ...)

new_interval 25

Arguments
.data A tbl_ts.
n An integer indicates the number of key-index pair to append. If
¢ n > 0, future observations
* n <@, past observations
Passed to individual S3 method.
keep_all If TRUE keep all the measured variables as well as index and key, otherwise only
index and key.
Examples

new_data(pedestrian)
new_data(pedestrian, keep_all = TRUE)
new_data(pedestrian, n = 3)
new_data(pedestrian, n = -2)

tsbl <- tsibble(
date = rep(as.Date("2017-01-01") + 0:2, each = 2),
group = rep(letters[1:2], 3),
value = rnorm(6),
key = group
)
append_row(tsbl)
append_row(tsbl, n = 2)
append_row(tsbl, n = -2)

new_interval Interval constructor for a tsibble

Description

Stable

* new_interval() creates an interval object.
* gcd_interval() computes the greatest common divisor for the difference of numerics.

e is_regular_interval() checks if the interval is regular.

Usage

new_interval(..., .regular = TRUE, .others = list())
is_regular_interval(x)

gcd_interval (x)

26

Arguments
A set of name-value pairs to specify default interval units: "year", "quarter",
"month", "week", "day", "hour", "minute", "second", "millisecond", "microsec-
ond", "nanosecond", "unit".
.regular Logical. FALSE gives an irregular interval, and will ignore the . . .
.others A list name-value pairs that are not included in the . . ., to allow custom interval.
X An interval.
Value

an "interval" class

Examples

(x <= new_interval(hour = 1, minute = 30))

(y <- new_interval(.regular = FALSE)) # irregular interval
new_interval() # unknown interval

new_interval(.others = list(semester = 1)) # custom interval
is_regular_interval(x)

is_regular_interval(y)

gcd_interval(c(1, 3, 5, 6))

new_tsibble Create a subclass of a tsibble

Description

Create a subclass of a tsibble

Usage

new_tsibble(x, ..., class = NULL)
Arguments

X A tbl_ts, required.

Name-value pairs defining new attributes other than a tsibble.

class Subclasses to assign to the new object, default: none.

pedestrian 27

pedestrian Pedestrian counts in the city of Melbourne

Description

A dataset containing the hourly pedestrian counts from 2015-01-01 to 2016-12-31 at 4 sensors in
the city of Melbourne.

Usage

pedestrian

Format

A tsibble with 66,071 rows and 5 variables:

* Sensor: Sensor names (key)

* Date_Time: Date time when the pedestrian counts are recorded (index)
* Date: Date when the pedestrian counts are recorded

¢ Time: Hour associated with Date_Time

* Counts: Hourly pedestrian counts

References

Melbourne Open Data Portal

Examples

library(dplyr)
data(pedestrian)
make implicit missingness to be explicit ----
pedestrian %>% fill_gaps()
compute daily maximum counts across sensors ----
pedestrian %>%
group_by_key() %>%
index_by(Date) %>% # group by Date and use it as new index
summarise(MaxC = max(Count))

scan_gaps Scan a tsibble for implicit missing observations

Description

Scan a tsibble for implicit missing observations

Usage
scan_gaps(.data, .full = FALSE)

https://data.melbourne.vic.gov.au/Transport-Movement/Pedestrian-volume-updated-monthly-/b2ak-trbp

28 slide_tsibble

Arguments
.data A tsibble.
.full * FALSE inserts NA for each keyed unit within its own period.
* TRUE fills NA over the entire time span of the data (a.k.a. fully balanced
panel).
* start() pad NA to the same starting point (i.e. min(<index>)) across units.
* end() pad NA to the same ending point (i.e. max(<index>)) across units.
See Also

Other implicit gaps handling: count_gaps(), fill_gaps(), has_gaps()

Examples

scan_gaps(pedestrian)

slide_tsibble Perform sliding windows on a tsibble by row

Description

Questioning
Usage

slide_tsibble(.x, .size =1, .step =1, .id = ".id")
Arguments

. X A tsibble.

.size A positive integer for window size.

.step A positive integer for calculating at every specified step instead of every single

step.

.id A character naming the new column . id containing the partition.

Rolling tsibble

slide_tsibble(), tile_tsibble(), and stretch_tsibble() provide fast and shorthand for
rolling over a tsibble by observations. That said, if the supplied tsibble has time gaps, these rolling
helpers will ignore those gaps and proceed.

They are useful for preparing the tsibble for time series cross validation. They all return a tsibble
including a new column . id as part of the key. The output dimension will increase considerably
with slide_tsibble() and stretch_tsibble(), which is likely to run out of memory when the
data is large.

See Also
Other rolling tsibble: stretch_tsibble(), tile_tsibble()

stretch_tsibble 29

Examples

harvest <- tsibble(
year = rep(2010:2012, 2),
fruit = rep(c("kiwi"”, "cherry"), each = 3),
kilo = sample(1:10, size = 6),
key = fruit, index = year
)
harvest %>%
slide_tsibble(.size = 2)

stretch_tsibble Perform stretching windows on a tsibble by row

Description

Questioning
Usage

stretch_tsibble(.x, .step =1, .init =1, .id = ".id")
Arguments

. X A tsibble.

.step A positive integer for incremental step.

.init A positive integer for an initial window size.

.id A character naming the new column . id containing the partition.
Rolling tsibble

slide_tsibble(), tile_tsibble(), and stretch_tsibble() provide fast and shorthand for
rolling over a tsibble by observations. That said, if the supplied tsibble has time gaps, these rolling
helpers will ignore those gaps and proceed.

They are useful for preparing the tsibble for time series cross validation. They all return a tsibble
including a new column .id as part of the key. The output dimension will increase considerably
with slide_tsibble() and stretch_tsibble(), which is likely to run out of memory when the
data is large.

See Also
Other rolling tsibble: slide_tsibble(), tile_tsibble()

Examples

harvest <- tsibble(
year = rep(2010:2012, 2),
fruit = rep(c("kiwi"”, "cherry"), each = 3),
kilo = sample(1:10, size = 6),
key = fruit, index = year
)
harvest %>%
stretch_tsibble()

30 tile_tsibble

tile_tsibble Perform tiling windows on a tsibble by row

Description

Questioning
Usage

tile_tsibble(.x, .size =1, .id = ".id")
Arguments

X A tsibble.

.size A positive integer for window size.

.id A character naming the new column . id containing the partition.
Rolling tsibble

slide_tsibble(), tile_tsibble(), and stretch_tsibble() provide fast and shorthand for
rolling over a tsibble by observations. That said, if the supplied tsibble has time gaps, these rolling
helpers will ignore those gaps and proceed.

They are useful for preparing the tsibble for time series cross validation. They all return a tsibble
including a new column . id as part of the key. The output dimension will increase considerably
with slide_tsibble() and stretch_tsibble(), which is likely to run out of memory when the
data is large.

See Also

Other rolling tsibble: slide_tsibble(), stretch_tsibble()

Examples

harvest <- tsibble(
year = rep(2010:2012, 2),
fruit = rep(c("kiwi"”, "cherry"), each = 3),
kilo = sample(1:10, size = 6),
key = fruit, index = year
)
harvest %>%
tile_tsibble(.size = 2)

time_in 31

time_in If time falls in the ranges using compact expressions

Description

This function respects time zone and encourages compact expressions.

Usage
time_in(x, ...)
Arguments
X A vector of time index, such as classes POSIXct, Date, yearweek, yearmonth,
yearquarter, hms/difftime, and numeric.
Formulas that specify start and end periods (inclusive), or strings.

e ~endor . ~ end: from the very beginning to a specified ending period.

e start ~ end: from specified beginning to ending periods.

e start ~ .: from a specified beginning to the very end of the data. Sup-
ported index type: POSIXct (to seconds), Date, yearweek, yearmonth/yearmon,
yearquarter/yearqtr, hms/difftime & numeric.

Value

logical vector

System Time Zone (''Europe/London'")

There is a known issue of an extra hour gained for a machine setting time zone to "Europe/London",
regardless of the time zone associated with the POSIXct inputs. It relates to anytime and Boost. Use
Sys.timezone() to check if the system time zone is "Europe/London". It would be recommended
to change the global environment "TZ" to other equivalent names: GB, GB-Eire, Europe/Belfast,
Europe/Guernsey, Europe/Isle_of Man and Europe/Jersey as documented in ?Sys.timezone(),
using Sys.setenv(TZ = "GB") for example.

See Also

filter_index for filtering tsibble

Examples

x <- unique(pedestrian$Date_Time)

lgl <- time_in(x, ~"2015-02", "2015-08" ~ "2015-09", "2015-12" ~ "2016-02")
lgl[1:10]

more specific

1gl2 <- time_in(x, "2015-03-23 10" ~ "2015-10-31 12")

1gl2[1:10]

library(dplyr)
pedestrian %>%

filter(time_in(Date_Time, "2015-03-23 10" ~ "2015-10-31 12"))
pedestrian %>%

32 tourism

filter(time_in(Date_Time, "2015")) %>%
mutate(Season = ifelse(

time_in(Date_Time, "2015-03" ~ "2015-08"),
"Autumn-Winter”, "Spring-Summer”
»
tourism Australian domestic overnight trips
Description

A dataset containing the quarterly overnight trips from 1998 Q1 to 2016 Q4 across Australia.

Usage

tourism

Format

A tsibble with 23,408 rows and 5 variables:

* Quarter: Year quarter (index)

* Region: The tourism regions are formed through the aggregation of Statistical Local Areas
(SLAs) which are defined by the various State and Territory tourism authorities according to
their research and marketing needs

* State: States and territories of Australia
* Purpose: Stopover purpose of visit:

— "Holiday"

— "Visiting friends and relatives"

— "Business"

— "Other reason"

 Trips: Overnight trips in thousands

References

Tourism Research Australia

Examples

library(dplyr)
data(tourism)
Total trips over geographical regions
tourism %>%
group_by(Region, State) %>%
summarise(Total_Trips = sum(Trips))

https://www.tra.gov.au

tsibble 33

tsibble Create a tsibble object

Description

Stable

Usage

tsibble(..., key = NULL, index, regular = TRUE, .drop = TRUE)

Arguments

A set of name-value pairs.

key Variable(s) that uniquely determine time indices. NULL for empty key, and c()
for multiple variables. It works with tidy selector (e.g. dplyr: :starts_with()).
index A variable to specify the time index variable.
regular Regular time interval (TRUE) or irregular (FALSE). The interval is determined by
the greatest common divisor of index column, if TRUE.
.drop If TRUE, empty key groups are dropped.
Details

A tsibble is sorted by its key first and index.

Value

A tsibble object.

Index

An extensive range of indices are supported by tsibble:

e native time classes in R (such as Date, POSIXct, and difftime)
* tsibble’s new additions (such as yearweek, yearmonth, and yearquarter).

* other commonly-used classes: ordered, hms: :hms, lubridate: :period, and nanotime: :nanotime.

For a tb1l_ts of regular interval, a choice of index representation has to be made. For example, a
monthly data should correspond to time index created by yearmonth, instead of Date or POSIXct.
Because months in a year ensures the regularity, 12 months every year. However, if using Date, a
month containing days ranges from 28 to 31 days, which results in irregular time space. This is also
applicable to year-week and year-quarter.

Tsibble supports arbitrary index classes, as long as they can be ordered from past to future. To
support a custom class, you need to define index_valid() for the class and calculate the interval
through interval_pull().

34 tsibble

Key
Key variable(s) together with the index uniquely identifies each record:

* Empty: an implicit variable. NULL resulting in a univariate time series.
* A single variable: For example, data(pedestrian) uses Sensor as the key.

* Multiple variables: For example, Declare key = c(Region, State,Purpose) for data(tourism).
Key can be created in conjunction with tidy selectors like starts_with().

Interval
The interval function returns the interval associated with the tsibble.

* Regular: the value and its time unit including "nanosecond", "microsecond", "millisecond",

"second", "minute", "hour", "day", "week", "month", "quarter", "year". An unrecognisable
time interval is labelled as "unit".
 Trregular: as_tsibble(regular = FALSE) gives the irregular tsibble. It is marked with !.

* Unknown: Not determined (?), if it’s an empty tsibble, or one entry for each key variable.
An interval is obtained based on the corresponding index representation:
* integerish numerics between 1582 and 2499: "year" (Y). Note the year of 1582 saw the begin-
ning of the Gregorian Calendar switch.
e yearquarter: "quarter" (Q)
¢ yearmonth: "month" (M)
* yearweek: "week" (W)
* Date: "day" (D)
o difftime: "week" (W), "day" (D), "hour" (h), "minute" (m), "second" (s)
e POSIXt/hms: "hour" (h), "minute" (m), "second" (s), "millisecond" (us), "microsecond" (ms)

* period: "year" (Y), "month" (M), "day" (D), "hour" (h), "minute" (m), "second" (s), "millisec-
ond" (us), "microsecond" (ms)

* nanotime: "nanosecond" (ns)
 other numerics &ordered (ordered factor): "unit" When the interval cannot be obtained due

to the mismatched index format, an error is issued.

The interval is invariant to subsetting, such as filter(), slice(), and [.tbl_ts. However, if the
result is an empty tsibble, the interval is always unknown. When joining a tsibble with other data
sources and aggregating to different time scales, the interval gets re-calculated.

See Also
build_tsibble

Examples

create a tsibble w/o a key
tsibble(
date = as.Date("2017-01-01") + @:9,
value = rnorm(10)

)

create a tsibble with a single variable for key

tsibble-tidyverse 35

tsibble(
gtr = rep(yearquarter(”2010 Q1") + 0:9, 3),
group = rep(c("x", "y", "z"), each = 10),
value = rnorm(30),
key = group

)

create a tsibble with multiple variables for key
tsibble(
mth = rep(yearmonth(”2010 Jan") + 0:8, each = 3),
xyz = rep(c("x", "y", "z"), each = 9),
abc = rep(letters[1:3], times = 9),
value = rnorm(27),
key = c(xyz, abc)
)

create a tsibble containing "key” and "index" as column names
tsibble(!!!1list(

index = rep(yearquarter(”2010 Q1") + 0:9, 3),

key = rep(c("x", "y", "z"), each = 10),

value = rnorm(30)),

key = key, index = index

)

tsibble-tidyverse Tidyverse methods for tsibble

Description
Current dplyr verbs that tsibble has support for:
e dplyr::filter(), dplyr::slice(), dplyr::arrange()
e dplyr::select(),dplyr::transmute(), dplyr::mutate(), dplyr::relocate(), dplyr::summarise(),
dplyr::group_by()

e dplyr::left_join(),dplyr::right_join(),dplyr::full_join(), dplyr::inner_join(),
dplyr::semi_join(), dplyr::anti_join(), dplyr::nest_join()

e dplyr::bind_rows(), dplyr::bind_cols()

Current tidyr verbs that tsibble has support for:
e tidyr::pivot_longer(), tidyr::pivot_wider(), tidyr::gather(), tidyr: :spread()
e tidyr::nest(), tidyr::fill(), tidyr::drop_na()

Column-wise verbs

* The index variable cannot be dropped for a tsibble object.

* When any key variable is modified, a check on the validity of the resulting tsibble will be
performed internally.

* Use as_tibble() to convert tsibble to a general data frame.

Row-wise verbs

A warning is likely to be issued, if observations are not arranged in past-to-future order.

36

Join verbs

update_tsibble

Joining with other data sources triggers the check on the validity of the resulting tsibble.

Examples

library(dplyr, warn.conflicts = FALSE)
“summarise()” a tsibble always aggregates over time

Sum over sensors

pedestrian %>%
index_by() %>%
summarise(Total
shortcut
pedestrian %>%
summarise(Total
Back to tibble
pedestrian %>%
as_tibble() %>%
summarise(Total

library(tidyr)

stocks <- tsibble(

sum(Count))

sum(Count))

sum(Count))

time = as.Date("2009-01-01") + @:9,
X = rnorm(10, @, 1),

Y
z

)

rnorm(10, @, 2),
rnorm(10, @, 4)

(stocksm <- stocks %>%
pivot_longer(-time, names_to = "stock”, values_to =

stocksm %>%

pivot_wider (names_from = stock, values_from = price)

"price”))

update_tsibble

Update key and index for a tsibble

Description

Update key and index for a tsibble

Usage

update_tsibble(
X,
key,
index,

regular = is_regular(x),

validate = TRUE,

.drop = key_drop_default(x)

yearmonth 37

Arguments
X A tsibble.
key Variable(s) that uniquely determine time indices. NULL for empty key, and c()
for multiple variables. It works with tidy selector (e.g. dplyr::starts_with()).
index A variable to specify the time index variable.
regular Regular time interval (TRUE) or irregular (FALSE). The interval is determined by
the greatest common divisor of index column, if TRUE.
validate TRUE suggests to verify that each key or each combination of key variables leads
to unique time indices (i.e. a valid tsibble). If you are sure that it’s a valid input,
specify FALSE to skip the checks.
.drop If TRUE, empty key groups are dropped.
Details

Unspecified arguments will inherit the attributes from x.

Examples

update index

library(dplyr)

pedestrian %>%
group_by_key() %>%
mutate(Hour_Since = Date_Time - min(Date_Time)) %>%
update_tsibble(index = Hour_Since)

update key: drop the variable "State” from the key
tourism %>%
update_tsibble(key = c(Purpose, Region))

yearmonth Represent year-month

Description

Stable

Create or coerce using yearmonth().

Usage

yearmonth(x)

is_yearmonth(x)

Arguments

X Other object.

Value

year-month (yearmonth) objects.

38 yearquarter

Display

Use format() to display yearweek, yearmonth, and yearquarter objects in required formats.
Please see strptime() details for supported conversion specifications.

See Also

Other index functions: yearquarter(), yearweek()

Examples

coerce POSIXct/Dates to yearmonth
x <- seq(as.Date("2016-01-01"), as.Date("2016-12-31"), by = "1 month")
yearmonth(x)

parse characters
yearmonth(c("2018 Jan", "2018-01", "2018 January"))

seq() and arithmetic

mth <- yearmonth("2017-11")

seq(mth, length.out = 10, by = 1) # by 1 month
mth + 0:9

display formats
format(mth, format = "%y %m")

units since 1970 Jan
as.double(yearmonth("”1969 Jan") + 0:24)

yearquarter Represent year-quarter

Description

Stable

Create or coerce using yearquarter().

Usage

yearquarter(x, fiscal_start = 1)
is_yearquarter(x)

fiscal_year(x)

Arguments

X Other object.

fiscal_start numeric indicating the starting month of a fiscal year

Value

year-quarter (yearquarter) objects.

yearweek 39

Display

Use format() to display yearweek, yearmonth, and yearquarter objects in required formats.
Please see strptime() details for supported conversion specifications.

See Also

Other index functions: yearmonth(), yearweek()

Examples

coerce POSIXct/Dates to yearquarter

x <- seq(as.Date("2016-01-01"), as.Date(”2016-12-31"), by = "1 quarter"”)
yearquarter(x)

yearquarter(x, fiscal_start = 6)

parse characters
yearquarter(c(”2018 Q1", "2018 Qtr1"”, "2018 Quarter 1"))

seq() and arithmetic

gtr <- yearquarter(”2017 Q1")

seq(qtr, length.out = 10, by = 1) # by 1 quarter
qtr + 0:9

display formats
format(qtr, format = "%y Qtr%q")

“fiscal_year()" helps to extract fiscal year

y <- yearquarter(as.Date("2020-06-01"), fiscal_start = 6)
fiscal_year(y)

lubridate::year(y) # calendar years

yearweek Represent year-week based on the ISO 8601 standard (with flexible
start day)
Description
Stable

Create or coerce using yearweek ().

Usage

yearweek(x, week_start = getOption("lubridate.week.start”, 1))
is_yearweek(x)

is_53weeks(year, week_start = getOption("lubridate.week.start”, 1))

40 yearweek

Arguments
X Other object.
week_start An integer between 1 (Monday) and 7 (Sunday) to specify the day on which
week starts following ISO conventions. Default to 1 (Monday). Use options(lubridate.week.star
=7) to set this parameter globally.
year A vector of integers.
Value

year-week (yearweek) objects.
TRUE/FALSE if the year has 53 ISO weeks.

Display

Use format() to display yearweek, yearmonth, and yearquarter objects in required formats.
Please see strptime() details for supported conversion specifications.

See Also

Other index functions: yearmonth(), yearquarter()

Examples

coerce POSIXct/Dates to yearweek

x <- seq(as.Date("2016-01-01"), as.Date("2016-12-31"), by = "1 week")
yearweek (x)

yearweek (x, week_start = 7)

parse characters
yearweek (c("2018 wWo1", "2018 Wko1", "2018 Week 1"))

seq() and arithmetic

wk1 <- yearweek("2017 W50")

wk2 <- yearweek("2018 W12")
seq(from = wk1, to = wk2, by = 2)
wk1l + @:9

display formats

format(c(wkl, wk2), format = "%V/%Y")
is_53weeks(2015:2016)
is_53weeks(1969)

is_53weeks (1969, week_start = 7)

Index

+ datasets
pedestrian, 27
tourism, 32

+ implicit gaps handling
count_gaps, 10
fill_gaps, 12
has_gaps, 16
scan_gaps, 27

x index functions
yearmonth, 37
yearquarter, 38
yearweek, 39

* rolling tsibble
slide_tsibble, 28
stretch_tsibble, 29
tile_tsibble, 30

append_case (new_data), 24
append_row (new_data), 24
are_duplicated (is_duplicated), 22
as.Date, 19

as.ts.tbl_ts, 5
as_tibble.tbl_ts, 5
as_tsibble, 6, 20

build_tsibble, 9, 34
count_gaps, 10, 12, 16, 28

difference, 11
dplyr::anti_join(), 35
dplyr::arrange(), 35
dplyr::bind_cols(), 35
dplyr::bind_rows(), 35
dplyr::filter(), 35
dplyr::full_join(), 35
dplyr::group_by(), 35
dplyr::inner_join(), 35
dplyr::lag, 11
dplyr::lead, /1
dplyr::left_join(), 35
dplyr: :mutate(), 35
dplyr::nest_join(), 35
dplyr::relocate(), 35

41

dplyr::right_join(), 35
dplyr::select(), 35
dplyr::semi_join(), 35
dplyr::slice(), 35
dplyr::starts_with(), 6, 9, 22, 33, 37
dplyr::summarise(), 35
dplyr::transmute(), 35

duplicates (is_duplicated), 22

fill_gaps, 10, 12, 16, 28
filter_index, 13, 31
fiscal_year (yearquarter), 38

gcd_interval (new_interval), 25
group_by_drop_default(), 15
group_by_key, 14
guess_frequency, 15

has_gaps, 10, 12, 16, 28
holiday_aus, 17

index, 18

index2 (index), 18

index2_var (index), 18
index_by, 9, 18

index_valid, 20
index_valid(), 3,7, 33

index_var (index), 18
interval, 3, 7, 20, 34
interval_pull, 20, 21
interval_pull(), 3,7, 33
is_53weeks (yearweek), 39
is_duplicated, 22

is_grouped_ts (is_tsibble), 22
is_ordered (interval), 20
is_regular (interval), 20
is_regular_interval (new_interval), 25
is_tsibble, 22

is_yearmonth (yearmonth), 37
is_yearquarter (yearquarter), 38
is_yearweek (yearweek), 39

key, 23
key_vars (key), 23

42

lubridate::as_date, 19
lubridate: :ceiling_date, 19
lubridate: :day(), 19
lubridate::floor_date, /9
lubridate: :hour(), 19
lubridate::round_date, /9
lubridate: :year, I8

measured_vars (measures), 24
measures, 24

new_data, 24
new_interval, 25
new_interval(), 9
new_tsibble, 26

pedestrian, 27

scan_gaps, 10, 12, 16, 27
slide_tsibble, 28, 29, 30
stretch_tsibble, 28, 29, 30
strptime(), 38-40

tibble: :tibble-package, 4
tidyr::drop_na(), 35
tidyr::fill, 12
tidyr::fill(), 35
tidyr::gather(), 35
tidyr::nest(), 35
tidyr::pivot_longer(), 35
tidyr::pivot_wider(), 35
tidyr::replace_na, 12
tidyr::spread(), 35
tile_tsibble, 28, 29, 30
time_in, /4, 31

tourism, 32

tsibble, 8, 33
tsibble-package, 3
tsibble-tidyverse, 35

update_tsibble, 36

yearmonth, 3,7, 19, 33, 37, 39, 40
yearquarter, 3, 7, 19, 33, 38, 38, 40

yearweek, 3, 7, 19, 33, 38, 39, 39

INDEX

	tsibble-package
	as.ts.tbl_ts
	as_tibble.tbl_ts
	as_tsibble
	build_tsibble
	count_gaps
	difference
	fill_gaps
	filter_index
	group_by_key
	guess_frequency
	has_gaps
	holiday_aus
	index
	index_by
	index_valid
	interval
	interval_pull
	is_duplicated
	is_tsibble
	key
	measures
	new_data
	new_interval
	new_tsibble
	pedestrian
	scan_gaps
	slide_tsibble
	stretch_tsibble
	tile_tsibble
	time_in
	tourism
	tsibble
	tsibble-tidyverse
	update_tsibble
	yearmonth
	yearquarter
	yearweek
	Index

